Stump Removal Techniques

Manual Stump Removal Techniques: Description of tools like axes, digging bars, and shovels, and the step-by-step process involved in manually removing a stump.

Manual stump removal is a labor-intensive but thoroughly rewarding process, ideal for those who prefer a hands-on approach to managing their landscape. This method does not require heavy machinery or chemicals, making it environmentally friendly and accessible. The essential tools needed include axes, digging bars, and shovels-each playing a pivotal role in the removal process.


The first tool, the axe, is used to chop around the stump, cutting through roots that spread outward into the soil. An axe should be sharp and sturdy to effectively slice through tough wood and fibrous roots. Care should be taken while swinging the axe to ensure safety and prevent any accidental injuries.


Next comes the digging bar, which is invaluable for loosening the soil around the stump and prying up stubborn roots. This long, heavy rod can penetrate deep into the ground, breaking up compacted earth and making it easier to remove the root system. The leverage provided by a digging bar helps in exerting more force with less physical strain.


Shovels are used for removing loosened soil and digging out smaller roots that intertwine around the stump's main body. A good shovel should have a sharp edge to cut through dirt and lift heavy loads without bending. It's advisable to use both a spade for fine-tuned digging and a round-point shovel for scooping and clearing out soil.


The manual removal process begins with preparing the area around the stump. Remove any rocks or debris that could obstruct your tools or pose hazards as you work. Using your axe, chop away at major roots radiating outward from the stump; this will decrease its hold on the soil and facilitate extraction.


Once you've severed significant roots with your axe, employ your digging bar to pry under deeper-rooted sections of the stump. Work your way around it systematically; rock back and forth using leverage from your bar to loosen it further from its earthly tether.


As you loosen more of the stump's structure with your digging bar, use your shovel(s) to remove dirt displaced during this process. Clearing away this dirt gives better visual access to remaining roots below ground level, which can then be cut with an axe or pried with a digging bar.


When much of the root system has been dealt with, attempt lifting out what remains of the stump either manually (if possible), or using hoisting straps attached around larger stumps pulled by manpower or vehicle assistance if necessary.


Finally dispose of removed material responsibly. Stump remnants can be chopped up further for composting or disposal as per local regulations concerning organic waste.


In summary, manual stump removal is effective albeit strenuous requiring patience but ultimately providing satisfaction upon clearing unwanted stumps using basic yet powerful tools like axes, shovels,and digging bars-all instrumental in reclaiming land naturally without dependence on technology or chemicals

Manual Stump Removal Techniques: Description of tools like axes, digging bars, and shovels, and the step-by-step process involved in manually removing a stump.

Chemical Stump Removal: Explanation of how chemical stump removers work, types of chemicals used, application methods, and safety precautions.

Chemical stump removal is a technique used to facilitate the decomposition of tree stumps, which are often difficult to remove physically from the ground. This method employs chemicals that accelerate the natural rotting process, making it easier to eventually clear the stump from the landscape.


The primary mechanism through which chemical stump removers work involves hastening the breakdown of the wood's cellulose structure. Typically, these chemicals serve as a food source for fungi and other microorganisms that decompose wood. By increasing microbial activity, the wood becomes softer and more friable over time.


The most commonly used types of chemicals for stump removal are potassium nitrate, sodium metabisulfite, and nitrogen-rich fertilizers. Potassium nitrate is particularly favored because it not only aids in decomposition but also enhances nutrient availability in the surrounding soil, benefiting other plants. These compounds function by promoting fungal growth which progressively deteriorates the wood's tough fibers.


Application methods vary depending on the product and form of chemical (powder, granule, or liquid). A common approach involves drilling holes into the stump about 8-12 inches deep at regular intervals around its perimeter and across its surface. The chemical remover is then poured into these holes to maximize penetration into the wood tissue. After application, it's advisable to cover the stump with a plastic tarp or similar material; this maintains moisture levels conducive for fungal activity while protecting children and pets from direct contact with chemicals.


Safety precautions are paramount when using chemical stump removers due to their potentially hazardous nature. It is important to wear protective gear such as gloves, goggles, and long sleeves during application to prevent skin contact or inhalation of dust particles. Additionally, keeping pets and children away from treated areas is crucial until complete decomposition has occurred. Users should strictly follow manufacturer instructions regarding dosage amounts and handling procedures.


In conclusion, chemical stump removal offers a less labor-intensive alternative to physical extraction methods such as digging or grinding. By understanding how these chemicals work, choosing appropriate types for specific situations, applying them correctly, and adhering strictly to safety guidelines, homeowners can effectively manage unwanted tree stumps with minimal physical effort.

Removing a tree stump from your yard can be a daunting task, but one effective method is the burning method. This approach involves using fire to slowly burn the stump until it can be easily removed or until it decomposes enough to no longer be a nuisance. However, using fire requires careful preparation, precise execution, and adherence to local legal regulations to ensure that the process is both effective and safe.


Preparation:


Before beginning the stump removal process, it's crucial to prepare thoroughly. Start by checking your local city or county regulations regarding open fires. Many areas require permits for burning, especially in residential zones or during certain times of the year when wildfire risk is high. Once you have secured the necessary permissions, inform your neighbors about your plans as a courtesy and safety precaution.


Next, prepare the stump itself. Trim the stump down as close to ground level as possible using a chainsaw. This reduces the amount of material that needs to burn and accelerates the process. Drill multiple holes into the top and sides of the stump using a large drill bit-these holes should be deep and wide to facilitate airflow which is critical for maintaining a good fire. For even better results, you can fill these holes with potassium nitrate (stump remover) which accelerates the burning process by acting as an oxidizer.


Surrounding area preparation is equally important. Clear away any flammable materials such as dry leaves, twigs, grasses, or other vegetation from around the stump area extending out at least 10 feet in all directions. Additionally, having a water source nearby or a fire extinguisher on hand is essential for safety reasons.


Execution:


To begin burning the stump, start by creating a controlled flame using kindling and small pieces of wood; place them on and around the stump ensuring that they catch fire smoothly without causing too much immediate heat which might endanger surrounding structures or trees. Gradually add larger pieces of wood to build up a substantial fire over time.


Maintain constant supervision over the fire at all times until it has completely burned down into embers and ashes; this could take several hours depending on size and density of your tree stump. During this time period keep managing airflow (by adding more holes if needed) and fuel supply so that fire continues at steady pace without flaring up excessively.


Legal Considerations:


Besides obtaining necessary permits before starting any burn operation within residential areas there are other legal considerations worth noting:



  • Be aware of any local air quality restrictions that might affect when you can burn.

  • Always follow guidelines set forth by local firefighting authorities concerning outdoor fires.

  • Be prepared to extinguish your fire if conditions change (e.g., wind picking up), or if directed by authorities.


In conclusion, while burning is an efficient way of removing tree stumps from your property its successful application hinges upon meticulous preparation both legally and practically speaking along with vigilant execution under safe conditions; making sure all steps are followed diligently will not only assure quick disposal of unwanted stumps but also maintain safety standards preventing potential hazards related with improper handling fires outdoors."

Burning Method: Outline of how to safely use fire to remove a stump, including preparation, execution, and legal considerations.
Stump Grinding Procedure: Details on using a stump grinder, advantages over other methods, typical costs, and hiring professionals versus DIY.

Stump Grinding Procedure: Details on using a stump grinder, advantages over other methods, typical costs, and hiring professionals versus DIY.

Stump grinding is a highly effective method for removing unwanted tree stumps from your property, offering a quicker and less labor-intensive alternative to traditional stump removal techniques. In this essay, we will explore the details of using a stump grinder, its advantages over other methods, typical costs involved, and the considerations of hiring professionals versus undertaking the task as a DIY project.


Using a Stump Grinder:
A stump grinder is a powerful tool that uses a rotating cutting disc with sharp teeth to chip away at the wood of a tree stump. The process begins by positioning the grinder above the stump and starting with the outer edge, gradually moving inwards. As the operator moves the machine over the stump, the disc grinds the wood into small chips or mulch. This continues until the entire stump is reduced to below ground level, usually about 4 to 6 inches beneath the soil surface. After grinding, the remaining hole can be filled with soil or sod.


Advantages Over Other Methods:
Stump grinding has several advantages compared to other stump removal methods such as manual digging or chemical treatments. Firstly, it is much faster and more efficient; a typical stump can be removed in just an hour or two compared to days of laborious digging or weeks for chemicals to take effect. Secondly, it is less invasive; unlike excavation methods, there is minimal disturbance to the surrounding landscape. Lastly, it provides immediate results—there's no need to wait for chemicals to decompose the wood.


Typical Costs:
The cost of stump grinding varies depending on factors like size of the stump, location (ease of access), and number of stumps. On average, homeowners might spend between $100 and $400 per stump. A flat rate might be charged for smaller stumps but larger ones are typically priced based on diameter. Renting a grinder for DIY projects can range from $100 to $200 per day depending on machine size.


Hiring Professionals vs DIY:
Deciding whether to hire professionals or tackle stump grinding as a DIY project largely depends on one's confidence in handling machinery and understanding safety precautions necessary when operating such equipment. Professional services provide expertise and efficiency along with their specialized equipment which reduces risk of injury or property damage—a significant consideration given that amateur handling can lead to accidents.


For those who have experience with heavy machinery and proper safety gear (including goggles and gloves), renting a grinder might save money upfront; however, considering potential risks and time investment required for clearing multiple stumps or very large ones could still make professional services an attractive option.


In conclusion, while there are various ways available for removing tree stumps from your land—from manual digging out root systems through chemical application—stump grinding stands out as fast-acting effectiveness coupled minimal disturbance environment particularly suitable those seeking clear their space quickly efficiently without waiting extended periods results become apparent enabling them move forward landscaping other projects swiftly safely effectively.

Legal and Regulatory Considerations Powder Springs

Use of Natural Decomposers: Discussion on employing fungi or bacteria to accelerate stump decomposition naturally over time.

Stump removal is a common challenge faced by gardeners, landscapers, and anyone involved in land management. While mechanical and chemical stump removal methods are widely used, they can be harsh on the environment and potentially harmful to the surrounding ecosystem. An increasingly popular alternative is the use of natural decomposers such as fungi and bacteria to accelerate stump decomposition in a more eco-friendly manner. This essay explores the feasibility and benefits of employing these natural agents for stump removal.


Natural decomposers play a critical role in any ecosystem by breaking down dead organic matter, recycling nutrients back into the soil, and maintaining soil health. Fungi and bacteria are particularly efficient at decomposing wood, making them ideal for natural stump removal. The process involves introducing specific types of fungi or bacterial cultures that are known for their wood-decomposing capabilities directly into the stump.


The approach usually begins with drilling holes into the stump and applying a fungal inoculum or bacterial solution. These organisms then colonize the wood, gradually breaking down its cellulose and lignin structures-the main components that give wood its strength and durability. Over time, this biological activity transforms the once solid stump into a softer material that is easier to fragment manually if necessary or allow it to integrate completely into the soil.


Using fungi for this purpose often involves species like Pleurotus ostreatus (oyster mushrooms) or Lentinula edodes (shiitake mushrooms), both of which are not only effective decomposers but also produce edible mushrooms-a beneficial side product enhancing the value of this method. Bacterial decomposition can be facilitated by species such as Bacillus subtilis, known for their aggressive enzymatic activity that breaks down tough wood fibers.


One major advantage of using natural decomposers for stump removal is environmental sustainability. Unlike chemical stump removers that may contain toxic substances like potassium nitrate, biological methods add natural organisms to the ecosystem without disturbing its balance. Moreover, this technique avoids noise pollution associated with mechanical grinding and does not leave behind any non-biodegradable waste.


Furthermore, engaging natural decomposers can enhance soil quality over time. As stumps decay due to fungal or bacterial activity, they release nutrients back into the soil which improves its fertility and structure-benefits seldom derived from mechanical or chemical methods.


However, it's important also to consider some limitations of using natural decomposers. The rate of decomposition can vary significantly depending on factors such as climate conditions, type of wood, and organism suitability which might make this method slower than others like chemical application or physical removal techniques.


In conclusion, employing fungi or bacteria for stump decomposition presents an environmentally friendly solution that aligns with sustainable practices while contributing positively to ecological cycles. This method not only disposes of unwanted stumps but also enhances soil health through nutrient cycling-making it an attractive option for those looking to minimize their environmental footprint while caring for their landscapes.

Ecosystem Considerations: Impact of different stump removal techniques on the surrounding flora and fauna and tips for minimizing environmental disturbance.
Ecosystem Considerations: Impact of different stump removal techniques on the surrounding flora and fauna and tips for minimizing environmental disturbance.

Stump removal is a common task undertaken in forestry, landscaping, and property management. The techniques used for stump removal can significantly affect the surrounding ecosystem, impacting both flora and fauna. Understanding these impacts is crucial for minimizing environmental disturbance while maintaining the effectiveness of stump removal.


There are several methods of stump removal, each with distinct ecological implications. These include mechanical grinding, manual extraction, chemical treatments, and burning. Each method has its own set of benefits and drawbacks from an environmental perspective.


Mechanical grinding is one of the most common methods used due to its efficiency and effectiveness. It involves using a stump grinder to chip away the wood until the stump is below ground level. While this method is quick and leaves little visible trace, it can cause significant disturbance to the soil structure. The intense action of the grinder may disrupt soil microhabitats, adversely affecting underground fauna like earthworms and microorganisms that play crucial roles in nutrient cycling.


Manual extraction involves digging around the stump to expose roots before cutting them and removing the stump. This method is labor-intensive but allows for greater control over soil disturbance compared to mechanical grinding. However, large-scale digging can harm root systems of nearby plants potentially leading to their weakening or death.


Chemical treatments involve applying chemicals to accelerate the decay of stumps. This process is less physically intrusive than grinding or extraction but introduces toxins into the environment which can leach into soil and waterways, posing risks to plant life and aquatic organisms.


Burning involves setting fire to the stump after creating a controlled blaze that turns it into ash. While effective for complete removal without leaving debris, burning can lead to air pollution and negatively affect local air quality. Also, it poses a risk of unintended fires spreading in dry conditions.


Given these varied impacts on ecosystems by different stump removal techniques, here are several tips for minimizing environmental disturbances:




  1. Choose a Method Based on Context: Consider factors such as location (proximity to water bodies), type of vegetation around, wildlife presence, and soil condition when selecting a stump removal technique.




  2. Employ Barriers: When using chemicals or engaging in activities that disrupt soil (like grinding), use barriers or containment strategies to limit spread into unaffected areas.




  3. Restore Habitat Post-Removal: After removing stumps mechanically or manually, take steps like replanting native vegetation or adding back topsoil which was displaced during operations.




  4. Use Ecologically Friendly Chemicals: If opting for chemical treatments ensure they are eco-friendly or have minimal toxicity with rapid degradation rates in environments.




  5. Monitor Local Wildlife: Pay attention during active breeding seasons for birds or nesting mammals; avoid intensive stump removal activities during these periods if feasible.




6.Consult Experts: Engage with ecologists or land managers who specialize in local ecosystems; their insights will be valuable in choosing methods that balance effectiveness with conservation needs.


In conclusion,stump removal can significantly impact surrounding flora and fauna depending on how it's done.By carefully considering each method's ecological consequences,and implementing strategies aimed at reducing negative effects,it's possible to manage landscapes effectively while also preserving vital ecosystem functions.It underscores how management practices should evolve towards integrating ecological considerations at every step,to foster biodiversity alongside achieving practical objectives like land clearing.

The International Society of Arboriculture, commonly known as ISA, is an international non-profit organization headquartered in Atlanta, Georgia,[1] United States. The ISA serves the tree care industry as a paid membership association and a credentialing organization that promotes the professional practice of arboriculture.[2] ISA focuses on providing research, technology, and education opportunities for tree care professionals to develop their arboricultural expertise. ISA also works to educate the general public about the benefits of trees and the need for proper tree care.[3][4]

Worldwide, ISA has 22,000 members and 31,000 ISA-certified tree care professionals with 59 chapters, associate organizations, and professional affiliates throughout North America, Asia, Oceania, Europe, and South America.[5]

Credentials

[edit]

ISA offers the following credentials:

  • ISA Certified Arborist
  • ISA Certified Arborist Utility Specialist (for those maintaining vegetation around electric utility wires)
  • ISA Certified Arborist Municipal Specialist (for those with additional experience managing public urban trees)
  • ISA Certified Tree Climber
  • ISA Certified Tree Worker Aerial Lift Specialist
  • ISA Board Certified Master Arborist
  • ISA Tree Risk Assessment Qualification

ISA Certified Arborist

[edit]
James Kinder, an ISA Certified Municipal Arborist, examining a Japanese hemlock at Hoyt Arboretum
A Hinoki cypress receiving some corrective pruning by a certified arborist in Oregon

The Certified Arborist credential identifies professional arborists who have a minimum of three years' full-time experience working in the professional tree care industry and who have passed an examination covering facets of arboriculture.[6][7] The Western Chapter of the ISA started the certification program in the 1980s,[citation needed] with the ISA initiating it in 1992.[8]

ISA Board Certified Master Arborist

[edit]

The Board Certified Master Arborist (BCMA) or simply Master Arborist credential identifies professional arborists who have attained the highest level of arboriculture offered by the ISA and one of the two top levels in the field. There are several paths to the Board Certified Master Arborist, but typically on average each has been an ISA Certified Arborist a minimum of three to five years before qualifying for the exam (this can vary depending upon other education and experience). The certification began as a result of the need to distinguish the top few arborists and allow others to identify those with superior credentials.

The Master Arborist examination is a far more extensive exam than the Certified Arborist Exam, and covers a broad scope of both aboriculture management, science and work practices. The exam includes the following areas:

  • Science: Abiotic Influences; Biology; Biotic Influences; Diagnostic Process; Diagnostic Tools; Plant Identification and Selection; Soil Sciences
  • Practice: Climbing, Rigging, and Removal; Installation; IPM; Water Management; Pruning; Soil Treatments; Soil & protection
  • Management: Business Relations; Inventory and Management Plans; Plant Appraisal; Risk Assessment; Safety; Tree Preservation

Another credential that is on a par with the Master Arborist is that of the American Society of Consulting Arborists, the Registered Consulting Arborist.[9] There are perhaps six hundred individuals with that qualification, and only 70 arborists who hold both credentials.[citation needed]

References

[edit]
  1. ^ "International Society of Arboriculture homepage". www.isa-arbor.com. Retrieved 2022-11-03.
  2. ^ "International Society of Arboriculture > Who We Are > Our Services". www.isa-arbor.com. Retrieved 2022-11-03.
  3. ^ "International Society of Arboriculture > Online Learning". www.isa-arbor.com. Retrieved 2022-11-03.
  4. ^ "International Society of Arboriculture > Membership > Student Programs". www.isa-arbor.com. Retrieved 2022-11-03.
  5. ^ "International Society of Arboriculture > Who We Are > Our Network". www.isa-arbor.com. Retrieved 2022-11-03.
  6. ^ "ISA Certified Arborist". International Society of Arboriculture. Retrieved 26 August 2022.
  7. ^ Konijnendijk, Cecil C.; Randrup, Thomas B. (2005). "Urban forestry education". In Konijnendijk, Cecil C.; Nilsson, Kjell; Randrup, Thomas B.; Schipperijn, Jasper (eds.). Urban Forests and Trees: A Reference Book. Berlin: Springer. p. 470. ISBN 9783540276845.
  8. ^ Koeser, Andrew K.; Hauer, Richard J.; Miesbauer, Jason W.; Peterson, Ward (2016). "Municipal tree risk assessment in the United States: Findings from a comprehensive survey of urban forest management". Arboricultural Journal. 38 (4): 218–229. doi:10.1080/03071375.2016.1221178.
  9. ^ "What is a consulting arborist?". American Society of Consulting Arborists. Archived from the original on 2010-10-17. Retrieved 2012-06-11.
[edit]
A Timberjack wheeled harvester stacking cut timber in Finland

Forestry is the science and craft of creating, managing, planting, using, conserving and repairing forests and woodlands for associated resources for human and environmental benefits.[1] Forestry is practiced in plantations and natural stands.[2] The science of forestry has elements that belong to the biological, physical, social, political and managerial sciences.[3] Forest management plays an essential role in the creation and modification of habitats and affects ecosystem services provisioning.[4]

Modern forestry generally embraces a broad range of concerns, in what is known as multiple-use management, including: the provision of timber, fuel wood, wildlife habitat, natural water quality management, recreation, landscape and community protection, employment, aesthetically appealing landscapes, biodiversity management, watershed management, erosion control, and preserving forests as "sinks" for atmospheric carbon dioxide.

Forest ecosystems have come to be seen as the most important component of the biosphere,[5] and forestry has emerged as a vital applied science, craft, and technology. A practitioner of forestry is known as a forester. Another common term is silviculturist. Silviculture is narrower than forestry, being concerned only with forest plants, but is often used synonymously with forestry.

All people depend upon forests and their biodiversity, some more than others.[6] Forestry is an important economic segment in various industrial countries,[7] as forests provide more than 86 million green jobs and support the livelihoods of many more people.[6] For example, in Germany, forests cover nearly a third of the land area,[8] wood is the most important renewable resource, and forestry supports more than a million jobs and about €181 billion of value to the German economy each year.[9]

Worldwide, an estimated 880 million people spend part of their time collecting fuelwood or producing charcoal, many of them women.[6][quantify] Human populations tend to be low in areas of low-income countries with high forest cover and high forest biodiversity, but poverty rates in these areas tend to be high.[6] Some 252 million people living in forests and savannahs have incomes of less than US$1.25 per day.[6]

Science

[edit]

Forestry as a science

[edit]

Over the past centuries, forestry was regarded as a separate science. With the rise of ecology and environmental science, there has been a reordering in the applied sciences. In line with this view, forestry is a primary land-use science comparable with agriculture.[10] Under these headings, the fundamentals behind the management of natural forests comes by way of natural ecology. Forests or tree plantations, those whose primary purpose is the extraction of forest products, are planned and managed to utilize a mix of ecological and agroecological principles.[11] In many regions of the world there is considerable conflict between forest practices and other societal priorities such as water quality, watershed preservation, sustainable fishing, conservation, and species preservation.[12]

Silvology

[edit]

Silvology (Latin: silva or sylva, "forests and woods"; Ancient Greek: -λογία, -logia, "science of" or "study of") is the biological science of studying forests and woodlands, incorporating the understanding of natural forest ecosystems, and the effects and development of silvicultural practices. The term complements silviculture, which deals with the art and practice of forest management.[13]

Silvology is seen as a single science for forestry and was first used by Professor Roelof A.A. Oldeman at Wageningen University.[14] It integrates the study of forests and forest ecology, dealing with single tree autecology and natural forest ecology.

Dendrology

[edit]
Leaf shape is a common method used to identify trees.

Dendrology (Ancient Greek: δένδρον, dendron, "tree"; and Ancient Greek: -λογία, -logia, science of or study of) or xylology (Ancient Greek: ξύλον, ksulon, "wood") is the science and study of woody plants (trees, shrubs, and lianas), specifically, their taxonomic classifications.[15] There is no sharp boundary between plant taxonomy and dendrology; woody plants not only belong to many different plant families, but these families may be made up of both woody and non-woody members. Some families include only a few woody species. Dendrology, as a discipline of industrial forestry, tends to focus on identification of economically useful woody plants and their taxonomic interrelationships. As an academic course of study, dendrology will include all woody plants, native and non-native, that occur in a region. A related discipline is the study of sylvics, which focuses on the autecology of genera and species.

In the past, dendrology included the study of the natural history of woody species in specific regions, but this aspect is now considered part of ecology. The field also plays a role in conserving rare or endangered species.[15]

Genetic diversity in forestry

[edit]

The provenance of forest reproductive material used to plant forests has a great influence on how the trees develop, hence why it is important to use forest reproductive material of good quality and of high genetic diversity.[16] More generally, all forest management practices, including in natural regeneration systems, may impact the genetic diversity of trees.

The term genetic diversity describes the differences in DNA sequence between individuals as distinct from variation caused by environmental influences. The unique genetic composition of an individual (its genotype) will determine its performance (its phenotype) at a particular site.[17]

Genetic diversity is needed to maintain the vitality of forests and to provide resilience to pests and diseases. Genetic diversity also ensures that forest trees can survive, adapt and evolve under changing environmental conditions. Furthermore, genetic diversity is the foundation of biological diversity at species and ecosystem levels. Forest genetic resources are therefore important to consider in forest management.[16]

Genetic diversity in forests is threatened by forest fires, pests and diseases, habitat fragmentation, poor silvicultural practices and inappropriate use of forest reproductive material.

About 98 million hectares of forest were affected by fire in 2015; this was mainly in the tropical domain, where fire burned about 4 percent of the total forest area in that year. More than two-thirds of the total forest area affected was in Africa and South America. Insects, diseases and severe weather events damaged about 40 million hectares of forests in 2015, mainly in the temperate and boreal domains.[18]

Furthermore, the marginal populations of many tree species are facing new threats due to the effects of climate change.[16]

Most countries in Europe have recommendations or guidelines for selecting species and provenances that can be used in a given site or zone.[17]

Forest management

[edit]
 
Sustainable forest management balances local socioeconomic, cultural, and ecological needs and constraints.

Forest management is a branch of forestry concerned with overall administrative, legal, economic, and social aspects, as well as scientific and technical aspects, such as silviculture, forest protection, and forest regulation. This includes management for timber, aesthetics, recreation, urban values, water, wildlife, inland and nearshore fisheries, wood products, plant genetic resources, and other forest resource values.[19] Management objectives can be for conservation, utilisation, or a mixture of the two. Techniques include timber extraction, planting and replanting of different species, building and maintenance of roads and pathways through forests, and preventing fire.

Many tools like remote sensing, GIS and photogrammetry[20][21] modelling have been developed to improve forest inventory and management planning.[22] Scientific research plays a crucial role in helping forest management. For example, climate modeling,[23][24][25] biodiversity research,[26][27] carbon sequestration research,[24][28][29] GIS applications,[30][31] and long-term monitoring[25][32] help assess and improve forest management, ensuring its effectiveness and success.

Urban forestry

[edit]
 
Tree pruning in Durham, North Carolina
Professional Tree Climber (arborist: Zack Weiler) climbing a willow tree in Port Elgin, ON. Canada
James Kinder, an ISA Certified Municipal Arborist examining a Japanese Hemlock at Hoyt Arboretum
Urban forestry is the care and management of single trees and tree populations in urban settings for the purpose of improving the urban environment. Urban forestry involves both planning and management, including the programming of care and maintenance operations of the urban forest.[33] Urban forestry advocates the role of trees as a critical part of the urban infrastructure. Urban foresters plant and maintain trees, support appropriate tree and forest preservation, conduct research and promote the many benefits trees provide. Urban forestry is practiced by municipal and commercial arborists, municipal and utility foresters, environmental policymakers, city planners, consultants, educators, researchers and community activists.

Forestry education

[edit]

History of forestry education

[edit]

The first dedicated forestry school was established by Georg Ludwig Hartig at Hungen in the Wetterau, Hesse, in 1787, though forestry had been taught earlier in central Europe, including at the University of Giessen, in Hesse-Darmstadt.

In Spain, the first forestry school was the Forest Engineering School of Madrid (Escuela Técnica Superior de Ingenieros de Montes), founded in 1844.

The first in North America, the Biltmore Forest School was established near Asheville, North Carolina, by Carl A. Schenck on September 1, 1898, on the grounds of George W. Vanderbilt's Biltmore Estate. Another early school was the New York State College of Forestry, established at Cornell University just a few weeks later, in September 1898.

Early 19th century North American foresters went to Germany to study forestry. Some early German foresters also emigrated to North America.

In South America the first forestry school was established in Brazil, in Viçosa, Minas Gerais, in 1962, and moved the next year to become a faculty at the Federal University of Paraná, in Curitiba.[34]

Forestry education today

[edit]
Prescribed burning is used by foresters to reduce fuel loads.

Today, forestry education typically includes training in general biology, ecology, botany, genetics, soil science, climatology, hydrology, economics and forest management. Education in the basics of sociology and political science is often considered an advantage. Professional skills in conflict resolution and communication are also important in training programs.[35]

In India, forestry education is imparted in the agricultural universities and in Forest Research Institutes (deemed universities). Four year degree programmes are conducted in these universities at the undergraduate level. Masters and Doctorate degrees are also available in these universities.

In the United States, postsecondary forestry education leading to a Bachelor's degree or Master's degree is accredited by the Society of American Foresters.[36]

In Canada the Canadian Institute of Forestry awards silver rings to graduates from accredited university BSc programs, as well as college and technical programs.[37]

In many European countries, training in forestry is made in accordance with requirements of the Bologna Process and the European Higher Education Area.

The International Union of Forest Research Organizations is the only international organization that coordinates forest science efforts worldwide.[38]

Continuing education

[edit]

In order to keep up with changing demands and environmental factors, forestry education does not stop at graduation. Increasingly, forestry professionals engage in regular training to maintain and improve on their management practices. An increasingly popular tool are marteloscopes; one hectare large, rectangular forest sites where all trees are numbered, mapped and recorded.

These sites can be used to do virtual thinnings and test one's wood quality and volume estimations as well as tree microhabitats. This system is mainly suitable to regions with small-scale multi-functional forest management systems

History

[edit]

Society and culture

[edit]

Literature

[edit]
The first book edition of Sylva

Forestry literature is the books, journals and other publications about forestry.

The first major works about forestry in the English language included Roger Taverner's Booke of Survey (1565), John Manwood's A Brefe Collection of the Lawes of the Forrest (1592) and John Evelyn's Sylva (1662).[39]

Noted silvologists

[edit]

See also

[edit]

References

[edit]
  1. ^ "SAFnet Dictionary | Definition For [forestry]". Dictionaryofforestry.org. 2008-10-22. Archived from the original on 2013-10-19. Retrieved 2014-03-15.
  2. ^ "Seed Origin -pinga Forestry Focus". Forestry Focus. Retrieved April 5, 2018.
  3. ^ Young, Raymond A. (1982). Introduction to Forest Science. John Wiley & Sons. p. ix. ISBN 978-0-471-06438-1.
  4. ^ Frouz, Jan; Frouzová, Jaroslava (2022). Applied Ecology. doi:10.1007/978-3-030-83225-4. ISBN 978-3-030-83224-7. S2CID 245009867.
  5. ^ "ecosystem part of biosphere". Tutorvista.com. Archived from the original on 2013-11-11. Retrieved 2014-03-15.
  6. ^ a b c d e The State of the World's Forests 2020. Forests, biodiversity and people – In brief. Rome: FAO & UNEP. 2020. doi:10.4060/ca8985en. ISBN 978-92-5-132707-4. S2CID 241416114.
  7. ^ "How does the forest industry contribute to the economy?". www.nrcan.gc.ca. 26 August 2014. Retrieved April 5, 2018.
  8. ^ Bundeswaldinventur 2002 Archived 2014-10-06 at the Wayback Machine, Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz (BMELV), retrieved, 17 January 2010
  9. ^ Unternehmen Wald, forests as an enterprise, German private forestry association website Archived 2016-09-18 at the Wayback Machine
  10. ^ Wojtkowski, Paul A. (2002) Agroecological Perspectives in Agronomy, Forestry and Agroforestry. Science Publishers Inc., Enfield, NH, 356p.
  11. ^ Wojtkowski, Paul A. (2006) Undoing the Damage: Silviculture for Ecologists and Environmental Scientists. Science Publishers Inc., Enfield, NH, 313p.
  12. ^ Fishes and forestry : worldwide watershed interactions and management. Northcote, T. G., Hartman, G. F. Oxford, UK: Blackwell Science. 2004. ISBN 978-0-470-99524-2. OCLC 184983506.cite book: CS1 maint: others (link)
  13. ^ Hemery, G.; Skovsgaard, J. P. (April 2018). "Silvology: Redefining the Biological Science for the Study of Forests". Quarterly Journal of Forestry. 112 (2): 128–31.
  14. ^ Oldeman, R. A. A. (1990). Forests: elements of silvology. Berlin: Springer-Verlag. p. 624. ISBN 0-387-51883-5.
  15. ^ a b "Dendrology | Definition & Description | Britannica". www.britannica.com. Retrieved 2024-04-08.
  16. ^ a b c de Vries, S.M.G., Alan, M., Bozzano, M., Burianek, V., Collin, E., Cottrell, J., Ivankovic, M., Kelleher, C.T., Koskela, J., Rotach, P., Vietto, L. and Yrjänä, L. (2015). "Pan-European strategy for genetic conservation of forest trees and establishment of a core network of dynamic conservation units" (PDF). European Forest Genetic Resources Programme, Bioversity International, Rome, Italy.: xii + 40 p. Archived from the original (PDF) on 2017-01-31. Retrieved 2017-01-20.cite journal: CS1 maint: multiple names: authors list (link)
  17. ^ a b Konnert, M., Fady, B., Gömöry, D., A’Hara, S., Wolter, F., Ducci, F., Koskela, J., Bozzano, M., Maaten, T. and Kowalczyk, J. (2015). "Use and transfer of forest reproductive material in Europe in the context of climate change" (PDF). European Forest Genetic Resources Programme, Bioversity International, Rome, Italy.: xvi and 75 p. Archived from the original (PDF) on 2017-08-04. Retrieved 2017-01-20.cite journal: CS1 maint: multiple names: authors list (link)
  18. ^ Global Forest Resources Assessment 2020 – Key findings. Rome: FAO. 2020. doi:10.4060/ca8753en. ISBN 978-92-5-132581-0. S2CID 130116768.
  19. ^ "Glossary of Forestry Terms in British Columbia" (PDF). Ministry of Forests and Range (Canada). March 2008. Retrieved 2009-04-06.
  20. ^ "I. Balenovich, A. Seletkovich, et al. Comparison of Classical Terrestrial and Photogrammetric Method in Creating Management Division. FORMEC. Croatia 2012. pp. 1-13".
  21. ^ "I. Balenović, D. Vuletić, et al. Digital Photogrammetry – State of the Art and Potential for Application in Forest Management in Croatia. SEEFOR. South-East European Forestry. #2, 2011. pp. 81–93" (PDF).
  22. ^ Mozgeris, Gintautas (May 30, 2009). "The continuous field view of representing forest geographically: from cartographic representation towards improved management planning". S.A.P.I.EN.S. 2 (2) – via journals.openedition.org.
  23. ^ Anderegg, William R. L.; Wu, Chao; Acil, Nezha; Carvalhais, Nuno; Pugh, Thomas A. M.; Sadler, Jon P.; Seidl, Rupert (2 September 2022). "A climate risk analysis of Earth's forests in the 21st century" (PDF). Science. 377 (6610): 1099–1103. Bibcode:2022Sci...377.1099A. doi:10.1126/science.abp9723. PMID 36048937. S2CID 252010508.
  24. ^ a b Windisch, Michael G.; Davin, Edouard L.; Seneviratne, Sonia I. (October 2021). "Prioritizing forestation based on biogeochemical and local biogeophysical impacts". Nature Climate Change. 11 (10): 867–871. Bibcode:2021NatCC..11..867W. doi:10.1038/s41558-021-01161-z. S2CID 237947801. ProQuest 2578272675.
  25. ^ a b Benedek, Zsófia; Fertő, Imre (2013). "Development and application of a new Forestation Index: global forestation patterns and drivers" (Document). IEHAS Discussion Papers. hdl:10419/108304. ProQuest 1698449297.
  26. ^ Zhang, Mingfang; Wei, Xiaohua (5 March 2021). "Deforestation, forestation, and water supply". Science. 371 (6533): 990–991. Bibcode:2021Sci...371..990Z. doi:10.1126/science.abe7821. PMID 33674479. S2CID 232124649.
  27. ^ Prevedello, Jayme A.; Winck, Gisele R.; Weber, Marcelo M.; Nichols, Elizabeth; Sinervo, Barry (20 March 2019). "Impacts of forestation and deforestation on local temperature across the globe". PLOS ONE. 14 (3): e0213368. Bibcode:2019PLoSO..1413368P. doi:10.1371/journal.pone.0213368. PMC 6426338. PMID 30893352. Gale A579457448.
  28. ^ Anderegg, William R. L.; Wu, Chao; Acil, Nezha; Carvalhais, Nuno; Pugh, Thomas A. M.; Sadler, Jon P.; Seidl, Rupert (2 September 2022). "A climate risk analysis of Earth's forests in the 21st century" (PDF). Science. 377 (6610): 1099–1103. Bibcode:2022Sci...377.1099A. doi:10.1126/science.abp9723. PMID 36048937. S2CID 252010508.
  29. ^ Portmann, Raphael; Beyerle, Urs; Davin, Edouard; Fischer, Erich M.; De Hertog, Steven; Schemm, Sebastian (4 October 2022). "Global forestation and deforestation affect remote climate via adjusted atmosphere and ocean circulation". Nature Communications. 13 (1): 5569. Bibcode:2022NatCo..13.5569P. doi:10.1038/s41467-022-33279-9. PMC 9532392. PMID 36195588.
  30. ^ Zhang, Mingfang; Wei, Xiaohua (5 March 2021). "Deforestation, forestation, and water supply". Science. 371 (6533): 990–991. Bibcode:2021Sci...371..990Z. doi:10.1126/science.abe7821. PMID 33674479. S2CID 232124649.
  31. ^ AbdulBaqi, Faten Khalid (June 2022). "The effect of afforestation and green roofs techniques on thermal reduction in Duhok city". Trees, Forests and People. 8: 100267. Bibcode:2022TFP.....800267A. doi:10.1016/j.tfp.2022.100267. S2CID 248646593.
  32. ^ Prevedello, Jayme A.; Winck, Gisele R.; Weber, Marcelo M.; Nichols, Elizabeth; Sinervo, Barry (20 March 2019). "Impacts of forestation and deforestation on local temperature across the globe". PLOS ONE. 14 (3): e0213368. Bibcode:2019PLoSO..1413368P. doi:10.1371/journal.pone.0213368. PMC 6426338. PMID 30893352. Gale A579457448.
  33. ^ Caves, R. W. (2004). Encyclopedia of the City. Routledge. p. 695. ISBN 978-0415862875.
  34. ^ "News of the world". Unasylva. 23 (3). FAO. 1969. Archived from the original on 2010-04-27. Retrieved 2010-10-12.
  35. ^ Sample, V. A.; Bixler, R. P.; McDonough, M. H.; Bullard, S. H.; Snieckus, M. M. (July 16, 2015). "The Promise and Performance of Forestry Education in the United States: Results of a Survey of Forestry Employers, Graduates, and Educators". Journal of Forestry. 113 (6): 528–537. doi:10.5849/jof.14-122.
  36. ^ "SAF Accredited and Candidate Forestry Degree Programs" (PDF) (Press release). Society of American Foresters. 2008-05-19. Archived from the original (PDF) on 2009-02-26. The Society of American Foresters grants accreditation only to specific educational curricula that lead to a first professional degree in forestry at the bachelor's or master's level.
  37. ^ "Canadian Institute of Forestry - Silver Ring Program". Cif-ifc.org. Archived from the original on 2014-02-01. Retrieved 2014-03-15.
  38. ^ "Discover IUFRO:The Organization". IUFRO. Archived from the original on 2010-07-08. Retrieved 2010-10-12.
  39. ^ N.D.G. James (1996), "A History of Forestry and Monographic Forestry Literature in Germany, France, and the United Kingdom", The Literature of Forestry and Agroforestry, Cornell University Press, pp. 34–35, ISBN 9780801431814

Sources

[edit]

 This article incorporates text from a free content work. Licensed under CC BY-SA 3.0 (license statement/permission). Text taken from Global Forest Resources Assessment 2020 Key findings​, FAO, FAO.

 This article incorporates text from a free content work. Licensed under CC BY-SA 3.0 IGO (license statement/permission). Text taken from The State of the World's Forests 2020. Forests, biodiversity and people – In brief​, FAO & UNEP, FAO & UNEP.

 This article incorporates text from a free content work. Licensed under CC BY-SA IGO 3.0 (license statement/permission). Text taken from World Food and Agriculture – Statistical Yearbook 2023​, FAO, FAO.

[edit]

 

An arborist using a chainsaw to cut a eucalyptus tree in a public park
Arborists in Ontario
Two arborists climbing and dismantling a Norway Maple in Ontario, Canada

An arborist, or (less commonly) arboriculturist, is a professional in the practice of arboriculture, which is the cultivation, management, and study of individual trees, shrubs, vines, and other perennial woody plants in dendrology and horticulture.[citation needed]

Arborists generally focus on the health and safety of individual plants and trees, rather than managing forests or harvesting wood (silviculture or forestry). An arborist's scope of work is therefore distinct from that of either a forester or a logger.[citation needed]

Scope of work

[edit]
An ISA Certified municipal arborist examining a Japanese Hemlock at Hoyt Arboretum in Portland, Oregon

In order for arborists to work near power wires, either additional training is required or they need to be certified as a Qualified Line Clearance Arborist or Utility Arborist (there may be different terminology for various countries). There is a variety of minimum distances that must be kept from power wires depending on voltage, however the common distance for low voltage lines in urban settings is 10 feet (about 3 metres).[1]

Arborists who climb (as not all do) can use a variety of techniques to ascend into the tree. The least invasive, and most popular technique used is to ascend on rope. There are two common methods of climbing, Single Rope System (SRS) and Moving Rope System (MRS). When personal safety is an issue, or the tree is being removed, arborists may use 'spikes', (also known as 'gaffs' or 'spurs') attached to their chainsaw boots with straps to ascend and work. Spikes wound the tree, leaving small holes where each step has been.[citation needed]

An arborist's work may involve very large and complex trees, or ecological communities and their abiotic components in the context of the landscape ecosystem. These may require monitoring and treatment to ensure they are healthy, safe, and suitable to property owners or community standards. This work may include some or all of the following: planting; transplanting; pruning; structural support; preventing, or diagnosing and treating phytopathology or parasitism; preventing or interrupting grazing or predation; installing lightning protection; and removing vegetation deemed as hazardous, an invasive species, a disease vector, or a weed.[citation needed]

Arborists may also plan, consult, write reports and give legal testimony. While some aspects of this work are done on the ground or in an office, much of it is done by arborists who perform tree services and who climb the trees with ropes, harnesses and other equipment. Lifts and cranes may be used too. The work of all arborists is not the same. Some may just provide a consulting service; others may perform climbing, pruning and planting: whilst others may provide a combination of all of these services.[2]

Qualifications

[edit]
An arborist disassembling a tree using a crane and bucket

Arborists gain qualifications to practice arboriculture in a variety of ways and some arborists are more qualified than others. Experience working safely and effectively in and around trees is essential. Arborists tend to specialize in one or more disciplines of arboriculture, such as diagnosis and treatment of pests, diseases and nutritional deficiencies in trees, climbing and pruning, cabling and lightning protection, or consultation and report writing. All these disciplines are related to one another and some arborists are very well experienced in all areas of tree work, however not all arborists have the training or experience to properly practice every discipline.[citation needed]

Arborists choose to pursue formal certification, which is available in some countries and varies somewhat by location. An arborist who holds certification in one or more disciplines may be expected to participate in rigorous continuing education requirements to ensure constant improvement of skills and techniques.[citation needed]

In Australia, arboricultural education and training are streamlined countrywide through a multi-disciplinary vocational education, training, and qualification authority called the Australian Qualifications Framework, which offers varying levels of professional qualification. Government institutions including Technical and Further Education TAFE offer Certificate III or a diploma in arboriculture as well as some universities.[3][4] There are also many private institutions covering similar educational framework in each state. Recognition of prior learning is also an option for practicing arborists with 10 or more years of experience with no prior formal training. It allows them to be assessed and fast track their certification.[citation needed]

In France, a qualified arborist must hold a Management of Ornamental Trees certificate, and a qualified arborist climber must hold a Pruning and Care of Trees certificate; both delivered by the French Ministry of Agriculture.[5][6]

In the UK, an arborist can gain qualifications up to and including a master's degree. College-based courses include further education qualifications, such as national certificate, national diploma, while higher education courses in arboriculture include foundation degree, bachelor's degree and master's degree.[citation needed]

In the US, a Certified Arborist (CA) is a professional who has over three years of documented and verified experience and has passed a rigorous written test from the International Society of Arboriculture. Other designations include Municipal Specialist, Utility Specialist and Board Certified Master Arborist (BCMA). The USA and Canada additionally have college-based training which, if passed, will give the certificate of Qualified Arborist. The Qualified Arborist can then be used to offset partial experience towards the Certified Arborist.

Tree Risk Assessment Qualified credential (TRAQ), designed by the International Society of Arboriculture, was launched in 2013. At that time people holding the TRACE credential were transferred over to the TRAQ credential.[citation needed]

In Canada, there are provincially governed apprenticeship programs that allow arborists' to work near power lines upon completion. These apprenticeship programs must meet the provincial reregulations (For example, in B.C. they must meet WorkSafeBC G19.30), and individuals must ensure they meet the requirements of the owner of the power system.[citation needed]

Cultural practices

[edit]
Arborists may use specialised vehicles to gain access to trees, such as this Unimog equipped with a power take-off driven woodchipper

Trees in urban landscape settings are often subject to disturbances, whether human or natural, both above and below ground. They may require care to improve their chances of survival following damage from either biotic or abiotic causes. Arborists can provide appropriate solutions, such as pruning trees for health and good structure, for aesthetic reasons, and to permit people to walk under them (a technique often referred to as "crown raising"), or to keep them away from wires, fences and buildings (a technique referred to as "crown reduction").[7] Timing and methods of treatment depend on the species of tree and the purpose of the work. To determine the best practices, a thorough knowledge of local species and environments is essential.[citation needed]

There can be a vast difference between the techniques and practices of professional arborists and those of inadequately trained tree workers. Some commonly offered "services" are considered unacceptable by modern arboricultural standards and may seriously damage, disfigure, weaken, or even kill trees. One such example is tree topping, lopping, or "hat-racking", where entire tops of trees or main stems are removed, generally by cross-cutting the main stem(s) or leaders, leaving large unsightly stubs. Trees that manage to survive such treatment are left prone to a spectrum of detrimental effects, including vigorous but weakly attached regrowth, pest susceptibility, pathogen intrusion, and internal decay.[8]

Pruning should only be done with a specific purpose in mind. Every cut is a wound, and every leaf lost is removal of photosynthetic potential. Proper pruning can be helpful in many ways, but should always be done with the minimum amount of live tissue removed.[9]

In recent years, research has proven that wound dressings such as paint, tar or other coverings are unnecessary and may harm trees. The coverings may encourage growth of decay-causing fungi. Proper pruning, by cutting through branches at the right location, can do more to limit decay than wound dressing [10]

Chemicals can be applied to trees for insect or disease control through soil application, stem injections or spraying. Compacted or disturbed soils can be improved in various ways.[citation needed]

Arborists can also assess trees to determine the health, structure, safety or feasibility within a landscape and in proximity to humans. Modern arboriculture has progressed in technology and sophistication from practices of the past. Many current practices are based on knowledge gained through recent research, including that of Alex Shigo, considered one "father" of modern arboriculture.[11]

[edit]

Depending on the jurisdiction, there may be a number of legal issues surrounding the practices of arborists, including boundary issues, public safety issues, "heritage" trees of community value, and "neighbour" issues such as ownership, obstruction of views, impacts of roots crossing boundaries, nuisance problems, disease or insect quarantines, and safety of nearby trees or plants that may be affected.[citation needed]

Arborists are frequently consulted to establish the factual basis of disputes involving trees, or by private property owners seeking to avoid legal liability through the duty of care.[12] Arborists may be asked to assess the value of a tree[13] in the process of an insurance claim for trees damaged or destroyed,[14] or to recover damages resulting from tree theft or vandalism.[15] In cities with tree preservation orders an arborist's evaluation of tree hazard may be required before a property owner may remove a tree, or to assure the protection of trees in development plans and during construction operations. Carrying out work on protected trees and hedges is illegal without express permission from local authorities,[16] and can result in legal action including fines.[17] Homeowners who have entered into contracts with a Homeowner's association (see also Restrictive covenants) may need an arborists' professional opinion of a hazardous condition prior to removing a tree, or may be obligated to assure the protection of the views of neighboring properties prior to planting a tree or in the course of pruning.[18] Arborists may be consulted in forensic investigations where the evidence of a crime can be determined within the growth rings of a tree, for example. Arborists may be engaged by one member of a dispute in order to identify factual information about trees useful to that member of the dispute, or they can be engaged as an expert witness providing unbiased scientific knowledge in a court case. Homeowners associations seeking to write restrictive covenants, or legislative bodies seeking to write laws involving trees, may seek the counsel of arborists in order to avoid future difficulties.[19]

Before undertaking works in the UK, arborists have a legal responsibility to survey trees for wildlife, especially bats, which are given particular legal protection. In addition, any tree in the UK can be covered by a tree preservation order and it is illegal to conduct any work on a tree, including deadwooding or pruning, before permission has been sought from the local council.[citation needed]

Organizations

[edit]
  • Australia Limited, a non-profit organisation, is a national organisation promoting and representing tree workers, arborists, professional tree management and urban forestry throughout Australia and the Asia-Pacific region.[20]
  • The Tree Care Industry Association (formerly the National Arborist Association) is a public and professional non-profit organization for the arboriculture field. It has more than 2,000 member companies representing over a dozen countries. TCIA's Accreditation program certifies that tree care companies that have been inspected and accredited based on adherence to industry standards for performance and safety; maintenance of trained, professional staff; and dedication to ethics and quality in business practices. In addition, they provide safety and educational programs, guidelines for tree service operations, ANSI A300 tree pruning standards, and consumer resources.[citation needed]
  • The International Society of Arboriculture, a non-profit organization, maintains a list of ISA Certified Arborists who have passed a written exam and demonstrated a basic level of knowledge in arboriculture.[21] There are also additional classifications of certified arborists with Certified Arborist/Utility Specialist for those who work near power lines, and Certified Arborist/Municipal Specialist for those who deal mostly with community trees. Other certifications exist for Certified Tree Workers, and the highest level of certification, the Board Certified Master Arborist.[citation needed]
  • The American Society of Consulting Arborists is an organization whose membership is exclusive to those with a certain level of industry experience, plus higher educational experience or continuing education; some members may achieve a higher status by fulfilling the requirements to become a Registered Consulting Arborist.[22] Consulting arborists generally specialize in the areas of ethics, law, land planning and development, and tree valuation, among others. Consulting arborists are often called on for legal testimony and report writing in various instances where a particular authority on trees is necessary for consequent actions.
  • In the UK, the professional body representing the sector is the Institute of Chartered Foresters. The trade body representing arborists is the Arboricultural Association. The association maintains a register of consultants who have demonstrated a high level of technical arboricultural knowledge, and operate an Approved Contractor scheme. This scheme assesses both the technical competence and business practices of arboricultural contractors.
  • The European Arboricultural Council is a European group of multiple arboriculture organizations from various countries.
  • Plant Amnesty is a public education and advocacy group, based in Seattle, dedicated to promoting proper pruning methods. Founded in 1987, Plant Amnesty became an international resource for arborists and their clients in the mid-1990s.[23][24]

In literature

[edit]

The protagonist in Italo Calvino's novel The Baron in the Trees lives life on the ground as a boy and spends the rest of his life swinging from tree to tree in the Italian countryside. As a young man he helps the local fruit farmers by pruning their trees.[citation needed]

Notable arborists

[edit]

Some noteworthy arborists include:

  • Francis A. Bartlett – founded The Bartlett Tree Experts Co., the world's leading scientific tree and shrub care company in 1907.
  • John Chapman – pioneering U.S. frontier nurseryman and orchardist, commonly known as Johnny Appleseed.
  • Canopy Cat Rescue[25] – rescues domestic cats from tall trees; appears on Treetop Cat Rescue.
  • Sebastian Junger – author of Perfect Storm and War. Previous to becoming a journalist, Sebastian was an arborist in Massachusetts.
  • Chuck Leavell – two-time recipient of the Georgia Tree Farmer of the Year award, and author of the children's book, The Tree Farmer. In 2006 Leavell was appointed by Governor Sonny Perdue to the Georgia Land Conservation Council. He is also an accomplished jazz pianist and keyboardist for the Rolling Stones.[26]
  • Alex Shigo – considered the father of modern arboriculture.
  • David Mitchell - Devon born tree inspector and veteran tree expert
[edit]

See also

[edit]

References

[edit]
  1. ^ American National Standards Institute Z.133- and International Brotherhood of Electrical Workers.
  2. ^ Harris, Richard W., James R. Clark, and Nelda P. Matheny: Arboriculture Integrated Management of Landscape Trees, Shrubs, and Vines, third edition; Prentice-Hall, Inc. 1999.
  3. ^ "Becoming an Arborist". Victorian Skills Gateway. Archived from the original on 2018-03-16. Retrieved 2018-03-15.
  4. ^ "Graduate Certificate in Arboriculture". University of Melbourne. Retrieved 2018-03-15.
  5. ^ "Les formations qualifiantes des arboristes : certificat de spécialisation CS " taille et soin des arbres "". Copalme (in French). Retrieved 2018-03-15.
  6. ^ "Le CFPPA à l'action sur le domaine Paul-Riquet - Enseignement et formation - Un vrai chantier pour les lycéens". La Dépêche (in French). February 23, 2017. Retrieved 2018-03-15.
  7. ^ "Pruning Standards to Maintain Landscape Trees (3)". E. Thomas Smiley, Ph. D., Plant Pathologist and Bruce R. Fraedrich, Ph. D., Plant Pathologist; Bartlett Tree Research Laboratory.
  8. ^ "Follow Proper Pruning Techniques | Earth-Kind® Landscaping". aggie-horticulture.tamu.edu.
  9. ^ "Access Trees Home". treesaccess.com. Archived from the original on 2022-03-22. Retrieved 2022-03-30.
  10. ^ https://joa.isa-arbor.com/request.asp?JournalID=1&ArticleID=1923&Type=2, Wound dressings results of studies over 13 years
  11. ^ Alex Shigo pioneered tree-friendly pruning by Ron Sullivan; San Francisco Chronicle November 15, 2006.
  12. ^ Common Law Branches Off Into New Directions; by Victor D. Merullo; Journal of Arboriculture 20(6): November 1994.
  13. ^ Landscape Tree Appraisal by David P. Mooter, et al.; University of Nebraska–Lincoln Extension; March 2004.
  14. ^ Guide for Plant Appraisal, 9th ed; by the Council of Tree and Landscape Appraisers; International Society of Arboriculture; 2000.
  15. ^ See also specific legal provisions for "tree theft" such as, for example, the Revised Code of Washington title 64.12.030 for Washington (State, USA) or similar state, provincial, or local statutes.
  16. ^ "A Guide To The Laws Of Arboriculture & Tree Legislations". Surrey Tree Surgery. Archived from the original on 4 April 2014. Retrieved 4 April 2014.
  17. ^ "Businessman fined £28,000 for felling protected yew tree". The Daily Telegraph. London. 3 June 2013. Archived from the original on 6 June 2013. Retrieved 4 April 2014.
  18. ^ Arboriculture and the Law in Canada by Julian Dunster and Susan Murray; International Society of Arboriculture; 1997.
  19. ^ Arboriculture and the Law by Victor D. Merrullo; International Society of Arboriculture; 1992.
  20. ^ "About Us". arboriculture.org.au. Archived from the original on 2016-08-08. Retrieved 2016-07-22.
  21. ^ "Verify an ISA Certification / Find a Tree Care Service". International Society of Arboriculture. Archived from the original on 27 March 2014. Retrieved 4 April 2014.
  22. ^ "American Society of Consulting Arborists – Registered Consulting Arborist". Archived from the original on 2003-02-28. Retrieved 2008-04-29.
  23. ^ "The Seattle Times: Pacific Northwest Magazine". The Seattle Times.
  24. ^ Young, Paul. "Bakersfield CA Local Online Stock Brokerage Firms | Berkeley Daily". Archived from the original on 2020-08-09. Retrieved 2019-11-08.
  25. ^ "Cat stuck in a tree in Washington". Canopy Cat Rescue. Archived from the original on 2019-11-08. Retrieved 2019-11-08.
  26. ^ "Chuck Leavell - Trees". chuckleavell.com. Archived from the original on 2007-07-03. Retrieved 2007-07-21.
[edit]

 

Photo
Photo
Photo

Driving Directions in Cobb County


Driving Directions From The UPS Store to
Driving Directions From Pearl Pediatrics and Adolescent Medicine to
Driving Directions From Powder Springs Elementary School to
Driving Directions From Green Meadows Preserve to
Driving Directions From East Cobb Park to
Driving Directions From Cumberland Mural to
Driving Directions From Johnson Ferry to
Driving Directions From Kennesaw Mountain National Battlefield Park to

Reviews for All In Tree Services and Pro


Mary Thompson

(5)

We recently had five large pine trees taken down in our front yard. We had three bids from different tree companies. We also wanted the stumps ground as well as chasing roots above ground. Rudy was fantastic and his workers were very skilled and the clean up was exceptional. We would highly recommend them and not hesitate to use them again.

Brandon Zimmerman

(5)

Used Rudy and All In Tree for numerous things over the last year and a half. Pricing is Competitive. Very responsive to calls and tests. I like that they're insured. Did what he said what he was going to do and when he said he was going to do it. A couple of things didn't meet my expectations and he immediately came out and made it right. I have recommended to multiple other people.

Kay T

(5)

Update! 10/10/23 After they helped me last month, All in Tree Service has again saved the day! A couple of large trees washed down the creek on my property recently and one of them was lodged against the pipes that go from my house to the street. There were other large tree trunks in the creek as well and also one wedged against the supports for my bridge. The All In team went to work and within a couple of hours had everything cleaned up and removed. The pipes and the bridge are safe! I recommend this team wholeheartedly. They care about what they do and it shows. Thank you! I’m very grateful. This team exemplifies professionalism. The before and after pictures tell a great story. September 2023 I recently was fortunate enough to find Rudy and Yaremi of All In Tree Services. A very large and very high limb on a big oak tree was hanging after a storm. It was a danger to me, to my dogs and to the fence below it. I had never met Rudy and Yaremi before. They were the first to call me back when I started my search for a reliable tree service. They clearly wanted the business so I gave them a chance. I’m so glad I did. They were very impressive! Their strategy and teamwork were incredible. Clearly they are very experienced at this kind of work. I took some pictures but I wish I had filmed the whole thing. It was amazing. They roped off the limb so it would not fall on anything or anyone. Then they quickly got the limb cut and safely on the ground and helped to clear up the debris. I am extremely happy with their service and with the friendly and professional manner with which they conducted themselves. I have already recommended them to my neighbors and I strongly encourage anyone who needs tree services to call them.

Kimberly Graves

(5)

All professional service. Timely, efficient, friendly. I had big old dead trees that I feared daily were going to come down. I called them in an emergency and they came the very next morning, no problem, no excuses. The guys were about service and me as a customer. They saw what I needed and went above and beyond to make sure I was a satisfied customer. I am a satisfied customer. I will use this company again and again. Thank you Rudy.

View GBP
The main methods for stump removal include mechanical grinding, chemical treatment, burning, and manual removal. Each method has its own advantages and disadvantages depending on the size of the stump, location, and environmental considerations.
Stump grinding involves using a machine to grind down the tree stump into small wood chips. This method is fast, efficient, and leaves the ground relatively undisturbed compared to other methods. It is ideal for quickly clearing land after tree removal.
Chemicals can effectively hasten the decomposition of a stump. They typically contain potassium nitrate, which accelerates rotting. When using chemicals, its important to consider safety precautions for handling and applying these substances to avoid harm to surrounding vegetation or wildlife.
Yes, manual removal is possible but generally feasible only for smaller stumps due to labor intensity involved. This process might require tools such as a shovel, axe, mattock or chainsaw to dig around and cut through the roots before attempting to pull out the stump either manually or with a vehicle.