
 J. Scholz (RIM@GT) 07/09/2013

Markov Decision Processes
and Reinforcement Learning

An Introduction to Stochastic Planning

1
Wednesday, July 10, 13

 J. Scholz (RIM@GT) 07/09/2013

Path Planning Assumptions

2

• Obstacles?

➡Reliable Collision detection (assumes
robust perception)

• Transitions

➡Reliable mechanism for moving along
path in graph (i.e., a controller)

move_block(x1,y1,x2,y2)

Wednesday, July 10, 13

 J. Scholz (RIM@GT) 07/09/2013

Two Sources of Error

• State Estimation

• You don’t know exactly where you are

• Sensors have noise

• No complete environment information

• Action Execution

• Your actuators don’t do what you tell them

• Your system responds differently than you expect

• Friction, gears, air resistance, etc.

3

Basic Idea: Your model of the world is incorrect!

Wednesday, July 10, 13

 J. Scholz (RIM@GT) 07/09/2013

Markov (Decision) Processes:
A New Model for Planning

4

• Handles both forms of uncertainty in a
statistically principled way

• Gives us back optimality!

• Of course, I’m talking about (PO)MDPs

• All this flexibility comes at a cost, as we’ll
see...

• Current research is largely about
scalability

Wednesday, July 10, 13

 J. Scholz (RIM@GT) 07/09/2013

Handling Non-Deterministic Actions

• Problem: we don’t know where our
actions take us

• Solution: start thinking about expected
values

➡Weight each outcome by the
probability of getting there

5
Wednesday, July 10, 13

 J. Scholz (RIM@GT) 07/09/2013

Formalizing the MDP Model

• Step 1: define the core problem representation

• Considerations?

1. should represent “rewards” somehow

2. should represent “state” somehow

3. should represent “actions” somehow

➡next: what if actions aren’t deterministic??

6
Wednesday, July 10, 13

 J. Scholz (RIM@GT) 07/09/2013

MDP: A Formal Model for
Decision Making

• Step 2: How to handle stochastic action
effects (“transitions”)?

• replace transition rule with transition
distribution

7

CORE REINFORCEMENT LEARNING MATH (FOR ML)

JONATHAN SCHOLZ

MDP definition

(1) MDP = {S,A, T ,R, �}

S = States(2)

A = Actions(3)

T = Transition Model(4)

R = Rewards(5)

Transition Model def:

(6) T (s, a, s0) = P (s0|s, a) =

2

6664

P a
11 P a

12 . . . P a
1n

P a
21 P a

22 . . . P a
2n

...
...

...
...

P a
n1 P a

n2 . . . P a
nn

3

7775

Transition Model def (simple):

(7) T (s, s0) = P (s0|s) =

2

6664

P11 P12 . . . P1n

P21 P22 . . . P2n
...

...
...

...
Pn1 Pn2 . . . Pnn

3

7775

Bellman equation (no actions)

(8) V (s) = R(s) + �
X

s0

P (s0|s)V (s0)

Bellman equation

(9) V (s) = max
a

"
R(s, a) + �

X

s0

P (s0|s, a)V (s0)

#

1

Formalizing the MDP Model

Wednesday, July 10, 13

 J. Scholz (RIM@GT) 07/09/2013

MDP Preliminaries

• Overall:

8

CORE REINFORCEMENT LEARNING MATH (FOR ML)

JONATHAN SCHOLZ

MDP definition

(1) MDP = {S,A, T ,R, �}

S = States(2)

A = Actions(3)

T = Transition Model(4)

R = Rewards(5)

Bellman equation (no actions)

(6) V (s) = R(s) + �
X

s0

P (s0|s)V (s0)

Bellman equation

(7) V (s) = max
a

"
R(s, a) + �

X

s0

P (s0|s, a)V (s0)

#

Optimal Value function (long)

V ⇤(s) = max
⇡

E
" 1X

t=0

�trt

#
(8)

= max
a

"
R(s, a) + �

X

s02S
P (s0|s, a)V ⇤(s0)

#
(9)

Optimal Policy from V

(10) ⇡⇤(s) = argmax
a

"
R(s, a) + �

X

s0

P (s0|s, a)V (s0)

#

Optimal Policy from Q

(11) ⇡⇤(s) = argmax
a

Q(s, a)

1

CORE REINFORCEMENT LEARNING MATH (FOR ML)

JONATHAN SCHOLZ

MDP definition

(1) MDP = {S,A, T ,R, �}

S = States(2)

A = Actions(3)

T = Transition Model(4)

R = Rewards(5)

Bellman equation (no actions)

(6) V (s) = R(s) + �
X

s0

P (s0|s)V (s0)

Bellman equation

(7) V (s) = max
a

"
R(s, a) + �

X

s0

P (s0|s, a)V (s0)

#

Optimal Value function (long)

V ⇤(s) = max
⇡

E
" 1X

t=0

�trt

#
(8)

= max
a

"
R(s, a) + �

X

s02S
P (s0|s, a)V ⇤(s0)

#
(9)

Optimal Policy from V

(10) ⇡⇤(s) = argmax
a

"
R(s, a) + �

X

s0

P (s0|s, a)V (s0)

#

Optimal Policy from Q

(11) ⇡⇤(s) = argmax
a

Q(s, a)

1

Formalizing the MDP Model

Pacman states
➡ {all positions of pacman, ghosts, food, & pellets}

Pacman actions
➡ {N,S,E,W}

Pacman model
➡ {move directions, die from ghosts, eat food,...}

Pacman rewards
➡ -1 per step, +10 food, -500 die,+500 win,...

Wednesday, July 10, 13

 J. Scholz (RIM@GT) 07/09/2013 13

Markov Processes: Caveman’s World

Hungry

Got
Food

Full

Dead

.1
.5

.1

.9

.2

.6

.1

1

.1

.4

States: {H, G, F, D}

Actions: {}

Transition Model:
H G F D

H 0.5 0.4 0.0 0.1

G 0.2 0.1 0.6 0.1

F 0.9 0.0 0.0 0.1

D 0.0 0.0 0.0 1.0

Rewards:
H G F D
0 1 10 -10

(we’ll get back
to this)

∑=1.0

∑=1.0

∑=1.0

∑=1.0

just a CPT

Wednesday, July 10, 13

 J. Scholz (RIM@GT) 07/09/2013 14

Hungry
0

Got
Food
+1

Full
+10

Dead
-10

.1
.5

.1

.9

.2

.6

.1

1

.1

.4

Markov Processes: Caveman’s World

States: {H, G, F, D}

Actions: {}

Transition Model:
H G F D

H 0.5 0.4 0.0 0.1

G 0.2 0.1 0.6 0.1

F 0.9 0.0 0.0 0.1

D 0.0 0.0 0.0 1.0

Rewards:
H G F D
0 1 10 -10

Wednesday, July 10, 13

 J. Scholz (RIM@GT) 07/09/2013 18

Markov Processes with Rewards

Value

–How good is it to be in a
state?

–Sum of DISCOUNTED
expected rewards:

–Reward now is better than
later. Why??

Hungry
0

Got
Food
+1

Full
+10

Dead
-10

.1
.5

.1

.9

.2

.6

.1

1

.1

.4

Markov Processes: Caveman’s World

2 JONATHAN SCHOLZ

Optimal Policy from Q

(12) ⇡⇤(s) = argmax
a

Q(s, a)

Q-function definition

Q(s, a) = R(s, a) + �max
a0

E
⇥
Q(s0, a0)

⇤
(13)

= R(s, a) + �max
a0

X

s0

P (s0|s, a)Q(s0, a0)(14)

(15)

Value Iteration

(16) V (s) max
a

"
R(s, a) + �

X

s0

P (s0|s, a)V (s0)

#

Q and V relationship

(17) V (s) = max
a

Q(s, a)

Value function definition (simple)

V (s) = E
" 1X

t=0

�trt

#
(18)

= max
a

"
R(s, a) + �

X

s0

P (s0|s, a)V (s0)

#
(19)

(20)

Generic Value function definition (long s only rewards)

V⇡(s) = E⇡

" 1X

t=0

�trt|s0 = s

#
(21)

= E⇡

"
r0 +

1X

t=0

�t+1rt+1|s0 = s

#
(22)

= E⇡

"
r0 + �r1 +

1X

t=0

�t+2rt+2|s0 = s

#
(23)

= R(s) + �
X

a

P⇡(a|s)
X

s0

P (s0|s, a)
"
R(s0) + E⇡

" 1X

t=0

�t+1rt+1|s0 = s0
##

(24)

= R(s) + �
X

a

P⇡(a|s)
X

s0

P (s0|s, a)V (s0)(25)

Wednesday, July 10, 13

 J. Scholz (RIM@GT) 07/09/2013 18

Markov Processes with Rewards

Hungry
0

Got
Food
+1

Full
+10

Dead
-10

.1
.5

.1

.9

.2

.6

.1

1

.1

.4

Value Iteration in Caveman’s World

• Key idea: Bellman
Recursion

• Relates value in
current state to
expected value of
next state

CORE REINFORCEMENT LEARNING MATH (FOR ML)

JONATHAN SCHOLZ

MDP definition

(1) MDP = {S,A, T ,R, �}

S = States(2)

A = Actions(3)

T = Transition Model(4)

R = Rewards(5)

Transition Model def:

(6) T (s, a, s0) = P (s0|s, a) =

2

6664

P a
11 P a

12 . . . P a
1n

P a
21 P a

22 . . . P a
2n

...
...

...
...

P a
n1 P a

n2 . . . P a
nn

3

7775

Transition Model def (simple):

(7) T (s, s0) = P (s0|s) =

2

6664

P11 P12 . . . P1n

P21 P22 . . . P2n
...

...
...

...
Pn1 Pn2 . . . Pnn

3

7775

Bellman equation (no actions)

(8) V (s) = R(s) + �
X

s0

P (s0|s)V (s0)

Bellman equation

(9) V (s) = max
a

"
R(s, a) + �

X

s0

P (s0|s, a)V (s0)

#

1

Wednesday, July 10, 13

 J. Scholz (RIM@GT) 07/09/2013 18

Markov Processes with Rewards

Hungry
0

Got
Food
+1

Full
+10

Dead
-10

.1
.5

.1

.9

.2

.6

.1

1

.1

.4

Value Iteration in Caveman’s World

• Key idea: Bellman
Recursion

• Relates value in
current state to
expected value of
next state

4 JONATHAN SCHOLZ

V (s = H) = r + �(PHH(RH) + PHG(RG) + PHF (RF) + PHD(RD))(35)

= 0 + 0.9(0.5(0) + 0.4(1) + 0.1(10))(36)

Wednesday, July 10, 13

 J. Scholz (RIM@GT) 07/09/2013 18

Markov Processes with Rewards

Hungry
0

Got
Food
+1

Full
+10

Dead
-10

.1
.5

.1

.9

.2

.6

.1

1

.1

.4

Value Iteration in Caveman’s World

4 JONATHAN SCHOLZ

V (s = H) = r + �(PHH(RH) + PHG(RG) + PHF (RF) + PHD(RD))(35)

= 0 + 0.9(0.5(0) + 0.4(1) + 0.1(10))(36)

H G F D

1 0 1 10 -10

2 -0.54

Value in k-steps

Wednesday, July 10, 13

 J. Scholz (RIM@GT) 07/09/2013 18

Markov Processes with Rewards

Hungry
0

Got
Food
+1

Full
+10

Dead
-10

.1
.5

.1

.9

.2

.6

.1

1

.1

.4

Value Iteration in Caveman’s World

Value in k-steps
H G F D

1 0 1 10 -10

2 -.54 5.69 9.1 -19

3 .06 4.61 7.85 -27.1

4 -.75 3.23 7.61 -34.39

…

99 -39.08 -34.71 -30.66 -100.0

100 -39.09 -34.71 -30.66 -100.0

Value Iteration is Guaranteed to Converge

Wednesday, July 10, 13

 J. Scholz (RIM@GT) 07/09/2013 27

Summary

•Markov Processes represent uncertainty in
state transitions

• It is possible to determine the overall value of
a state

•What’s next? Adding actions!

Wednesday, July 10, 13

 J. Scholz (RIM@GT) 07/09/2013

Actions: the value of free-will

• What’d we do so far?

• Define values of states, and transition
probabilities between them

• To add actions, what to we need to look at?

1. condition on actions: P(s’|s) -> P(s’|s,a)

2. values of actions: V(s) = maxaQ(s,a)

• Turns out we need only (1), and (2) is RL

17
Wednesday, July 10, 13

 J. Scholz (RIM@GT) 07/09/2013

Actions: the value of free-will

4

Summary

• Markov Processes represent uncertainty in state transitions

• It is possible to determine the overall future value of a state

• Matrix Inversion is closed form but expensive

• Value iteration is simple and effective

11/5/2010M. Stilman (RIM@GT) 7

How do we represent a Markov Process with Actions?

Value of Free Will: Markov Decision Process

Got
Food
+1

.9

.8

.8.2

hunt

sleep

eat
.1

Hungry
0 Full

+10

Dead
-10.3

.7

1

1

.2sleep
eat

sleep

St t A tii { } A {a a }
1

11/5/2010M. Stilman (RIM@GT) 8

States Actions

Rewards

Transition Model

i = {s1, ..., sn} A = {a1, ..., am}

R = {r1, ..., rn}

P lij = P (next = sj | current = si and action = al)

• Adding actions back into an MDP:

• How? Make transitions conditional on
action

18

CORE REINFORCEMENT LEARNING MATH (FOR ML)

JONATHAN SCHOLZ

MDP definition

(1) MDP = {S,A, T ,R, �}

S = States(2)

A = Actions(3)

T = Transition Model(4)

R = Rewards(5)

Transition Model def:

(6) T (s, a, s0) = P (s0|s, a) =

2

6664

P a
11 P a

12 . . . P a
1n

P a
21 P a

22 . . . P a
2n

...
...

...
...

P a
n1 P a

n2 . . . P a
nn

3

7775

Bellman equation (no actions)

(7) V (s) = R(s) + �
X

s0

P (s0|s)V (s0)

Bellman equation

(8) V (s) = max
a

"
R(s, a) + �

X

s0

P (s0|s, a)V (s0)

#

Optimal Value function (long)

V ⇤(s) = max
⇡

E
" 1X

t=0

�trt

#
(9)

= max
a

"
R(s, a) + �

X

s02S
P (s0|s, a)V ⇤(s0)

#
(10)

Optimal Policy from V

(11) ⇡⇤(s) = argmax
a

"
R(s, a) + �

X

s0

P (s0|s, a)V (s0)

#

1

Wednesday, July 10, 13

 J. Scholz (RIM@GT) 07/09/2013

Actions: the value of free-

4

Summary

• Markov Processes represent uncertainty in state transitions

• It is possible to determine the overall future value of a state

• Matrix Inversion is closed form but expensive

• Value iteration is simple and effective

11/5/2010M. Stilman (RIM@GT) 7

How do we represent a Markov Process with Actions?

Value of Free Will: Markov Decision Process

Got
Food
+1

.9

.8

.8.2

hunt

sleep

eat
.1

Hungry
0 Full

+10

Dead
-10.3

.7

1

1

.2sleep
eat

sleep

St t A tii { } A {a a }
1

11/5/2010M. Stilman (RIM@GT) 8

States Actions

Rewards

Transition Model

i = {s1, ..., sn} A = {a1, ..., am}

R = {r1, ..., rn}

P lij = P (next = sj | current = si and action = al)

Value-Iteration needs one more thing:

19

2 JONATHAN SCHOLZ

Optimal Policy from Q

(12) ⇡⇤(s) = argmax
a

Q(s, a)

Q-function definition

Q(s, a) = R(s, a) + �max
a0

E
⇥
Q(s0, a0)

⇤
(13)

= R(s, a) + �max
a0

X

s0

P (s0|s, a)Q(s0, a0)(14)

(15)

Value Iteration

(16) V (s) max
a

"
R(s, a) + �

X

s0

P (s0|s, a)V (s0)

#

Q and V relationship

(17) V (s) = max
a

Q(s, a)

Value function definition (simple)

V (s) = E
" 1X

t=0

�trt

#
(18)

= max
a

"
R(s, a) + �

X

s0

P (s0|s, a)V (s0)

#
(19)

(20)

Generic Value function definition (long s only rewards)

V⇡(s) = E⇡

" 1X

t=0

�trt|s0 = s

#
(21)

= E⇡

"
r0 +

1X

t=0

�t+1rt+1|s0 = s

#
(22)

= E⇡

"
r0 + �r1 +

1X

t=0

�t+2rt+2|s0 = s

#
(23)

= R(s) + �
X

a

P⇡(a|s)
X

s0

P (s0|s, a)
"
R(s0) + E⇡

" 1X

t=0

�t+1rt+1|s0 = s0
##

(24)

= R(s) + �
X

a

P⇡(a|s)
X

s0

P (s0|s, a)V (s0)(25)

*Bellman Equation

Actions: the value of free-will

added this max over actions

Wednesday, July 10, 13

 J. Scholz (RIM@GT) 07/09/2013

Actions: the value of free-

4

Summary

• Markov Processes represent uncertainty in state transitions

• It is possible to determine the overall future value of a state

• Matrix Inversion is closed form but expensive

• Value iteration is simple and effective

11/5/2010M. Stilman (RIM@GT) 7

How do we represent a Markov Process with Actions?

Value of Free Will: Markov Decision Process

Got
Food
+1

.9

.8

.8.2

hunt

sleep

eat
.1

Hungry
0 Full

+10

Dead
-10.3

.7

1

1

.2sleep
eat

sleep

St t A tii { } A {a a }
1

11/5/2010M. Stilman (RIM@GT) 8

States Actions

Rewards

Transition Model

i = {s1, ..., sn} A = {a1, ..., am}

R = {r1, ..., rn}

P lij = P (next = sj | current = si and action = al)

“Free-Will” Values:

20

6

MDP: Value Iteration

Got
Food
+1

.9

.8

.8.2

hunt

sleep

eat
.1

Jks = max
l

h
rs + x

Pn
j=1 p

l
sjJ

kc1
j

i

Hungry
0 Full

+10

Dead
-10.3

.7

1

1

.2sleep
eat

sleep

1

11/5/2010M. Stilman (RIM@GT) 11

H G F D

1 0 1 10 -10

2 -.09 8.2
JeatG = 8.2

JsleepG = 1.72

MDP: Value Iteration

Got
Food
+1

.9

.8

.8.2

hunt

sleep

eat
.1

Jks = max
l

h
rs + x

Pn
j=1 p

l
sjJ

kc1
j

i

Hungry
0 Full

+10

Dead
-10.3

.7

1

1

.2sleep
eat

sleep

1

11/5/2010M. Stilman (RIM@GT) 12

H G F D

1 0 1 10 -10

2 -.09 8.2 10 -19

…

100 -7.16 2.27 3.56 -100

Actions: the value of free-will

Wednesday, July 10, 13

 J. Scholz (RIM@GT) 07/09/2013

Actions: the value of free-

4

Summary

• Markov Processes represent uncertainty in state transitions

• It is possible to determine the overall future value of a state

• Matrix Inversion is closed form but expensive

• Value iteration is simple and effective

11/5/2010M. Stilman (RIM@GT) 7

How do we represent a Markov Process with Actions?

Value of Free Will: Markov Decision Process

Got
Food
+1

.9

.8

.8.2

hunt

sleep

eat
.1

Hungry
0 Full

+10

Dead
-10.3

.7

1

1

.2sleep
eat

sleep

St t A tii { } A {a a }
1

11/5/2010M. Stilman (RIM@GT) 8

States Actions

Rewards

Transition Model

i = {s1, ..., sn} A = {a1, ..., am}

R = {r1, ..., rn}

P lij = P (next = sj | current = si and action = al)

“Free-Will” Values:

21

6

MDP: Value Iteration

Got
Food
+1

.9

.8

.8.2

hunt

sleep

eat
.1

Jks = max
l

h
rs + x

Pn
j=1 p

l
sjJ

kc1
j

i

Hungry
0 Full

+10

Dead
-10.3

.7

1

1

.2sleep
eat

sleep

1

11/5/2010M. Stilman (RIM@GT) 11

H G F D

1 0 1 10 -10

2 -.09 8.2
JeatG = 8.2

JsleepG = 1.72

MDP: Value Iteration

Got
Food
+1

.9

.8

.8.2

hunt

sleep

eat
.1

Jks = max
l

h
rs + x

Pn
j=1 p

l
sjJ

kc1
j

i

Hungry
0 Full

+10

Dead
-10.3

.7

1

1

.2sleep
eat

sleep

1

11/5/2010M. Stilman (RIM@GT) 12

H G F D

1 0 1 10 -10

2 -.09 8.2 10 -19

…

100 -7.16 2.27 3.56 -100

Actions: the value of free-will

Wednesday, July 10, 13

 J. Scholz (RIM@GT) 07/09/2013

Value Iteration in Code

22

What’s this “Q” function?
➡Topic for later, but short answer is to
allow action selection without lookahead

Wednesday, July 10, 13

 J. Scholz (RIM@GT) 07/09/2013

MDP Planning: Core concepts

• Things to really understand about MDPs:

➡what a value function is

➡why we can converge to V* with these
simple algorithms

➡why V* is overkill sometimes

➡why model is so important, and what to do
without it

➡why these algorithms can be (horribly)
inefficient

23
Wednesday, July 10, 13

 J. Scholz (RIM@GT) 07/09/2013

Value Iteration: Big Questions

• Convergence?

• Efficiency?

• Assumptions?

24
Wednesday, July 10, 13

 J. Scholz (RIM@GT) 07/09/2013

Value Iteration Convergence

• Proof Sketch:

1. Defined in terms of max-norm between any two value
functions (in particular V_i and V*)

2. Take advantage of basic property of max:

3. Apply Bellman operator and rearrange

25

CORE REINFORCEMENT LEARNING MATH (FOR ML) 3

Generic Value function definition (long s only rewards)

V⇡(s) = E⇡

" 1X

t=0

�

t
rt|s0 = s

#
(22)

= E⇡

"
r0 +

1X

t=0

�

t+1
rt+1|s0 = s

#
(23)

= E⇡

"
r0 + �r1 +

1X

t=0

�

t+2
rt+2|s0 = s

#
(24)

= R(s) + �

X

a

P⇡(a|s)
X

s0

P (s0|s, a)
"
R(s0) + E⇡

" 1X

t=0

�

t+1
rt+1|s0 = s

0

##
(25)

= R(s) + �

X

a

P⇡(a|s)
X

s0

P (s0|s, a)V (s0)(26)

From Q to Q-learning

Q(s, a) = R(s, a) + �max
a0

X

s0

P (s0|s, a)Q(s0, a0)(27)

⇡ R(s, a) + �max
a0

Q(s0, a0), s

0 ⇠ P (s0|s, a)(28)

⇡ (1� ↵)Q(s, a) + ↵

✓
R(s, a) + �max

a0
Q(s0, a0)

◆
(29)

⇡ Q(s, a)� ↵Q(s, a) + ↵R(s, a) + ↵�max
a0

Q(s0, a0)(30)

⇡ Q(s, a) + ↵

✓
R(s, a) + �max

a0
Q(s0, a0)�Q(s, a)

◆
(31)

⇡ Q(s, a) + ↵(�TD)(32)

SARSA backup rule

(33) Q(s, a) Q(s, a) + ↵

�
R(s, a) + �Q(s0, a0)�Q(s, a)

�

TD error

(34) �td = R(s, a) + �max
a0

Q(s0, a0)�Q(s, a)

TD decay

(35) e(s, a) = �

t
�

t
�td

Convergence equations:
Max lemma:

(36) |maxaf(a)�maxag(a)|  maxa|f(a)� g(a)|
4 JONATHAN SCHOLZ

Contraction Proof:

|B(Vi)�B(Vj)|(s) =

�����

R(s) + �maxa

X

s0

P (s0|s, a)Vi(s
0)

!
�

R(s) + �maxa

X

s0

P (s0|s, a)Vj(s
0)

!�����

= �(maxaEVi [s
0]�maxaEVj [s

0]

 �maxa(EVi [s
0]� EVj [s

0])

 �maxa(Vi(s
0)� Vj(s

0))

tl;dr: max-norm (max difference w.r.t. V*) strictly contracts
with each application of Bellman (with factor gamma)

Wednesday, July 10, 13

 J. Scholz (RIM@GT) 07/09/2013

But how important is convergence?

• Why does value matter again? To pick
actions

➡IE, we’re interested in π(s), not V(s)

• Can we optimize the policy directly?

➡Yes! This is “policy iteration”

➡We’ll use the policy form of Bellman:

26

2 JONATHAN SCHOLZ

Bellman for policy evaluation

(11) V

⇡
t+1(s) � R(s,⇡(s)) + �

X

s0

P (s0|s,⇡(s))V ⇡
t (s0)

Converged optimal value function (short)

(12) 8s V

⇤(s) = max
a

"
R(s, a) + �

X

s02S
P (s0|s, a)V ⇤(s0)

#

Converged optimal value function (long)

8s V

⇤(s) = max
⇡

E
" 1X

t=0

�

t
rt

#
(13)

= max
a

"
R(s, a) + �

X

s02S
P (s0|s, a)V ⇤(s0)

#
(14)

Optimal Policy from V

(15) ⇡

⇤(s) = argmax
a

"
R(s, a) + �

X

s0

P (s0|s, a)V ⇤(s0)

#

Optimal Policy from Q

(16) ⇡

⇤(s) = argmax
a

Q(s, a)

Q-function definition

Q(s, a) = R(s, a) + �max
a0

E
⇥
Q(s0, a0)

⇤
(17)

= R(s, a) + �max
a0

X

s0

P (s0|s, a)Q(s0, a0)(18)

(19)

Value Iteration

(20) V (s) max
a

"
R(s, a) + �

X

s0

P (s0|s, a)V (s0)

#

Q and V relationship

(21) V (s) = max
a

Q(s, a)

Wednesday, July 10, 13

 J. Scholz (RIM@GT) 07/09/2013

Policy Iteration

• Alternative approach:

• Step 1: Policy evaluation: calculate value for some fixed
policy (not optimal utilities!) until convergence

• Step 2: Policy improvement: update policy using onestep
look-ahead with resulting converged (but not optimal!)
utilities as future values

• Repeat steps until policy converges (it does)

• Facts about policy iteration:

➡It’s still optimal!

➡Can converge faster under some conditions. Why??

27
Wednesday, July 10, 13

 J. Scholz (RIM@GT) 07/09/2013

Implementing Policy Iteration

• Simple change:

1. Evaluate policy somehow

➡option 1: solve as linear system

➡option 2: use Bellman for a while

2. Improve policy using 1-step lookahead

28

4 JONATHAN SCHOLZ

Contraction Proof:

|B(Vi)�B(Vj)|(s) =

�����

R(s) + �maxa

X

s0

P (s0|s, a)Vi(s
0)

!
�

R(s) + �maxa

X

s0

P (s0|s, a)Vj(s
0)

!�����

= �(maxaEVi [s
0]�maxaEVj [s

0]

 �maxa(EVi [s
0]� EVj [s

0])

 �maxa(Vi(s
0)� Vj(s

0))

Policy iteration (initialization) Bellman for policy evaluation Bellman for policy evalua-
tion

V

⇡
0 (s) � 0(37)

V

⇡
t+1(s) � max

a

"
R(s, a) + �

X

s0

P (s0|s, a)V ⇡
t (s0)

#
(38)

Policy update

(39) ⇡

⇤
k+1(s) = argmax

a

"
R(s, a) + �

X

s0

P (s0|s, a)V ⇡k(s0)

#

4 JONATHAN SCHOLZ

Contraction Proof:

|B(Vi)�B(Vj)|(s) =

�����

R(s) + �maxa

X

s0

P (s0|s, a)Vi(s
0)

!
�

R(s) + �maxa

X

s0

P (s0|s, a)Vj(s
0)

!�����

= �(maxaEVi [s
0]�maxaEVj [s

0]

 �maxa(EVi [s
0]� EVj [s

0])

 �maxa(Vi(s
0)� Vj(s

0))

Policy iteration (initialization) Bellman for policy evaluation

V

⇡
0 (s) � 0(37)

V

⇡
t+1(s) � R(s,⇡t(s)) + �

X

s0

P (s0|s,⇡t(s))V ⇡
t (s0)(38)

Policy update

(39) ⇡

⇤
k+1(s) = argmax

a

"
R(s, a) + �

X

s0

P (s0|s, a)V ⇡k(s0)

#

Policy iteration convergence proof sketch:

(1) In every step the policy improves. Means that a given policy can be encountered
at most once. This means that after we have iterated as many times as there are
di↵erent policies, i.e., (number actions)(number states), we must be done and hence
have converged.

(2) By definition at convergence we have that ⇡k+1(s) = ⇡k(s) 8s 2 S. This implies
that V ⇡k = maxa [R(s, a) + �

P
s0 P (s0|s, a)V ⇡k(s0)] for all states. This satisfies the

Bellman equation, which means V ⇡k is equal to the optimal value function V

⇤.

Wednesday, July 10, 13

 J. Scholz (RIM@GT) 07/09/2013

Policy Iteration Convergence

29

4 JONATHAN SCHOLZ

Contraction Proof:

|B(Vi)�B(Vj)|(s) =

�����

R(s) + �maxa

X

s0

P (s0|s, a)Vi(s
0)

!
�

R(s) + �maxa

X

s0

P (s0|s, a)Vj(s
0)

!�����

= �(maxaEVi [s
0]�maxaEVj [s

0]

 �maxa(EVi [s
0]� EVj [s

0])

 �maxa(Vi(s
0)� Vj(s

0))

Policy iteration (initialization) Bellman for policy evaluation

V

⇡
0 (s) � 0(37)

V

⇡
t+1(s) � R(s,⇡t(s)) + �

X

s0

P (s0|s,⇡t(s))V ⇡
t (s0)(38)

Policy update

(39) ⇡

⇤
k+1(s) = argmax

a

"
R(s, a) + �

X

s0

P (s0|s, a)V ⇡k(s0)

#

Policy iteration convergence proof sketch:
(1) In every step the policy improves. Means that a given policy

can be encountered at most once. This means that after we
have iterated as many times as there are di↵erent policies (i.e.,

|A||S|), we must be done and hence have converged.

(2) By definition at convergence we have that ⇡k+1(s) = ⇡k(s) 8s 2
S. This implies that V ⇡k = maxa [R(s, a) + �

P
s0 P (s0|s, a)V ⇡k(s0)]

for all states. This satisfies the Bellman equation, which
means V ⇡k is equal to the optimal value function V

⇤.

Wednesday, July 10, 13

 J. Scholz (RIM@GT) 07/09/2013

Comparison to Value Iteration

• What’s the real difference vs. VI?

• Just puts more effort into policy evaluations
in between policy updates

• Why might this be helpful??

➡Early convergence criterion (policy stops
changing)

➡When we have lots of actions, so update
is expensive

30
Wednesday, July 10, 13

 J. Scholz (RIM@GT) 07/09/2013

Reinforcement Learning

• Notice: all previous methods required the
model

• What if we don’t have it? Can we learn
from pure exploration??

• Yes! This is “reinforcement learning”

• Today we’ll derive Q-learning, simplest
model-free RL algorithm

31
Wednesday, July 10, 13

 J. Scholz (RIM@GT) 07/09/2013

Life of an RL Agent

• Agent lives in loop:

1. receive observation (eg camera image)

2. select action

3. receive reward

32

a

T

s
i

r
BI

R

T: Transition model (dynamics)

I: input (sensor reading)

R: reward (a real number)

B: behavior (an action)

Now “T” is
outside the agent

Wednesday, July 10, 13

 J. Scholz (RIM@GT) 07/09/2013

Review of MDPs

33

.8

.1

.1

3.0 3.3 2.9 3.1

3.4 3.8 6.7

3.8 4.4 7.6

5.1 5.9 6.8 7.7

4.7 5.3 6.0 6.7

-21.6

8.9

-20.3

Optimal Value Function

Solved with
value iteration

How do we use
V(s) for planning?

2 JONATHAN SCHOLZ

Optimal Policy from V

(12) ⇡⇤(s) = argmax
a

"
R(s, a) + �

X

s0

P (s0|s, a)V (s0)

#

Optimal Policy from Q

(13) ⇡⇤(s) = max
a

Q(s, a)

Q-function definition

Q(s, a) = R(s, a) + �max
a0

E
⇥
Q(s0, a0)

⇤
(14)

= R(s, a) + �max
a0

X

s0

P (s0|s, a)Q(s0, a0)(15)

(16)

From Q to Q-learning

Q(s, a) = R(s, a) + �max
a0

X

s0

P (s0|s, a)Q(s0, a0)(17)

⇡ R(s, a) + �max
a0

Q(s0, a0), s0 ⇠ P (s0|s, a)(18)

⇡ (1� ↵)Q(s, a) + ↵

✓
R(s, a) + �max

a0
Q(s0, a0)

◆
(19)

⇡ Q(s, a)� ↵Q(s, a) + ↵R(s, a) + ↵�max
a0

Q(s0, a0)(20)

⇡ Q(s, a) + ↵

✓
R(s, a) + �max

a0
Q(s0, a0)�Q(s, a)

◆
(21)

⇡ Q(s, a) + ↵(�TD)(22)

SARSA backup rule

(23) Q(s, a) Q(s, a) + ↵
�
R(s, a) + �Q(s0, a0)�Q(s, a)

�

TD error

(24) �td = R(s, a) + �max
a0

Q(s0, a0)�Q(s, a)

TD decay

(25) e(s, a) = �t�t�td

?? Symbols
�
✏

(1-step look-ahead)

Wednesday, July 10, 13

 J. Scholz (RIM@GT) 07/09/2013

We assumed a model for P(s’|s,a)

What do we do if such a model

does not exist?

Model (without walls)

18

?

?

?

?

P(s’|s,a) unknown!

Wednesday, July 10, 13

 J. Scholz (RIM@GT) 07/09/2013 18

We assumed a model for P(j|i,a)

What do we do if such a model

does not exist?

• Learn one (e.g. Bayesian RL)

• “Model-Free” RL (e.g. Q-Learning)

Want: π*(s) – Optimal policy in the state

Can’t use: V*(s) – Value of a state

Learn instead: Q*(Si,a) - Value of taking an action in a state

?

?

?

?

Wednesday, July 10, 13

 J. Scholz (RIM@GT) 07/09/2013 19

Q(s,a) = Value of Taking action a in state S

Q-funciton De

CORE REINFORCEMENT LEARNING MATH (FOR RIP)

JONATHAN SCHOLZ

Bellman equation

(1) V (s) = max

a

"
R(s, a) + �

X

s0

P (s0|s, a)V (s0)

#

Value Iteration

(2) V (s) max

a

"
R(s, a) + �

X

s0

P (s0|s, a)V (s0)

#

Q and V relationship

(3) V (s) = max

a
Q(s, a)

Value function definition (simple)

V (s) = E
" 1X

t=0

�trt

#
(4)

= max

a

"
R(s, a) + �

X

s0

P (s0|s, a)V (s0)

#
(5)

(6)

Value function definition (long)

V⇡(s) = E⇡

" 1X

t=0

�trt|s0 = s

#
(7)

= E⇡

"
r0 +

1X

t=0

�t+1rt+1|s0 = s

#
(8)

= E⇡

"
r0 + �r1 +

1X

t=0

�t+2rt+2|s0 = s

#
(9)

= R(s) + �
X

a

P⇡(a|s)
X

s0

P (s0|s, a)
"
R(s0) + E⇡

" 1X

t=0

�t+1rt+1|s0 = s0
##

(10)

= R(s) + �
X

a

P⇡(a|s)
X

s0

P (s0|s, a)V (s0)(11)

1

Key Relationship:

How do we use
Q(s,a) for planning?

2 JONATHAN SCHOLZ

Optimal Policy from V

(12) ⇡⇤(s) = argmax
a

"
R(s, a) + �

X

s0

P (s0|s, a)V (s0)

#

Optimal Policy from Q

(13) ⇡⇤(s) = argmax
a

Q(s, a)

Q-function definition

Q(s, a) = R(s, a) + �max
a0

E
⇥
Q(s0, a0)

⇤
(14)

= R(s, a) + �max
a0

X

s0

P (s0|s, a)Q(s0, a0)(15)

(16)

From Q to Q-learning

Q(s, a) = R(s, a) + �max
a0

X

s0

P (s0|s, a)Q(s0, a0)(17)

⇡ R(s, a) + �max
a0

Q(s0, a0), s0 ⇠ P (s0|s, a)(18)

⇡ (1� ↵)Q(s, a) + ↵

✓
R(s, a) + �max

a0
Q(s0, a0)

◆
(19)

⇡ Q(s, a)� ↵Q(s, a) + ↵R(s, a) + ↵�max
a0

Q(s0, a0)(20)

⇡ Q(s, a) + ↵

✓
R(s, a) + �max

a0
Q(s0, a0)�Q(s, a)

◆
(21)

⇡ Q(s, a) + ↵(�TD)(22)

SARSA backup rule

(23) Q(s, a) Q(s, a) + ↵
�
R(s, a) + �Q(s0, a0)�Q(s, a)

�

TD error

(24) �td = R(s, a) + �max
a0

Q(s0, a0)�Q(s, a)

TD decay

(25) e(s, a) = �t�t�td

?? Symbols
�
✏

Q-function Definition

Wednesday, July 10, 13

 J. Scholz (RIM@GT) 07/09/2013 20

Q-function Definition

Definition of Q function:
2 JONATHAN SCHOLZ

Q-function definition

Q(s, a) = R(s, a) + �max

a0
E
⇥
Q(s0, a0)

⇤
(12)

= R(s, a) + �max

a0

X

s0

P (s0|s, a)Q(s0, a0)(13)

(14)

From Q to Q-learning

Q(s, a) = R(s, a) + �
X

s0

P (s0|s, a)max

a0
Q(s0, a0)(15)

⇡ R(s, a) + �max

a0
Q(s0, a0), s0 ⇠ P (s0|s, a)(16)

⇡ (1� ↵)Q(s, a) + ↵

✓
R(s, a) + �max

a0
Q(s0, a0)

◆
(17)

⇡ Q(s, a)� ↵Q(s, a) + ↵R(s, a) + ↵�max

a0
Q(s0, a0)(18)

⇡ Q(s, a) + ↵

✓
R(s, a) + �max

a0
Q(s0, a0)�Q(s, a)

◆
(19)

⇡ Q(s, a) + ↵(TD)(20)

How to remove dependency on model?

Wednesday, July 10, 13

 J. Scholz (RIM@GT) 07/09/2013 20

From Q-function to Q-Learning

➡ Key question: How to remove dependency on model?

2 JONATHAN SCHOLZ

Q-function definition

Q(s, a) = R(s, a) + �max

a0
E
⇥
Q(s0, a0)

⇤
(12)

= R(s, a) + �max

a0

X

s0

P (s0|s, a)Q(s0, a0)(13)

(14)

From Q to Q-learning

Q(s, a) = R(s, a) + �max

a0

X

s0

P (s0|s, a)Q(s0, a0)(15)

⇡ R(s, a) + �max

a0
Q(s0, a0), s0 ⇠ P (s0|s, a)(16)

⇡ (1� ↵)Q(s, a) + ↵

✓
R(s, a) + �max

a0
Q(s0, a0)

◆
(17)

⇡ Q(s, a)� ↵Q(s, a) + ↵R(s, a) + ↵�max

a0
Q(s0, a0)(18)

⇡ Q(s, a) + ↵

✓
R(s, a) + �max

a0
Q(s0, a0)�Q(s, a)

◆
(19)

⇡ Q(s, a) + ↵(TD)(20)

2 JONATHAN SCHOLZ

Q-function definition

Q(s, a) = R(s, a) + �max

a0
E
⇥
Q(s0, a0)

⇤
(12)

= R(s, a) + �max

a0

X

s0

P (s0|s, a)Q(s0, a0)(13)

(14)

From Q to Q-learning

Q(s, a) = R(s, a) + �max

a0

X

s0

P (s0|s, a)Q(s0, a0)(15)

⇡ R(s, a) + �max

a0
Q(s0, a0), s0 ⇠ P (s0|s, a)(16)

⇡ (1� ↵)Q(s, a) + ↵

✓
R(s, a) + �max

a0
Q(s0, a0)

◆
(17)

⇡ Q(s, a)� ↵Q(s, a) + ↵R(s, a) + ↵�max

a0
Q(s0, a0)(18)

⇡ Q(s, a) + ↵

✓
R(s, a) + �max

a0
Q(s0, a0)�Q(s, a)

◆
(19)

⇡ Q(s, a) + ↵(TD)(20)

by sample approximation

2 JONATHAN SCHOLZ

Q-function definition

Q(s, a) = R(s, a) + �max

a0
E
⇥
Q(s0, a0)

⇤
(12)

= R(s, a) + �max

a0

X

s0

P (s0|s, a)Q(s0, a0)(13)

(14)

From Q to Q-learning

Q(s, a) = R(s, a) + �max

a0

X

s0

P (s0|s, a)Q(s0, a0)(15)

⇡ R(s, a) + �max

a0
Q(s0, a0), s0 ⇠ P (s0|s, a)(16)

⇡ (1� ↵)Q(s, a) + ↵

✓
R(s, a) + �max

a0
Q(s0, a0)

◆
(17)

⇡ Q(s, a)� ↵Q(s, a) + ↵R(s, a) + ↵�max

a0
Q(s0, a0)(18)

⇡ Q(s, a) + ↵

✓
R(s, a) + �max

a0
Q(s0, a0)�Q(s, a)

◆
(19)

⇡ Q(s, a) + ↵(TD)(20)

by definition

2 JONATHAN SCHOLZ

Q-function definition

Q(s, a) = R(s, a) + �max

a0
E
⇥
Q(s0, a0)

⇤
(12)

= R(s, a) + �max

a0

X

s0

P (s0|s, a)Q(s0, a0)(13)

(14)

From Q to Q-learning

Q(s, a) = R(s, a) + �max

a0

X

s0

P (s0|s, a)Q(s0, a0)(15)

⇡ R(s, a) + �max

a0
Q(s0, a0), s0 ⇠ P (s0|s, a)(16)

⇡ (1� ↵)Q(s, a) + ↵

✓
R(s, a) + �max

a0
Q(s0, a0)

◆
(17)

⇡ Q(s, a)� ↵Q(s, a) + ↵R(s, a) + ↵�max

a0
Q(s0, a0)(18)

⇡ Q(s, a) + ↵

✓
R(s, a) + �max

a0
Q(s0, a0)�Q(s, a)

◆
(19)

⇡ Q(s, a) + ↵(TD)(20)

smoothing

2 JONATHAN SCHOLZ

Q-function definition

Q(s, a) = R(s, a) + �max

a0
E
⇥
Q(s0, a0)

⇤
(12)

= R(s, a) + �max

a0

X

s0

P (s0|s, a)Q(s0, a0)(13)

(14)

From Q to Q-learning

Q(s, a) = R(s, a) + �max

a0

X

s0

P (s0|s, a)Q(s0, a0)(15)

⇡ R(s, a) + �max

a0
Q(s0, a0), s0 ⇠ P (s0|s, a)(16)

⇡ (1� ↵)Q(s, a) + ↵

✓
R(s, a) + �max

a0
Q(s0, a0)

◆
(17)

⇡ Q(s, a)� ↵Q(s, a) + ↵R(s, a) + ↵�max

a0
Q(s0, a0)(18)

⇡ Q(s, a) + ↵

✓
R(s, a) + �max

a0
Q(s0, a0)�Q(s, a)

◆
(19)

⇡ Q(s, a) + ↵(TD)(20)

canonical form

TD error

2 JONATHAN SCHOLZ

Q-function definition

Q(s, a) = R(s, a) + �max

a0
E
⇥
Q(s0, a0)

⇤
(12)

= R(s, a) + �max

a0

X

s0

P (s0|s, a)Q(s0, a0)(13)

(14)

From Q to Q-learning

Q(s, a) = R(s, a) + �max

a0

X

s0

P (s0|s, a)Q(s0, a0)(15)

⇡ R(s, a) + �max

a0
Q(s0, a0), s0 ⇠ P (s0|s, a)(16)

⇡ (1� ↵)Q(s, a) + ↵

✓
R(s, a) + �max

a0
Q(s0, a0)

◆
(17)

⇡ Q(s, a)� ↵Q(s, a) + ↵R(s, a) + ↵�max

a0
Q(s0, a0)(18)

⇡ Q(s, a) + ↵

✓
R(s, a) + �max

a0
Q(s0, a0)�Q(s, a)

◆
(19)

⇡ Q(s, a) + ↵(�TD)(20)

Symbols �

Wednesday, July 10, 13

 J. Scholz (RIM@GT) 07/09/2013 21

Q-Learning Example

S1 0 0 0 0

S2 0 0 0 0

S3 0 0 0 0

S4 0 0 0 0

Q-Table

α = .7

-1

-1 -1

10

GOALs1

s2 s3

s4

Wednesday, July 10, 13

 J. Scholz (RIM@GT) 07/09/2013 22

S1 -.7 0 0 0

S2 0 0 0 0

S3 0 0 0 0

S4 0 0 0 0

Q-Table

-1

-1 -1

10

Qest(S1,) =
.7(-1 + .9 max (0, 0, 0, 0)) + .3 x 0

Q-Learning Example

Wednesday, July 10, 13

 J. Scholz (RIM@GT) 07/09/2013
11/29/12M. Stilman (RIM@GT) 23

Q-Learning

S1 -.7 0 0 0

S2 0 0 0 -.7

S3 0 0 0 0

S4 0 0 0 0

Q-Table

-1

-1 -1

10

Qest(S2,) =
.7(-1 + .9 max (0, 0, 0, 0)) + .3 x 0

Q-Learning Example

Wednesday, July 10, 13

 J. Scholz (RIM@GT) 07/09/2013 24

Q-Learning

S1 -.7 0 0 0

S2 0 0 0 -.7

S3 0 0 0 -.7

S4 0 0 0 0

Q-Table

-1

-1 -1

10

Qest(S3,) =
.7(-1 + .9 max (0, 0, 0, 0)) + .3 x 0

Q-Learning Example

Wednesday, July 10, 13

 J. Scholz (RIM@GT) 07/09/2013 25

Q-Learning

S1 -.7 0 0 0

S2 0 0 0 -.7

S3 0 -.7 0 -.7

S4 0 0 0 0

Q-Table

-1

-1 -1

10

Qest(S3,) =
.7(-1 + .9 max (0, 0, 0, 0)) + .3 x 0

Q-Learning Example

Wednesday, July 10, 13

 J. Scholz (RIM@GT) 07/09/2013 26

Q-Learning

S1 -.7 0 0 0

S2 0 0 0 -.7

S3 0 -.7 0 -.7

S4 0 0 7 0

Q-Table

-1

-1 -1

10

Qest(S4,) =
.7(10 + .9 max (0, 0, 0, 0)) + .3 x 0

Q-Learning Example

Wednesday, July 10, 13

 J. Scholz (RIM@GT) 07/09/2013 27

Q-Learning

S1 -.7 0 0 0

S2 0 0 0 -.7

S3 0 -.7 0 -.7

S4 7 0 7 0

Q-Table

-1

-1 -1

10

Qest(S4,) =
.7(10 + .9 max (0, -.7, 0, -.7)) + .3 x 0

Q-Learning Example

Wednesday, July 10, 13

 J. Scholz (RIM@GT) 07/09/2013 28

Q-Learning

S1 -.7 0 0 0

S2 0 0 0 -.7

S3 0 3.5 0 -.7

S4 7 0 7 0

Q-Table

-1

-1 -1

10

Qest(S3,) =
.7(-1 + .9 max (7,0,7,0)) + .3 x -.7

Q-Learning Example

Wednesday, July 10, 13

 J. Scholz (RIM@GT) 07/09/2013

SARSA

47

2 JONATHAN SCHOLZ

Q-function definition

Q(s, a) = R(s, a) + �max

a0
E
⇥
Q(s0, a0)

⇤
(12)

= R(s, a) + �max

a0

X

s0

P (s0|s, a)Q(s0, a0)(13)

(14)

From Q to Q-learning

Q(s, a) = R(s, a) + �max

a0

X

s0

P (s0|s, a)Q(s0, a0)(15)

⇡ R(s, a) + �max

a0
Q(s0, a0), s0 ⇠ P (s0|s, a)(16)

⇡ (1� ↵)Q(s, a) + ↵

✓
R(s, a) + �max

a0
Q(s0, a0)

◆
(17)

⇡ Q(s, a)� ↵Q(s, a) + ↵R(s, a) + ↵�max

a0
Q(s0, a0)(18)

⇡ Q(s, a) + ↵

✓
R(s, a) + �max

a0
Q(s0, a0)�Q(s, a)

◆
(19)

⇡ Q(s, a) + ↵(�TD)(20)

SARSA backup rule

(21) Q(s, a) Q(s, a) + ↵
�
R(s, a) + �Q(s0, a0)�Q(s, a)

�

TD error

(22) �td = R(s, a) + �max

a0
Q(s0, a0)�Q(s, a)

TD decay

(23) e(s, a) = �t�t�td

Symbols �

• Key idea: perform backups on action actually
selected, rather than estimate of optimal action

• Otherwise same as Q-learning, but “on-policy”

• Less greedy, so addresses problem of locally
high-reward/risk states (e.g. cliff task)

Figure 6.12: Q-learning: An off-policy TD control algorithm.

What is the backup diagram for Q-learning? The rule (6.6) updates a state-action pair, so the top
node, the root of the backup, must be a small, filled action node. The backup is also from action
nodes, maximizing over all those actions possible in the next state. Thus the bottom nodes of the
backup diagram should be all these action nodes. Finally, remember that we indicate taking the
maximum of these ``next action" nodes with an arc across them (Figure 3 .7). Can you guess now
what the diagram is? If so, please do make a guess before turning to the answer (on the next page)
in Figure 6.14.

Figure 6.13: The cliff-walking task. Off-policy Q-learning learns the optimal policy, along the
edge of the cliff, but then keeps falling off because of the -greedy action selection. On-policy
Sarsa learns a safer policy taking into account the action selection method. These data are from a
single run, but smoothed.

Figure 6.14: The backup diagram for Q-learning.

Example . Cliff Walking. This gridworld example compares Sarsa and Q-learning, highlighting
the difference between on-policy (Sarsa) and off-policy (Q-learning) methods. Consider the
gridworld shown in the upper part of Figure 6.13. This is a standard undiscounted, episodic task,
with start and goal states, and the usual actions causing movement up, down, right, and left.
Reward is -1 on all transitions except into the the region marked ``The Cliff." Stepping into this
region incurs a reward of -100 and sends the agent instantly back to the start. The lower part of the
figure shows the performance of the Sarsa and Q-learning methods with -greedy action selection,

. After an initial transient, Q-learning learns values for the optimal policy, that which

Figure 6.12: Q-learning: An off-policy TD control algorithm.

What is the backup diagram for Q-learning? The rule (6.6) updates a state-action pair, so the top
node, the root of the backup, must be a small, filled action node. The backup is also from action
nodes, maximizing over all those actions possible in the next state. Thus the bottom nodes of the
backup diagram should be all these action nodes. Finally, remember that we indicate taking the
maximum of these ``next action" nodes with an arc across them (Figure 3 .7). Can you guess now
what the diagram is? If so, please do make a guess before turning to the answer (on the next page)
in Figure 6.14.

Figure 6.13: The cliff-walking task. Off-policy Q-learning learns the optimal policy, along the
edge of the cliff, but then keeps falling off because of the -greedy action selection. On-policy
Sarsa learns a safer policy taking into account the action selection method. These data are from a
single run, but smoothed.

Figure 6.14: The backup diagram for Q-learning.

Example . Cliff Walking. This gridworld example compares Sarsa and Q-learning, highlighting
the difference between on-policy (Sarsa) and off-policy (Q-learning) methods. Consider the
gridworld shown in the upper part of Figure 6.13. This is a standard undiscounted, episodic task,
with start and goal states, and the usual actions causing movement up, down, right, and left.
Reward is -1 on all transitions except into the the region marked ``The Cliff." Stepping into this
region incurs a reward of -100 and sends the agent instantly back to the start. The lower part of the
figure shows the performance of the Sarsa and Q-learning methods with -greedy action selection,

. After an initial transient, Q-learning learns values for the optimal policy, that which

safe path

optimal path

On-Policy Learning: SARSA

state action reward (next) state (next) action = SARSA+ + + +

Wednesday, July 10, 13

 J. Scholz (RIM@GT) 07/09/2013

• Problem: Q-values spread slowly

• Solution: Propagate over history

• Mechanism: exponential decay w.p. λ

TD and eligibility traces

48

2 JONATHAN SCHOLZ

Q-function definition

Q(s, a) = R(s, a) + �max

a0
E
⇥
Q(s0, a0)

⇤
(12)

= R(s, a) + �max

a0

X

s0

P (s0|s, a)Q(s0, a0)(13)

(14)

From Q to Q-learning

Q(s, a) = R(s, a) + �max

a0

X

s0

P (s0|s, a)Q(s0, a0)(15)

⇡ R(s, a) + �max

a0
Q(s0, a0), s0 ⇠ P (s0|s, a)(16)

⇡ (1� ↵)Q(s, a) + ↵

✓
R(s, a) + �max

a0
Q(s0, a0)

◆
(17)

⇡ Q(s, a)� ↵Q(s, a) + ↵R(s, a) + ↵�max

a0
Q(s0, a0)(18)

⇡ Q(s, a) + ↵

✓
R(s, a) + �max

a0
Q(s0, a0)�Q(s, a)

◆
(19)

⇡ Q(s, a) + ↵(�TD)(20)

TD error

(21) �td = R(s, a) + �max

a0
Q(s0, a0)�Q(s, a)

TD decay

(22) e(s, a) = �t�t�td

Symbols �

TD error for last action

2 JONATHAN SCHOLZ

Q-function definition

Q(s, a) = R(s, a) + �max

a0
E
⇥
Q(s0, a0)

⇤
(12)

= R(s, a) + �max

a0

X

s0

P (s0|s, a)Q(s0, a0)(13)

(14)

From Q to Q-learning

Q(s, a) = R(s, a) + �max

a0

X

s0

P (s0|s, a)Q(s0, a0)(15)

⇡ R(s, a) + �max

a0
Q(s0, a0), s0 ⇠ P (s0|s, a)(16)

⇡ (1� ↵)Q(s, a) + ↵

✓
R(s, a) + �max

a0
Q(s0, a0)

◆
(17)

⇡ Q(s, a)� ↵Q(s, a) + ↵R(s, a) + ↵�max

a0
Q(s0, a0)(18)

⇡ Q(s, a) + ↵

✓
R(s, a) + �max

a0
Q(s0, a0)�Q(s, a)

◆
(19)

⇡ Q(s, a) + ↵(�TD)(20)

TD error

(21) �td = ↵

✓
R(s, a) + �max

a0
Q(s0, a0)�Q(s, a)

◆

TD decay

(22) e(s, a) = �t�t�td

Symbols �

TD error at time T-t

Wednesday, July 10, 13

 J. Scholz (RIM@GT) 07/09/2013

SARSA(λ)

49

 ;
 until s is terminal

Figure 7.11: Tabular Sarsa() .

Figure 7.12: Gridworld example of the speedup of policy learning due to the use of eligibility
traces. In one episode, 1-step methods strengthen only the last action leading to an unusually
high reward, whereas eligibility trace methods can strengthen the whole sequence of actions.

Example . Traces in Gridworld. The use of eligibility traces can substantially increase the
efficiency of control algorithms. The reason for this is illustrated by the gridworld example in
Figure 7.12. The first panel shows the path taken by an agent in a single episode, ending at a
location of high reward, marked by the `*'. In this example the values were all initially 0, and all
rewards were zero except for a positive reward at the `*' location. The arrows in the other two
panels show which action values were strengthened as a result of this path by 1-step Sarsa and
Sarsa() methods. The 1-step method strengthens only the last action of the sequence of actions
that led to the high reward, whereas the trace method strengthens many actions of the sequence.
The degree of strengthening (indicated by the size of the arrows) falls off (according to)
with steps from the reward. In this example, and .

Next: 7.6 Q() Up: 7 Eligibility Traces Previous: 7.4 Equivalence of the

Richard Sutton
Fri May 30 15:01:47 EDT 1997

Figure 7.10: Sarsa's backup diagram.

Figure 7.10 shows the backup diagram for Sarsa() . Notice the similarity to the diagram of the
TD() algorithm (Figure 7.3). The first backup looks ahead one full step, to the next state-action
pair, the second looks ahead two steps, etc. A final backup is based on the complete return. The
weighting of each backup is just as in TD() and the -return algorithm.

1-step Sarsa and Sarsa() are on-policy algorithms, meaning that they approximate ,

the action values for the current policy, , then improve the policy gradually based on the
approximate values for the current policy. The policy improvement can be done in many
different ways, as we have seen throughout this book. For example, the simplest approach is to
use the -greedy policy with respect to the current action-value estimates. Figure 7.11 shows the
complete Sarsa() algorithm for this case.

Initialize arbitrarily and ,

Repeat (for each episode):
 Initialize s, a
 Repeat (for each step of episode):

 Take action a, observe r,
 Choose from using policy derived from Q
 (e.g., -greedy)

 For all s,a:

 ;
 until s is terminal

Figure 7.11: Tabular Sarsa() .

Figure 7.12: Gridworld example of the speedup of policy learning due to the use of eligibility
traces. In one episode, 1-step methods strengthen only the last action leading to an unusually
high reward, whereas eligibility trace methods can strengthen the whole sequence of actions.

Example . Traces in Gridworld. The use of eligibility traces can substantially increase the
efficiency of control algorithms. The reason for this is illustrated by the gridworld example in
Figure 7.12. The first panel shows the path taken by an agent in a single episode, ending at a
location of high reward, marked by the `*'. In this example the values were all initially 0, and all
rewards were zero except for a positive reward at the `*' location. The arrows in the other two
panels show which action values were strengthened as a result of this path by 1-step Sarsa and
Sarsa() methods. The 1-step method strengthens only the last action of the sequence of actions
that led to the high reward, whereas the trace method strengthens many actions of the sequence.
The degree of strengthening (indicated by the size of the arrows) falls off (according to)
with steps from the reward. In this example, and .

Next: 7.6 Q() Up: 7 Eligibility Traces Previous: 7.4 Equivalence of the

Richard Sutton
Fri May 30 15:01:47 EDT 1997

Path Taken action values increased
by 1-step SARSA

action values increased by
SARSA(λ), λ=0.9

This is the TD-error

Wednesday, July 10, 13

 J. Scholz (RIM@GT) 07/09/2013

Take-home

• Use Q-learning/SARSA when:

• state space is tiny

• interested in full policy

• don’t have access to model

• Use eligibility traces when:

• always.

50
Wednesday, July 10, 13

 J. Scholz (RIM@GT) 07/09/2013

Monte-Carlo Reinforcement Learning

• Recall:

➡V.I., P.I., Q-Learning, & SARSA are all direct
implementations of bellman recursion, via
dynamic programming

• MCRL is direct implementation of reward
expectation, via sampling

51

• Returns are simply averaged together

• Variance of the error decreases as 1/n

CORE REINFORCEMENT LEARNING MATH (FOR ML) 3

Generic Value function definition (long s only rewards)

V⇡(s) = E⇡

" 1X

t=0

�

t
rt|s0 = s

#
(22)

= E⇡

"
r0 +

1X

t=0

�

t+1
rt+1|s0 = s

#
(23)

= E⇡

"
r0 + �r1 +

1X

t=0

�

t+2
rt+2|s0 = s

#
(24)

= R(s) + �

X

a

P⇡(a|s)
X

s0

P (s0|s, a)
"
R(s0) + E⇡

" 1X

t=0

�

t+1
rt+1|s0 = s

0

##
(25)

= R(s) + �

X

a

P⇡(a|s)
X

s0

P (s0|s, a)V (s0)(26)

From Q to Q-learning

Q(s, a) = R(s, a) + �max
a0

X

s0

P (s0|s, a)Q(s0, a0)(27)

⇡ R(s, a) + �max
a0

Q(s0, a0), s

0 ⇠ P (s0|s, a)(28)

⇡ (1� ↵)Q(s, a) + ↵

✓
R(s, a) + �max

a0
Q(s0, a0)

◆
(29)

⇡ Q(s, a)� ↵Q(s, a) + ↵R(s, a) + ↵�max
a0

Q(s0, a0)(30)

⇡ Q(s, a) + ↵

✓
R(s, a) + �max

a0
Q(s0, a0)�Q(s, a)

◆
(31)

⇡ Q(s, a) + ↵(�TD)(32)

SARSA backup rule

(33) Q(s, a) Q(s, a) + ↵

�
R(s, a) + �Q(s0, a0)�Q(s, a)

�

TD error

(34) �td = R(s, a) + �max
a0

Q(s0, a0)�Q(s, a)

TD decay

(35) e(s, a) = �

t
�

t
�td

Monte Carlo approximation:

(36) V⇡(s) = E⇡

"
TX

t=0

�

t
rt

#

Convergence equations:
Wednesday, July 10, 13

 J. Scholz (RIM@GT) 07/09/2013

Monte-Carlo RL

52

CORE REINFORCEMENT LEARNING MATH (FOR RIP)

JONATHAN SCHOLZ

Bellman equation

(1) V (s) = max

a

"
R(s, a) + �

X

s0

P (s0|s, a)V (s0)

#

Value Iteration

(2) V (s) max

a

"
R(s, a) + �

X

s0

P (s0|s, a)V (s0)

#

Q and V relationship

(3) V (s) = max

a
Q(s, a)

Value function definition (simple)

V (s) = E
" 1X

t=0

�trt

#
(4)

= max

a

"
R(s, a) + �

X

s0

P (s0|s, a)V (s0)

#
(5)

(6)

Value function definition (long)

V⇡(s) = E⇡

" 1X

t=0

�trt|s0 = s

#
(7)

= E⇡

"
r0 +

1X

t=0

�t+1rt+1|s0 = s

#
(8)

= E⇡

"
r0 + �r1 +

1X

t=0

�t+2rt+2|s0 = s

#
(9)

= R(s) + �
X

a

P⇡(a|s)
X

s0

P (s0|s, a)
"
R(s0) + E⇡

" 1X

t=0

�t+1rt+1|s0 = s0
##

(10)

= R(s) + �
X

a

P⇡(a|s)
X

s0

P (s0|s, a)V (s0)(11)

1

Unpacking the bellman recursion:

back to bellman

The point: you can approximate bellman using finite sums

Monte-Carlo Reinforcement Learning

Wednesday, July 10, 13

 J. Scholz (RIM@GT) 07/09/2013

Monte-Carlo RL

53

How to visualize:

 a2a1 a2a1 a2a1 a1 a2

a1 a2

a1 a1 a2a2

a1 a2

 H
Depth

... ...
...

 s0

action selection according to
some exploration policy π

transitions sampled from
model or environment

Monte-Carlo RLMonte-Carlo Reinforcement Learning

Wednesday, July 10, 13

 J. Scholz (RIM@GT) 07/09/2013

Monte-Carlo RL

54

• Key properties:

• runtime independent of |S| (!)

• can learn from actual and simulated experience

• can target parts of the state space we care about (!)

• Problems:

• Slow

• When to stop?

• Variance falls as 1/n, can we do better?

Monte-Carlo RLMonte-Carlo Reinforcement Learning

Wednesday, July 10, 13

 J. Scholz (RIM@GT) 07/09/2013

Sparse-Sampling (MCTS)

• ONLINE MCRL algorithm with provable
loss bounds

• Kearns, Mansour, Ng (ML 2002)

• Key idea: rewards in future matter less than
rewards now

• Outputs:

• ε-optimal policy

55
Wednesday, July 10, 13

 J. Scholz (RIM@GT) 07/09/2013

Sparse-Sampling (MCTS)

• Hairy Math:

56

Running Time:

• Running time depends only on Rmax, ε, and γ!

Planning horizon

Number of rollouts

➡The point: can do MCRL with provable guarantees. But how useful??

Sparse-Sampling (MCTS)

Useful Constants

Wednesday, July 10, 13

 J. Scholz (RIM@GT) 07/09/2013

Sparse-Sampling (MCTS)

• Problem: C can be HUGE

57

γ=0.9, Rmax = 1

ε=0.1, Rmax = 1

ε=0.1, γ=0.9

Wednesday, July 10, 13

 J. Scholz (RIM@GT) 07/09/2013

Take-home

• Use MCRL/MCTS when:

• state space is huge

• interested in subset of S (online planning)

• planning horizon is small

• can efficiently sample from model

• Related work:

• UCT (Kocsis et al 2006)

• FSSS (Walsh et al 2010)

58

Reigning GO champion!

Wednesday, July 10, 13

