418s

Welding Journal | November 2016

during laser welding. No cracking was observed in alloys with primary ferrite solidification. Cracking in alloys with primary austenite solidification was dependent on impurity content and alloy type. In general, solidification cracking occurred for alloys with primary austenite solidification and impurity contents greater than 0.02 wt-%. Type 21-6-9 alloys showed relatively high solidification cracking resistance compared to Nitronic 50 and Nitronic 60 alloys. For similar impurity contents, the total crack lengths observed for 21-6-9 are much less than the other Nitronic alloys. Some 21-6-9 alloys showed resistance to solidification cracking even with primary austenite solidification and impurity contents greater than 0.02 wt-%, and only one commercial wrought 21-6-9 alloy exhibited cracking. Acknowledgments The authors would like to thank Los Alamos National Laboratory for financial support of this graduate research work. The authors also thank Dr. G. McIntosh, formerly of Carpenter Technology Corp., Dr. L. Garza of AK Steel Corp., and Dr. J. Elmer of Lawrence Livermore National Laboratory for donating materials for this work. The authors also acknowledge the NSF Center for Integrative Materials Joining Sciences for Energy Applications for the collaborative research opportunity. References 1. Tate, S., Javernick, D., Lienert, T., and Liu, S. 2016. Laser weldability of 21Cr- 6Ni-9Mn stainless steel: Part 1 — Impurity effects and solidification mode. Welding Journal 95(9): 371-s to 383-s. 2. Takalo, T., Suutala, N., and Moisio, T. 1979. Austenitic solidification mode in austenitic stainless steel welds. Metall. Trans. A 10(8): 1173–1181. 3. Kujanpaa, V., Suutala, N., Takalo, T., and Moisio, T. 1979. Correlation between solidification cracking and microstructure in austenitic and austenitic-ferritic stainless steel welds. Weld. Res. Int. 9(2): 55–76. 4. Lippold, J. C. 1994. Solidification behavior and cracking susceptibility of pulsedlaser welds in austenitic stainless steels. Welding Journal 73(6): 129-s to 139-s. 5. Lienert, T. J., and Lippold, J. C. 2003. Improved weldability diagram for pulsed laser welded austenitic stainless steels. Sci. Technol. Weld. Join. 8(1): 1–9. 6. Brooks, J., Robino, C., Headley, T., and Michael, J. 2003. Weld solidification and cracking behavior of free-machining stainless steel. Welding Journal 82(3): 51-s to 64-s. 7. Katayama, S., and Matsunawa, A. 1984. Solidification microstructure of laser welded stainless steels. ICALEO, pp. 60–67. 8. Katayama, S., and Matsunawa, A. 1985. Solidification behaviour and microstructural characteristics of pulsed and continuous laser welded stainless steels. ICALEO, pp. 19–25. 9. David, S. A., Vitek, J. M., and Hebble, T. L. 1987. Effect of rapid solidification on stainless steel weld metal microstructures and its implications on the Schaeffler diagram. Welding Journal 66(10): 289-s to 300-s. 10. Elmer, J. W., Allen, S. M., and Eagar, T. W. 1989. Microstructural development during solidification of stainless steel alloys. Metall. Trans. A 20(10): 2117–2131. 11. Vitek, J. M., and David, S. A. 1988. The effect of cooling rate on ferrite in Type 308 stainless steel weld metal. Welding Journal 67(5): 95-s to 102-s. 12. Nakao, Y., Nishimoto, K., and Zhang, W. P. 1988. Effects of rapid solidification by laser surface melting on solidification modes and microstructures of stainless steels. Trans. Japan Weld. Soc. 19(2): 20–26. 13. Umeda, T., Okane, T., and Kurz, W. 1996. Phase selection during solidification of peritectic alloys. Acta Mater. 44(10): 4209–4216. 14. Lippold, J. C. 1985. Centerline cracking in deep penetration electron beam welds in Type 304L stainless steel. Welding Journal 64(5): 127-s to 136-s. 15. Arata, Y., Matsuda, F., and Katayama, S. 1977. Solidification crack susceptibility in weld metals of fully austenitic stainless steels (Report II). Trans. JWRI, pp. 105–116. 16. Arata, Y., Matsuda, F., Nakagawa, H., and Katayama, S. 1978. Solidification crack susceptibility in weld metals of fully austenitic stainless steels (Report IV). Trans. JWRI, pp. 21–24. 17. Katayama, S., Fujimoto, T., and Matsunawa, A. 1985. Correlation among solidification process, microstructure, microsegregation, and soldification cracking in stainless steel weld metals. Trans. JWRI 7: 123–138. 18. Li, L., and Messler Jr., R. W. 1999. The effects of phosphorus and sulfur on susceptibility to weld hot cracking in austenitic stainless steels. Welding Journal 78(12): 387-s to 396-s. 19. Kato, T., Fujikura, M., Ishida, K., Kimura, A., Takeuchi, Y., Kawasaki, N., and Yahagi, S. 1981. Effects of chemical compositions on the properties of austenitic manganese steels for nonmagnetic applications. Trans. ISIJ 21: 852–861. 20. Goodwin, G. 1987. Development of a new hot-cracking test — the Sigmajig. Welding Journal 66(2): 33-s to 38-s. 21. Feng, Z., Zacharia, T., and David, S. 1997. Thermal stress development in a nickel based superalloy during weldability test. Welding Journal 76(11): 470-s to 483-s. 22. Espy, R. H. 1982. Weldability of nitrogen strengthened stainless steels. Welding Journal 61(5): 149-s to 156-s. 23. Tate, S., and Liu, S. 2014. Fiber laser welding of high-N, high-Mn austenitic stainless steel. International Congress on Applications of Lasers & Electro-Optics, no. 603. 24. Brooks, J., Thompson, A., and Williams, J. 1983. Variations in weld ferrite content due to P and S. Welding Journal 62(8): 220-s to 225-s. 25. Cieslak, M., and Ritter, A. 1985. Precipitate formation in austenitic stainless steel welds. Scr. Metall. 19: 4–7. 26. Robino, C., Michael, J., and Maguire, M. 1998. The solidification and welding metallurgy of galling-resistant stainless steels. Welding Journal 77(11): 446-s to 457-s. 27. Kotecki, D. J., and Zhang, Z. 2013. Sources of variation in ferrite number predictions vs. measurements. Welding Journal 92(6): 175-s to 181-s. 28. Farrar, J., and Zhang, Z. 2003. II- 1510-03, round robin on ferrite measurement and chemical analysis. 29. ASTM E1086. 2014. Standard Test Method for Analysis of Austenitic Stainless Steel by Spark Atomic Emission Spectrometry. West Conshohocken, Pa.: ASTM International. 30. Ritter, A. M., and Savage, W. F. 1986. Solidification and solidification cracking in nitrogen-strengthened austenitic stainless steels. Metall. Trans. A 17(4): 727–737. 31. Ogawa, T., and Tsunetomi, E. 1982. Hot cracking susceptibility of austenitic stainless steels. Welding Journal 61(3): 82-s to 93-s. 32. Cieslak, M., and Savage, W. 1985. Hot-cracking studies of Alloy CN-7M. Welding Journal 64(5): 119-s to 126-s. 33. Honeycombe, J., and Gooch, T. 1972. Effect of manganese on cracking and corrosion behaviour of fully austenitic stainless-steel weld-metals. Met. Constr. 4(12): 456–460. 34. Goodwin, G. 1988. The effects of heat input and weld process on hot cracking in stainless steel. Welding Journal 67(4): 88-s to 94-s. 35. Zacharia, T. 1994. Dynamic stresses in weld metal hot cracking. Welding Journal 73(7): 164-s to 172-s. WELDING RESEARCH 418-s WELDING JOURNAL / NOVEMBER 2016, VOL. 95


Welding Journal | November 2016
To see the actual publication please follow the link above