Markov Decision Processes
and Reinforcement Learning

An Introduction to Stochastic Planning

J. Scholz (RIM@GT) 07/09/2013




Path Planning Assumptions

® (Obstacles?

=) Reliable Collision detection (assumes
robust perception)

® [ransitions

=) Reliable mechanism for moving along
path in graph (i.e., a controller)
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Two Sources of Error

® State Estimation
® You don’t know exactly where you are
® Sensors have noise
® No complete environment information
® Action Execution
® Your actuators don’t do what you tell them
® Your system responds differently than you expect

® Friction, gears, air resistance, etc.

Basic Ildea: Your model of the world is incorrect!
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Markov (Decision) Processes:
A New Model for Planning

® Handles both forms of uncertainty in a
statistically principled way

® Gives us back optimality!

® Of course, I'm talking about (PO)MDPs

® All this flexibility comes at a cost, as we'll
see...

® Current research is largely about
scalability
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Handling Non-Deterministic Actions

® Problem: we don’t know where our
actions take us

e Solution:start thinking about expected
values

=) Weight each outcome by the
probability of getting there
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Formalizing the MDP Model

® Step |:define the core problem representation
® Considerations!

|. should represent “rewards” somehow

2. should represent “state” somehow

3. should represent “actions’” somehow

= next: what if actions aren’t deterministic??
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Formalizing the MDP Model

® Step 2: How to handle stochastic action
effects (“transitions”)?

® replace transition rule with transition

distribution
- P11 Py P,
Po1 Poo Pon
T(s,s") = P(s'|s) = .
i Pnl Pn2 Pnn |
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Formalizing the MDP Model

® Overall: MDP ={S, A, T,R,v}

S = States
A = Actions
7 = 'Transition Model Pacman states
R — Rewards = {all positions of pacman, ghosts, food, & pellets}
Pacman actions
= {N,S,EW}
Pacman model
= {move directions, die from ghosts, eat food,...}
Pacman rewards
= -| per step, +10 food, -500 die,+500 win,...
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Markov Processes: Caveman’s World

States: {H, G, F, D}

2 1
1 . (we'll get back
Actions: {} oo
Transition Model:
H G F D || s=10
H | 05 ] 04|00 0l |5
G |02 01| 06] 0l
E | 09 | 00 | 00 | o1 || 220
D |00 ]| 00| 00/ 10| 2=t10
Re 3 ds justaCPT/
waras:
H G F D
0 | 10 _10
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Markov Processes: Caveman’s World

Got .6

Actions: {}

States: {H, G, F, D}

e \Q Transition Model:

9 H| G| F|D
1 H |05 ]| 04| 00| ol

5 1\ " / G | 02|01 | 06| 0.l
Con . F | 09 | 00 | 00 | 0.
-10 D | 00| 00|00/ 10

®
Rewards:

H G F D
0 | 10 -10
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Markov Processes: Caveman’s World

Value

Got .6

Food —How good is it to be in a

~ Z \® state?
9 +10
§ —Sum of DISCOUNTED
5 1\ " / expected rewards:

N C 00 ]
Dead
o V(s) = E|) '
1 =0 i

—Reward now is better than
later. Why??
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Value Iteration in Caveman’s World

® Key idea: Bellman
4 ot 6 Recursion

Food
+1

:/ \® ® Relates value in
1 9\ " current state to
5 1\ / expected value of
| < Dead> 1 next state
-10
| V(s)=R(s)+7» P(s|s)V(s)
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Value Iteration in Caveman’s World

® Key idea: Bellman
Recursion

® Relates value in
current state to
expected value of
next state
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Value Iteration in Caveman’s World

Value in k-steps

H G F D
0 1 10 -10

. Scholz (RIM@GT) 07/09/2013 18

Wednesday, July 10, 13



Value Iteration in Caveman’s World

1
2 ,
Value in k-steps

H G F D

1 0 1 10 -10

2 -.54 5.69 9.1 -19
3 .06 4.61 /.85 -27.1
4 -.75 3.23 /.61 -34.39
99 -39.08 | -34.71 | -30.66 | -100.0
100 -39.09 | -34.71 | -30.66 | -100.0

Value Iteration is Guaranteed to Converge
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summary

e Markov Processes represent uncertainty in
state transitions

e |t is possible to determine the overall value of
a state

e What'’s next! Adding actions!
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Actions: the value of free-will

® What'd we do so far?

® Define values of states, and transition
brobabilities between them

® TJo add actions, what to we need to look at?
|. condition on actions: P(s’[s) -> P(s’[s,a)
2. values of actions:V(s) = max.Q(s,a)

® Turns out we need only (1),and (2) is RL
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Actions: the value of free-will

® Adding actions back into an MDP:

® How? Make transitions conditional on

action Py PY ... Pl
Ps P% ... P&
T(s,a,s') = P(s'|s,a) = ,21 ,22 , 2

I Py P ... Pl .
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Actions: the value of free-will

Value-lteration needs one more thing:

V(s) + max | R(s,a) + 72 P(s'|s,a)V (s")

a

—_1 *Bellman Equation

added this max over actions
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Actions: the value of free-will

“Free-Will” Values:

G F D
1 0 1 10 -10
2 -.09 8.2
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Actions: the value of free-will

“Free-Will” Values:

G F D
1 0 1 10 -10
2 -.09 8.2 10 -19
100 -7.16 2.27 3.56 -100
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Value Iteration in Code

initialize V/(s) arbitrarily
loop until policy good enough
loop for s€ S
loop for a€ A
Q(s,a) == R(s,a) + 7 Lyes Ts, a, )V (s)
V(s) := max, Q(s, a)
end loop
end loop

What's this “Q” function?

= Topic for later, but short answer is to
allow action selection without lookahead
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MDP Planning: Core concepts

® Things to really understand about MDPs:
B what a value function is

= \why we can converge to V* with these
simple algorithms

= why V* is overkill sometimes

= why model is so important, and what to do
without it

= why these algorithms can be (horribly)
inefficient
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Value Iteration: Big Questions

® Convergence!
® Efficiency!?

® Assumptions!
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Value Iteration Convergence

® Proof Sketch:

|. Defined in terms of max-norm between any two value
functions (in particularV_i and V¥)

2. Take advantage of basic property of max:
mazaf(a) — mazag(a)| < mazq|f(a) - g(a)l

3. Apply Bellman operator and rearrange

(R(S) + ymazx, ZP(S/|S, a)%(s’)) — (R(S) + ymax, ZP(S’\S, a)Vj(s’)>

[B(Vi) = B(Vj)l(s)

= (maxaEV [8/] maxaEV E ]
< ~vymazxq(Ey, [S/] [ ])
< ymaxg(Vi(s') — (3/))

tlidr: max-norm (max difference w.r.t.V*) strictly contracts
with each application of Bellman (with factor gamma)
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But how important is convergence?

® Why does value matter again? To pick
actions

B E, we're interested in TT(s), not V(s)
® Can we optimize the policy directly?

m Yes! This is “policy iteration”

= We'll use the policy form of Bellman:

Viii(s) «— R(s, m(s) +VZP Is,m(s)) V()

J. Scholz (RIM@GT) 07/09/2013
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Policy Iteration

® Alternative approach:

Step |:Policy evaluation: calculate value for some fixed
policy (not optimal utilities!) until convergence

Step 2: Policy improvement: update policy using onestep
look-ahead with resulting converged (but not optimal!)
utilities as future values

Repeat steps until policy converges (it does)

® Facts about policy iteration:

= |t’s still optimal!

B Can converge faster under some conditions. Why??
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Implementing Policy Iteration

® Simple change:
|. Evaluate policy somehow
= option |:solve as linear system

= option 2: use Bellman for a while

VOW(S) +— 0
Vii(s) <«—  R(s,m(s +WZP "|s, m(8)) V(")

2. Improve policy using |-step lookahead

mi41(s) = argmax | R(s,a) +7 Y P(s']s, a) V™ ()

J. Scholz (RIM@GT) 07/09/2013
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Policy Iteration Convergence

Policy iteration convergence proof sketch:
(1) In every step the policy improves. Means that a given policy
can be encountered at most once. This means that after we
have iterated as many times as there are different policies (i.e.,

|A|l51), we must be done and hence have converged.

(2) By definition at convergence we have that mp1(s) = mr(s) Vs €
S. This implies that V™ = max, [R(s,a) +v>_ . P(s'|s,a)VT(s")]
for all states. This satisfies the Bellman equation, which
means V7™ is equal to the optimal value function V*.

J. Scholz (RIM@GT) 07/09/2013
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Comparison to Value Iteration

® VWhat’s the real difference vs.VI?

® |ust puts more effort into policy evaluations
in between policy updates

® Why might this be helpful??

) Early convergence criterion (policy stops
changing)

= When we have lots of actions, so update
IS expensive
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Reinforcement Learning

® Notice: all previous methods required the
mode]

® VWhat if we don’t have it? Can we learn
from pure exploration??

® Yes! This is “reinforcement learning”

® TJoday we'll derive Q-learning, simplest
model-free RL algorithm
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Life of an RL Agent

T: Transition model (dynamics)

Now “T” is /

outside the agent

|: input (sensor reading)

R: reward (a real number)

B: behavior (an action)

® Agent lives in loop:
|. receive observation (eg camera image)
2. select action

3. receive reward

J. Scholz (RIM@GT) 07/09/2013
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Review of MDPs

How do we use
V(s) for planning!?

Optimal Value Function

Solved with
value iteration

A

P

* m(s) = arg max R(s,a) + sz(s’]s, a)V (s

S

(I-step look-ahead)

. Scholz (RIM@GT)
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We assumed a model for P(s’|s,a)

What do we do if such a model

does not exist?

P(s’[s,a) unknown!

?

?

S F

Model (without walls)

J. Scholz (RIM@GT) 07/09/2013
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We assumed a model for P(j|i,a)

What do we do if such a model

does not exist?

e Learn one (e.g. Bayesian RL) |

e "Model-Free” RL (e.g. Q-Learning)

Want: n*(s) — Optimal policy in the state
Can’t use: V*(s) — Value of a state

Learn instead: Q*(S;,a) - Value of taking an action in a state
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Q-function Definition

Key Relationship:
V(s) = maxQ(s,a)
a

Q(s,a) =Value of Taking action a in state S

How do we use »
Q(s,a) for planning?

7" (s) = arg max Q(s,a)

J. Scholz (RIM@GT) 07/09/2013
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Q-function Definition

Definition of Q function:

Q(s,a) R(s,a) +ymax[E Q(s',a)]

a

R(s,a) + vmz}xz P(s'|s,a)Q(s',a’)

How to remove dependency on model?

J. Scholz (RIM@GT) 07/09/2013
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From Q-function to Q-Learning

= Key question: How to remove dependency on model?

Q(s,0) = R(s,a)+ymax > P(s'ls,0)Q(s',a)

by definition
~ R(s,a)+ *ynza;XC;(s/, ), s ~ P(s]s,a) by sample approximation
~ (1—-a)Q(s,a)+« (R(s, a) + Y max Q(s, a’)) smoothing
~ Q(s,a) — aQ(5,0) + aR(s,a) + aymax Q(s',
~ Q(s,a)+ « (R(s, a) + Y max Q(s',ad") — Q(s, a)) canonical form
~ Q(s,a) +a(drp) TD error
J-Scholz RIM@GT) 07/09/2013 20




Q-Learning Example

s2 s3 @
- | S, 0
s4
S 0
10 ’
S, 0
o=.7 54 0
Q-Table
. Scholz (RIM@GT) 07/09/2013 2!
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Q-Learning Example
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Q-Learning Example

| S, -/ 0 0 0

S 0 0 0 -7
- | |10 §
S3 0 0 0 0
Qest(S , )=
(-1 + .9 max (i), 0,0,0)+.3x0 S4 0 0 0 0
Q-Table
J.Scholz (RIM@GT] > ®MEED 07/09/2013 11/29/12
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Q-Learning Example

- S, -/ 0 0
S 0 0 -7
11110 ;
S3 0 0 -7
Qest(S , )=
7(-1+ .9 max (:(3), 0,0,0)+.3x0 S, 0 0 0
Q-Table

J. Scholz (RIM@GT) 07/09/2013
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Q-Learning Example

f | &= =
- | S, -/ 0 0
X S, 0 0 -/
S; | 0 | -7 -7
(-1 + .9%625235, (§ 0,) g)) + 3x0 S, 0 0 0
Q-Table
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Q-Learning Example

1| 8| &=
- | S, -/ 0
G S 5 )
@ |10 2
S 0 -/
Qest(S ,&E ) —
7(10 + 9 max (0, 0, 0, 0)) + 3 x 0 S, 0 0
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Q-Learning Example

T4
- S; | -7 | 0 0
R S, | 0 | o0 -7
S;3 0 -7 -7
7(10+ 9 rr?a;((%?O) -=.7)) + 3%0 S4 7 0 0
Q-Table

J. Scholz (RIM@GT) 07/09/2013
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Q-Learning Example

| S, 0 0 0 -/
S, 0 3.5 0 -/
Ry s, | 7| o | 7| o
7(1+9max( 0,7, ))+ 3x-7 4
Q-Table
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On-Policy Learning: SARSA

® Key idea: perform backups on action actually
selected, rather than estimate of optimal action

Qs,0) ¢ Q(s.a) +a (R(s.a) +1Q(s', ') — Q(s,a))
A 4 0 r 4

state + action + reward + (next) state+ (next) action = SARSA

® Otherwise same as Q-learning, but “on-policy”

® |ess greedy,so addresses problem of |ocally come
high-reward/risk states (e.g. cliff task) -
Hoaward .50+ : W
=t - | safe path Ll d-Lesming

ol

r | optimal path
& Tha G Iiff =

a4 [P | " . " '1ﬂﬂ 1 | | 1 1
| 144 p o b [ o} ALIg) G
- Trals
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TD and eligibility traces

® Problem: Q-values spread slowly

® Solution: Propagate over history

® Mechanism: exponential decay w.p. A

TD error for last action
Otd = R(87 CL) + meE}XQ(S,a CL/) _ Q(Sv CL)

a

TD error at time T-t
e(s,a) = 7' N'o

J. Scholz (RIM@GT) 07/09/2013
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SARSA(\)

Initialize Q(S: '1) arbitrarily and E(S: '1) — l], for all 5, @

Repeat (for each episode):
Initialize s, a
Repeat (for each step of episode):
Take actlon a, observe r, SI
Choose @' from &' using policy derived from Q

(e.g., €E-greedy)
Eer+1@(5,0) —Q0) s | his is the TD-error

e(s,a) «— e(s,a)+1

For all s,a:
Q{s,0) — Qs 0) + ade(s, o)
e(s.a) «— yAe(s. a)

f f
S+ 5; d+—0Q
until s is terminal

mimial
| i
. - 4
=T 1 - 3 - =1 * *
Path Taken action values increased  action values increased by
by |-step SARSA SARSA(A), A=0.9

J. Scholz (RIM@GT) 07/09/2013
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Take-home

® Use Q-learning/SARSA when:
® state space is tiny
® interested in full policy
® don’t have access to model
® Use eligibility traces when:

® always.

J. Scholz (RIM@GT) 07/09/2013
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Monte-Carlo Reinforcement Learning

® Recall:

=V, Pl., Q-Learning, & SARSA are all direct

implementations of bellman recursion, via
dynamic programming

® MCRL is direct implementation of reward
expectation, via sampling

Returns are simply averaged together

Variance of the error decreases as |/n

- _
Vi(s) =Ex thn
L t=0 _

J. Scholz (RIM@GT) 07/09/2013 >
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Monte-Carlo Reinforcement Learning

Unpacking the bellman recursion:

Vi(s) = E, nytrt\sozs

®.@)
_ t+1 _
= E, 7”0+E YT re1]sg = s
t=0

O
t+2
= Ex 7“0+77“1+E YV rpalso = s
t=0

— +72P (als) ZP "Is,a) |R(s") + E, Zytﬂnﬂ\s@ =5
_ | t=0 d
= —|—’VZP (a]s) ZP "|s,a)V (s « back to bellman

The point: you can approximate bellman using finite sums

J. Scholz (RIM@GT) 07/09/2013 >2
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Monte-Carlo Reinforcement Learning

How to visualize:

action selection according to
some exploration policy TT

« transitions sampled from
model or environment

. Scholz (RIM@GT)
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Monte-Carlo Reinforcement Learning

® Key properties:

® runtime independent of |S] (!)

® can learn from actual and simulated experience

® can target parts of the state space we care about (!)
® Problems:

® Slow

® When to stop?

® Variance falls as |/n, can we do better?

J. Scholz (RIM@GT) 07/09/2013 >
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Sparse-Sampling (MCTYS)

® ONLINE MCRL algorithm with provable
loss bounds

® Kearns, Mansour, Ng (ML 2002)

® Key idea: rewards in future matter less than
rewards now

® Outputs: Ao

® ¢c-optimal policy
VA(s) =V (s)| < e

J. Scholz (RIM@GT) 07/09/2013
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Sparse-Sampling (MCTYS)

Running Time:  O((kC)¥)

® Hairy Math:
H = |log,(A/Vinax) | Planning horizon
Vinax kHVinax” Rmax
C = 2 <2H10g 2 + log ) ) Number of rollouts
A= (e(1 =9)*)/4, Vinax = Rmax/(1 —=7) Useful Constants

® Running time depends only on Rmax, €, and Y!

B The point: can do MCRL with provable guarantees. But how useful??

J. Scholz (RIM@GT) 07/09/2013
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Sparse-Sampling (MCTYS)

® Problem: C can be HUGE

Gamma vs. C (logarithmic)

20
M Log(C)vs. G
0g(C) vs. Gamma C vs. Epsilon
15
5 €=0.1, Rmax = | 10000000000,
= 10 M| C vs. Epsilon
3
: 7500000000
0
0 0.25 05 0.75 1 Y=0.9, Rmax = |
Gamma
O 5000000000
C vs. Rmax (logarithmic) 2500000000
25
B Log(C vs. Rmax)
20
3 €=0.1,y=0.9 00 - p -
?j 1~ .
10 Epsilon

n

0 150 300 450

Rmax

600

. Scholz (RIM@GT)
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Take-home

® Use MCRL/MCTS when:
® state space is huge
® interested in subset of S (online planning)
® planning horizon is small
® can efficiently sample from model
® Related work:
® UCT (Kocsis et al 2006) ¢=Reigning GO champion!
® FSSS (Walsh et al 2010)
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