BaseStatsTask |
Class for storing and updating basic column stats (max, min, mean, sigma).
|
ColSummaryTask |
|
ConfusionMatrix |
|
Covariance |
Calculate the covariance and correlation of two variables
|
Covariance.COV_Task |
|
DGLM |
|
DGLM.FamilyIced |
passthrough class around family that properly supports icing
|
DGLM.GLMJob |
|
DGLM.GLMModel |
|
DGLM.GLMModel.GLMValidationTask |
|
DGLM.GLMParams |
|
DGLM.GLMValidation |
|
DGLM.GLMValidationFunc |
|
DGLM.GramMatrixFunc |
|
DGLM.LambdaMax |
|
DGLM.LambdaMaxFunc |
|
DGLM.LinkIced |
passthrough class around Link that supports Icing
|
DLSM |
Distributed least squares solvers
|
DLSM.ADMMSolver |
|
DLSM.GeneralizedGradientSolver |
Generalized gradient solver for solving LSM problem with combination of L1 and L2 penalty.
|
DLSM.LSMSolver |
|
FrameTask<T extends FrameTask<T>> |
|
FrameTask.DataInfo |
|
GLMGrid |
|
GLMGrid.GLMModels |
|
GridSearch |
|
GridSearch.GridSearchProgress |
|
Histogram |
|
Histogram.BinningTask |
|
Histogram.Bins |
|
Histogram.OutlineTask |
|
KMeans |
Scalable K-Means++ (KMeans||)
http://theory.stanford.edu/~sergei/papers/vldb12-kmpar.pdf
http://www.youtube.com/watch?v=cigXAxV3XcY
|
KMeans.Lloyds |
|
KMeans.Sampler |
|
KMeans.Sqr |
|
KMeans2 |
Scalable K-Means++ (KMeans||)
http://theory.stanford.edu/~sergei/papers/vldb12-kmpar.pdf
http://www.youtube.com/watch?v=cigXAxV3XcY
|
KMeans2.KMeans2Model |
|
KMeans2.KMeans2ModelView |
|
KMeans2.KMeans2Progress |
|
KMeans2.Lloyds |
|
KMeans2.Sampler |
|
KMeans2.SumSqr |
|
KMeansModel |
|
KMeansModel.KMeansApply |
|
KMeansModel.KMeansScore |
|
KMeansShared |
|
Layer |
Neural network layer.
|
Layer.Input |
|
Layer.Linear |
Linear output layer is used for regression
Rows with missing values in the response column will be ignored
|
Layer.Maxout |
|
Layer.MaxoutDropout |
|
Layer.Output |
|
Layer.Rectifier |
|
Layer.RectifierDropout |
|
Layer.RectifierPrime |
|
Layer.Softmax |
Softmax output layer is used for classification
Rows with missing values in the response column will be ignored
|
Layer.Tanh |
|
Layer.TanhDropout |
|
Layer.TanhPrime |
Apply tanh to the weights' transpose.
|
Layer.VecLinear |
|
Layer.VecsInput |
|
Layer.VecSoftmax |
|
LinearRegression |
|
LinearRegression.CalcRegressionTask |
|
LinearRegression.CalcSquareErrorsTasks |
|
LinearRegression.CalcSumsTask |
|
LR2 |
|
LR2.CalcRegressionTask |
|
LR2.CalcSquareErrorsTasks |
|
LR2.CalcSumsTask |
|
NeuralNet |
Neural network.
|
NeuralNet.Errors |
|
NeuralNet.NeuralNetModel |
|
NeuralNet.NeuralNetScore |
|
NewRowVecTask<T extends Iced> |
|
NewRowVecTask.DataFrame |
Struct to keep info about our data.
|
NewRowVecTask.RowFunc<T extends Iced> |
|
NodeShuffle |
Shuffle the rows of some dataset, such that the natural placement of the
resulting ValueArray onto Nodes results in some good property.
|
NOPTask |
|
OneHot |
|
ParamsSearch |
Looks for parameters on a set of objects and perform random search.
|
Quantiles |
|
Quantiles.QuantilesTask |
|
RowTask<T extends Freezable> |
|
RowTask.Row<T extends Freezable> |
|
RowTask.RowFunction<T extends Iced> |
|
RowVecTask |
|
RowVecTask.Sampling |
|
ScoreTask |
|
ShuffleTask |
Simple shuffle task based on Fisher&Yates algo.
|
Summary |
|
Summary.ColSummary |
|
Summary2 |
Summary of a column.
|
Summary2.BasicStat |
|
Summary2.PrePass |
|
Summary2.SummaryPerRow |
|
Summary2.SummaryTask2 |
|
Trainer |
Trains a neural network.
|
Trainer.Base |
|
Trainer.Direct |
Trains NN on current thread.
|
Trainer.MapReduce |
Distributed trainer.
|
Trainer.OpenCL |
GPU based trainer.
|
Trainer.Threaded |
Runs several trainers in parallel on the same weights, using threads.
|
VariableImportance |
|