449s

Welding Journal | November 2016

WELDING RESEARCH NOVEMBER 2016 / WELDING JOURNAL 449-s ed with the diffusion soldering method. The results indicated that directly electroplating a 3-m Sn interlayer on the Pd sheet and diffusion soldering with the Ni plate completely exhausted the Sn film and caused Ni3Sn4 and PdSn intermetallic compounds to form, respectively. Unfortunately, a long crack appeared at the Ni3Sn4/PdSn interface, resulting in a very low bonding strength. Inserting a 3-m Ag layer between the Pd sheet and Ni plate, both coated with 4-m Sn, caused an additional Ag3Sn intermetallic compound to form between the Ni3Sn4 and PdSn intermetallic layers and prevented cracking of the Pd/Ni joint. Satisfactory bonding strengths ranging from 10.6 to 17.3 MPa were achieved with diffusion soldering at temperatures between 275º and 350ºC for 30 min using such Sn/Ag/Sn interlayers. The bonding effect of Pd/Ni joints can be further improved by precoating a 6-m Ni film on the Pd sheet and preheating the coated Pd sheet at 450ºC for 30 min to form a Pd-Ni solid solution zone on the Pd surface. The Pd-Ni solid solution covered Pd/Ni joints using a Sn/Ag/Sn interlayer revealed higher shear strengths of 18.9 to 24.1 MPa. High-temperature storage at 400ºC for 500 h did not degrade the bonding interface or bonding strength. This study was sponsored by the Small Business Innovation Research (SBIR) program of the Ministry of Economic Affairs (MOEA), Taiwan, under Grant No. 1Z1041847, and the industrial and academic cooperation program between Wire Technology Co. and National Taiwan University, financially supported by the Ministry of Science and Technology under Grant No. MOST 103-2622-E002- 012-CC2. 1. Lin, Y. C., Chuang, C. H., Tsai, H. H., and Chuang, T. H. Aug. 22, 23, 2016. Low temperature bonding of Pd/Ni assembly for hydrogen purifier. Proc. 3rd Int. Conf. on Mining, Material and Metallurgical Eng. Budapest, Hungary. 2. Jacobson, D. M., and Humpston, G. 1992. Diffusion soldering. Solder. Surf. Mt. Tech. 10: 27–32. 3. Chuang, T. H., Lin, H. J., and Tsao, C. W. 2006. Intermetallic compounds formed during diffusion soldering Au/Cu/Al2O3 and Cu/Ti/Si with Sn/In interlayer. J. Electron. Mater. 35: 1566–1570. 4. Liang, M. W., Hsieh, T. E., Chang, S. Y., and Chuang, T. H. 2003. Thin-film reactions during diffusion soldering of Cu/Ti/Si and Au/Cu/Al2O3 with Sn interlayers. J. Electron. Mater. 32: 952–956. 5. Welch, W. C., Chae, J., and Najafi, K. 2005. Transfer of metal MEMS packages using a wafer-level solder transfer technique. IEEE Trans. Adv. Packag. 28: 643–649. 6. Made, R. I., Gan, C. L., Yan, L. L., Yu, A., Yoon, S. W., Lau, J. H., and Lee, C. K. 2009. Study of low-temperature thermocompression bonding in Ag-In solder for packaging applications. J. Electron. Mater. 38: 365–371. 7. Li, J. F., Agyakwa, P. A., and Johnson, C. W. 2010. Kinetics of Ag3Sn growth in Ag-Sn-Ag system during transient liquid phase soldering process. Acta Metall. Mater. 58: 3429–3443. 8. Yan, L. L., Lee, C. K., Yu, D. Q., Yu, A. B., Choi, W. K., Lau, J. H., and Yoon, S. U. 2009. A hermetic seal using composite thin-film In/Sn solder as an intermediate layer and its interdiffusion reaction with Cu. J. Electron. Mater. 38: 200–207. 9. Yang, C. L., Lai, H. J., Hwang, J. D., and Chuang, T. H. 2013. Diffusion soldering of Bi0.5Sb1.5Te3 thermoelectric material with Cu electrode. J. Mater. Eng. Perform. 22: 2029–2037. 10. Chuang, T. H., Lin, H. J., Chuang, C. H., Yeh, W. T., Hwang, J. D., and Chu, H. S. 2014. Solid liquid interdiffusion bonding of (Pb,Sn)Te thermoelectric modules with Cu electrodes using a thin-film Sn interlayer. J. Electron. Mater. 43: 4610–4618. 11. Yang, C. L., Lai, H. J., Hwang, J. D., and Chuang, T. H. 2013. Diffusion soldering of Pb-doped GeTe thermoelectric modules with Cu electrodes using a thin-film Sn interlayer. J. Electron. Mater. 42: 359–365. 12. Chang, J. Y., Cheng, R. S., Kao, K. S., Chang, T. C., and Chuang, T. H. 2012. Reliable microjoints formed by solid liquid interdiffusion (SLID) bonding within a chipstacking architecture. IEEE Trans. Compon. Packag. Manufact. Technolog. 6: 979–984. 13. Chuang, T. H., Yeh, W. T., Chuang, C. H., and Hwang, J. D. 2014. Improvement of bonding strength of a (Pb,Sn)Te- Cu contact manufactured in a low temperature SLID-bonding process. J. Alloy Compd. 613: 46–54. 14. Massalski, T. B., ed. 1987. The Pd- Sn system (drawn from Elliott, R. P.). Binary Alloy Phase Diagrams, 4, p. 1874. Metals Park, Ohio: American Society for Metals. 15. Massalski, T. B., ed. 1987. The Ni-Sn system (drawn from Nash, P., and Nash, A.). Binary Alloy Phase Diagrams, 4, p. 1759. Metals Park, Ohio: American Society for Metals. 16. Bader, S., Gust, W., and Hieber, H. 1995. Rapid formation of intermetallic compounds interdiffusion in the Cu-Sn and Ni-Sn systems. Acta Metall. Mater. 43: 329–337. 17. Chang, J. Y., Chang, T. C., Chuang, T. H., and Lee, C. Y. 2014. Dual-phase intermetallic interconnections structure and method of fabricating the same. US Patent, No. 8,742,600 B2. 18. Massalski, T. B., ed. 1987. The Ag- Sn system (drawn from Hansen, M.). Binary Alloy Phase Diagrams, 1, p. 71. Metals Park, Ohio: American Society for Metals. 19. Nash, A., and Nash, P. 1984. The Ni- Pd (nickel-palladium) system. Bull. Alloy Phase Diagrams 5(5): 446–450. References Acknowledgments


Welding Journal | November 2016
To see the actual publication please follow the link above