201s

Welding Journal | June 2016

WELDING RESEARCH JUNE 2016/ WELDING JOURNAL 201-s neck position. If aimed at the main body of the droplet, the laser pulse will penetrate the liquid droplet to induce a partial explosion. The optimal range of the laser incident angle was determined to be 45–60 deg in order to minimize droplet deflection. 2) Experiments indicated that, as the laser pulse power increased, the droplet deflection decreased while the velocity of the detached droplet increased. The minimum laser peak duration for a robust ODPP transfer was determined. The laser pulse frequency exactly equaled the metal transfer frequency. Given the welding current, the droplet mass/droplet deflection decreased/increased, respectively, with the laser pulse frequency. 3) A higher welding current produced a greater axial electromagnetic force, restraining the droplet deflection. The droplet deflection also could be effectively reduced by tilting the welding gun or using a relatively short arc. This work is supported by the National Science Foundation under grant CMMI-0825956, the Natural Science Foundation of China under grant 51505009 and 51575133, and the Postdoctoral Science Foundation of China under grant 2015M570021. 1. Kim, Y. S., and Eagar, T. W. 1993. Analysis of metal transfer in gas metal arc welding. Welding Journal 72(6): 269-s to 278-s. 2. Iordachescu, D., and Quintinob, L. 2008. Steps toward a new classification of metal transfer in gas metal arc welding. Journal of Materials Processing Technology 202: 391–397. 3. Jacobsen, N. 1992. Monopulse investigation of droplet detachment in pulsed gas metal arc welding. Journal of Physics D: Applied Physics 25: 783–797. 4. Rhee, S., and Kannatey-Asibu, E. 1991. Analysis of arc pressure effect on metal transfer in gas metal arc welding. J. Phys. D: Appl. Phys. 24(8): 5068–5075. 5. Soderstrom, E. J., Scott, K. M., and Mendez, P. F. 2011. Calorimetric measurement of droplet temperature in GMAW. Welding Journal 90(4): 77-s to 84-s. 6. Deruntz, B. D. 2003. Assessing the benefits of surface tension transfer welding to industry. Journal of Industrial Technology 19(4): 2–8. 7. Shi, Y., Liu, X., Zhang, Y. M., and Johnson, M. 2008. Analysis of metal transfer and correlated influences in dual-bypass GMAW of aluminum. Welding Journal 87(9): 229-s to 236-s. 8. Himmelbauer, K. 2005. The CMTprocess — A revolution in welding technology. IIW Doc XII-1875-05, 20–27, IIW. 9. Fan, C. L., Yang, C. L., Lin, S. B., and Fan, Y. Y. 2013. Arc characteristics of ultrasonic wave-assisted GMAW. Welding Journal 92(12): 375-s to 380-s. 10. Fan, Y. Y., Yang, C. L., Lin, S. B., and Fan, C. L. 2012. Ultrasonic wave-assisted GMAW. Welding Journal 91(3): 91-s to 98-s. 11. Zhu, M., Shi, Y., and Fan, D. 2015. Analysis and improvement of metal transfer behaviors in consumable double-electrode GMAW process. Journal of Manufacturing Science and Engineering 137(2): 011010.1–011010.5. 12. Wu, Y., and Kovacevic, R. 2002. Mechanically assisted droplet transfer process in gas metal arc welding. Journal of Engineering Manufacturing 216: 555–564. 13. Zheng, B., and Kovacevic, R. 2001. A novel control approach for the droplet detachment in rapid prototyping by 3D welding. Journal of Manufacturing Science and Engineering 123: 348–355. 14. Li, K. H., and Zhang, Y. M. 2008. Consumable double-electrode GMAW — Part 2: Monitoring, modeling, and control. Welding Journal 87(2): 44-s to 50-s. 15. Chang, Y. L., Liu, X. L., et al. 2014. Impacts of external longitudinal magnetic field on arc plasma and droplet during short-circuit GMAW. International Journal of Advanced Manufacturing Technology 70(9–12): 1543–1553. 16. Zhang, Y. M., Liguo, E., and Kovacevic, R. 1998. Active metal transfer control by monitoring excited droplet oscillation. Welding Journal 77(9): 388-s to 395-s. 17. Xiao, J., Zhang, G. J., Chen, S. J., Wu, L., and Zhang, Y. M. 2013. Active droplet oscillation excited by optimized waveform. Welding Journal 92(7): 205-s to 217-s. 18. Xiao, J., Zhang, G. J., Zhang, W. J., and Zhang, Y. M. 2014. Active metal transfer control by using enhanced droplet oscillation — Part 1: Experimental study. Welding Journal 93(8): 282-s to 291-s. 19. Xiao, J., Zhang, G. J., Zhang, W. J., and Zhang, Y. M. 2014. Active metal transfer control by using enhanced droplet oscillation — Part 2: Modeling and analysis. Welding Journal 93(9): 321-s to 329-s. 20. Huang, Y., and Zhang, Y. M. 2010. Laser enhanced GMAW. Welding Journal 89(9): 181-s to 188-s. 21. Huang, Y., and Zhang, Y. M. 2011. Laser enhanced metal transfer — Part 1: System and observations. Welding Journal 90(10): 183-s to 190-s. 22. Huang, Y., and Zhang, Y. M. 2011. Laser enhanced metal transfer — Part 2: Analysis and influence factors. Welding Journal 90(11): 206-s to 210-s. 23. Shao, Y., and Zhang, Y. M. 2014. Pulsed laser enhanced GMAW. Welding Journal 93(6): 205-s to 214-s. 24. Shao, Y., Wang, Z. Z., and Zhang, Y. M. 2011. Monitoring of liquid droplets in laser enhanced GMAW. International Journal of Advanced Manufacturing Technology 57: 203–214. 25. Xiao, J., Chen, S. J., Zhang, G. J., and Zhang, Y. M. 2016. Current-independent metal transfer by using pulsed laser irradiation — Part 1: System and verification. Welding Journal 95(3): 93-s to 100-s. Acknowledgments References


Welding Journal | June 2016
To see the actual publication please follow the link above