The authors would like to thank Senior Engineers R. Wang and W. Yang for their guidance in SEM and EDX analysis. Dr. Guo at the University of Science and Technology Beijing is also thanked for her help in thermal simulation work. 1. Blaes, N., Donth, B., and Bokelmann, D. 2007. High chromium steel forgings for steam turbines at elevated temperatures. Energy Materials 2: 207–213. 2. Lu, F., Liu, P., Ji, H., Ding, Y., Xu, X., and Gao, Y. 2014. Dramatically enhanced impact toughness in welded 10% Cr rotor steel by high temperature post-weld heat treatment. Mater Charact. 92: 149–158. 3. Di Gianfrancesco, A., Cipolla, L., Paura, M., Vipraio, S. T., Venditti, D., Neri, S., et al. The role of boron in long term stability of a CrMoCOB (FB2) steel for rotor application. Advances in materials technology for fossil power plants. Proceedings from the Sixth International Conference, August 31–September 3, 2010, Santa Fe, N.Mex. ASM International, p. 342. 4. Nakano, M., Kawano, K., and Mikami, M. Manufacturing of trial rotor forging of 9% Cr steel containing Co and B (X13Cr- MoCoVNbNB9-2-1) for ultrasupercritical steam turbines. Advances in materials technology for fossil power plants. Proceedings from the Seventh International Conference, October 22–25, 2013, Waikoloa, Hawaii. ASM International, p. 321. 5. Shige, T., Magoshi, R., Itou, S., Ichimura, T., and Kondou, Y. 2001. Development of large-capacity, highly efficient welded rotor for steam turbines. Mitsubishi Heavy Industries Technical Review 38: 6–11. 6. Kern, T. U., Almstedt, H., Thiemann, T., Brussk, S., and Niepold, K. 2013. The Role of Rotor Welding Design in Meeting Future Market Requirements. ASME, pp. V5B–V25B. 7. Cui, H., Sun, F., Chen, K., Zhang, L., Wan, R., Shan, A., et al. 2010. Precipitation behavior of Laves phase in 10% Cr steel X12CrMoWVNbN10-1-1 during short-term creep exposure. Materials Science and Engineering A 527: 7505–7509. 8. Xu, Y., Wang, M., Wang, Y., Gu, T., Chen, L., Zhou, X., et al. 2015. Study on the nucleation and growth of Laves phase in a 10% Cr martensite ferritic steel after long-term aging. Journal of Alloy Compounds 621: 93–98. 9. Shi, R., and Liu, Z. 2012. Growth behaviour of Laves phase of -ferrite in P92 steels. Iron and Steel 47: 55–59. 10. Dimmler, G., Weinert, P., Kozeschnik, E., and Cerjak, H. 2003. Quantification of the Laves phase in advanced 9–12% Cr steels using a standard SEM. Mater Charact. 51: 341–352. 11. Kasl, J., and Mikmeková, Jandová D. 2014. SEM, TEM and SLEEM (scanning low energy electron microscopy) of CB2 steel after creep testing. IOP Conference Series: Materials Science and Engineering. 12. Jandová, D., Kasl, J., and Chvostová, E. 2014. Microstructure of CB2 steel before and after long-term creep tests. Materials Science Forum: 782. 13. Pepe, J. J., and Savage, W. F. 1967. Effects of constitutional liquation in 18Ni maraging steel weldments. Welding Journal 46(9): 411-s to 422-s. 14. Lee, C. H., and Lundin, C. D. 1998. Relationship between hot ductility behavior and microstructural changes in TP347 stainless steel. Welding Journal 77(1): 29-s to 37-s. 15. Thompson, R. G., and Genculu, S. 1983. Microstructural evolution in the HAZ of Inconel 718 and correlation with the hot ductility test. Welding Journal 62(12): 337-s to 345-s. 16. Andersson, J., Sjöberg, G. P., Viskari, L., and Chaturvedi, M. C. 2012. Effect of solution heat treatments on superalloys. Part 1 — Alloy 718. Mater. Sci. Tech-Lond. 28: 609–619. 17. Brooks, J. A. 1974. Effect of alloy modifications on HAZ cracking of A-286 stainless steel. Welding Journal 53(11): 517-s to 523-s. 18. Baeslack, W. A., Lata, W. P., and West, S. L. 1988. A study of heat-affected zone and weld metal liquation cracking in Alloy 903. Welding Journal 67(4): 77-s to 87-s. 19. Kasper, J. S. 1954. The ordering of atoms in the Chi-phase of the ironchromium molybdenum system. Acta Metallurgica. 2: 456–461. 20. Okafor, I., and Carlson, O. N. 1978. Equilibrium studies on a Chi phasestrengthened ferritic alloy. Metallurgical Transactions A 9: 1651–1657. WELDING RESEARCH 21. Song, Y., McPherson, N. A., and Baker, T. N. 1996. The effect of welding process on the Chi phase precipitation in as-welded 317L weld metals. ISIJ International 36: 1392–1396. 22. Kautz, H. R., and Gerlach, H. 1968. Mechanical and corrosion-resistance — Properties of unstabilized fully austenitic steels used in reactors and steam-boiler plants. Arch Eisenhuttenw. 39: 151–158. 23. Cieslak, M. J., Ritter, A. M., and Savage, W. F. 1984. Chi-phase formation during solidification and cooling of CF-8 M weld metal. Welding Journal 63(4): 133. 24. Weiss, B., and Stickler, R. 1972. Phase instabilities during high temperature exposure of 316 austenitic stainless steel. Metallurgical Transactions 3: 851–866. From Fig. 6B (number 1), we can get the interplanar distance in the three directions. Now, as an example, take the interplanar distance of (–1, 2, –1) d(–1, 2,–1). It is easy to get the length from the central spot to this spot (–1, 2, –1) R(–1, 2, –1) = 2.7034 1/nm on the reciprocal space. Then the interplanar distance d(–1, 2, –1) = 1/R(–1, 2, –1) = 0.3699 nm. The relationship between the lattice parameter a0 and interplanar distance d satisfies the equation below d = a0 / h2 + k2 +l2 where (h, k, l) is the corresponding indices of the crystal face. In this way, it is easy to get the lattice parameter a0. a0 = d h2 + k2 +l2 = 0.3699 (=1)2 +22 +(=1)2 = 0.906 nm In the same way, we can get the lattice parameter in Fig. 6B (numbers 2 through 4). JULY 2016 / WELDING JOURNAL 263-s Acknowledgments References Appendix
Welding Journal | July 2016
To see the actual publication please follow the link above