Markov Decision Processes and Reinforcement Learning

An Introduction to Stochastic Planning

Path Planning Assumptions

- Obstacles?
 - Reliable Collision detection (assumes robust perception)
- Transitions
 - Reliable mechanism for moving along path in graph (i.e., a controller)

move_block(x1,y1,x2,y2)

Two Sources of Error

State Estimation

- You don't know exactly where you are
- Sensors have noise
- No complete environment information

Action Execution

- Your actuators don't do what you tell them
- Your system responds differently than you expect
- Friction, gears, air resistance, etc.

Basic Idea: Your model of the world is incorrect!

Markov (Decision) Processes: A New Model for Planning

- Handles both forms of uncertainty in a statistically principled way
- Gives us back optimality!
- Of course, I'm talking about (PO)MDPs
 - All this flexibility comes at a cost, as we'll see...
 - Current research is largely about scalability

Handling Non-Deterministic Actions

- Problem: we don't know where our actions take us
- Solution: start thinking about <u>expected</u> <u>values</u>
 - Weight each outcome by the probability of getting there

Formalizing the MDP Model

- Step I: define the core problem representation
- Considerations?
 - I. should represent "rewards" somehow
 - 2. should represent "state" somehow
 - 3. should represent "actions" somehow
 - next: what if actions aren't deterministic??

Formalizing the MDP Model

- **Step 2**: How to handle *stochastic* action effects ("transitions")?
 - replace transition <u>rule</u> with transition <u>distribution</u>

$$T(s,s') = P(s'|s) = \begin{bmatrix} P_{11} & P_{12} & \dots & P_{1n} \\ P_{21} & P_{22} & \dots & P_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ P_{n1} & P_{n2} & \dots & P_{nn} \end{bmatrix}$$

Formalizing the MDP Model

Overall:

$$MDP = \{S, A, T, R, \gamma\}$$

S = States

 \mathcal{A} = Actions

 \mathcal{T} = Transition Model

 $\mathcal{R} = \text{Rewards}$

Pacman states

- → {all positions of pacman, ghosts, food, & pellets}
 - **Pacman actions**
- **→** {N,S,E,W}

Pacman model

{move directions, die from ghosts, eat food,...}

Pacman rewards

-I per step, +10 food, -500 die, +500 win,...

Markov Processes: Caveman's World

States: {H, G, F, D}

Actions: {}

(we'll get back to this)

just a CPT

Transition Model:

	Н	G	F	D	Σ=1
Н	0.5	0.4	0.0	0.1	Σ=1
G	0.2	0.1	0.6	0.1	_
F	0.9	0.0	0.0	0.1	Σ=1
D	0.0	0.0	0.0	1.0	Σ=1

Rewards:

Н	G	F	D
0	I	10	-10

Markov Processes: Caveman's World

States: {H, G, F, D}

Actions: {}

Transition Model:

	H	G	F	D
Н	0.5	0.4	0.0	0.1
G	0.2	0.1	0.6	0.1
F	0.9	0.0	0.0	0.1
D	0.0	0.0	0.0	1.0

Rewards:

Н	G	F	D
0	I	10	-10

Markov Processes: Caveman's World

Value

- -How good is it to be in a state?
- -Sum of DISCOUNTED expected rewards:

$$V(s) = \mathbb{E} \left| \sum_{t=0}^{\infty} \gamma^t r_t \right|$$

–Reward now is better than later. Why??

- Key idea: Bellman Recursion
 - Relates value in current state to expected value of next state

$$V(s) = R(s) + \gamma \sum_{s'} P(s'|s)V(s')$$

- Key idea: Bellman Recursion
 - Relates value in current state to expected value of next state

$$V(s = H) = r + \gamma (P_{HH}(R_H) + P_{HG}(R_G) + P_{HF}(R_F) + P_{HD}(R_D))$$

= 0 + 0.9(0.5(0) + 0.4(1) + 0.1(10))

Value in k-steps

	Ι	G	F	D
1	0	1	10	-10
2	-0.54			

$$V(s = H) = r + \gamma (P_{HH}(R_H) + P_{HG}(R_G) + P_{HF}(R_F) + P_{HD}(R_D))$$

= 0 + 0.9(0.5(0) + 0.4(1) + 0.1(10))

Value in k-steps

	Н	G	F	D
1	0	1	10	-10
2	54	5.69	9.1	-19
3	.06	4.61	7.85	-27.1
4	75	3.23	7.61	-34.39
99	-39.08	-34.71	-30.66	-100.0
100	-39.09	-34.71	-30.66	-100.0

Value Iteration is Guaranteed to Converge

Summary

- Markov Processes represent uncertainty in state transitions
- It is possible to determine the overall value of a state
- What's next? Adding actions!

- What'd we do so far?
 - Define values of states, and transition probabilities between them
- To add actions, what to we need to look at?
 - I. condition on actions: $P(s'|s) \rightarrow P(s'|s,a)$
 - 2. values of actions: $V(s) = max_aQ(s,a)$
- Turns out we need only (1), and (2) is RL

- Adding actions back into an MDP:
- How? Make transitions conditional on action

$$T(s, a, s') = P(s'|s, a) = \begin{bmatrix} P_{11}^a & P_{12}^a & \dots & P_{1n}^a \\ P_{21}^a & P_{22}^a & \dots & P_{2n}^a \\ \vdots & \vdots & \vdots & \vdots \\ P_{n1}^a & P_{n2}^a & \dots & P_{nn}^a \end{bmatrix}$$

Value-Iteration needs one more thing:

"Free-Will" Values:

	Η	G	F	D
1	0	1	10	-10
2	09	8.2		

"Free-Will" Values:

	Н	G	F	D
1	0	1	10	-10
2	09	8.2	10	-19
100	-7.16	2.27	3.56	-100

Value Iteration in Code

```
initialize V(s) arbitrarily loop until policy good enough loop for s \in \mathcal{S} loop for a \in \mathcal{A} Q(s,a) := R(s,a) + \gamma \sum_{s' \in \mathcal{S}} T(s,a,s') V(s') V(s) := \max_a Q(s,a) end loop end loop
```

What's this "Q" function?

→Topic for later, but short answer is to allow action selection without lookahead

MDP Planning: Core concepts

- Things to really understand about MDPs:
 - what a value function is
 - why we can converge to V* with these simple algorithms
 - why V* is overkill sometimes
 - why model is so important, and what to do without it
 - why these algorithms can be (horribly) inefficient

Value Iteration: Big Questions

- Convergence?
- Efficiency?
- Assumptions?

Value Iteration Convergence

Proof Sketch:

- Defined in terms of max-norm between any two value functions (in particular V_i and V*)
- 2. Take advantage of basic property of max:

$$|max_a f(a) - max_a g(a)| \le max_a |f(a) - g(a)|$$

3. Apply Bellman operator and rearrange

$$|B(V_i) - B(V_j)|(s) = \left| \left(R(s) + \gamma \max_a \sum_{s'} P(s'|s, a) V_i(s') \right) - \left(R(s) + \gamma \max_a \sum_{s'} P(s'|s, a) V_j(s') \right) \right|$$

$$= \gamma \left(\max_a E_{V_i}[s'] - \max_a E_{V_j}[s'] \right)$$

$$\leq \gamma \max_a \left(E_{V_i}[s'] - E_{V_j}[s'] \right)$$

$$\leq \gamma \max_a \left(V_i(s') - V_j(s') \right)$$

tl;dr: max-norm (max difference w.r.t.V*) strictly contracts with each application of Bellman (with factor gamma)

But how important is convergence?

- Why does value matter again? To pick actions
 - \rightarrow IE, we're interested in π (s), not V(s)
- Can we optimize the policy directly?
 - Yes! This is "policy iteration"
 - We'll use the policy form of Bellman:

$$V_{t+1}^{\pi}(s) \longleftarrow R(s, \pi(s)) + \gamma \sum_{s'} P(s'|s, \pi(s)) V_t^{\pi}(s')$$

Policy Iteration

- Alternative approach:
 - Step I: Policy evaluation: calculate value for some fixed policy (not optimal utilities!) until convergence
 - Step 2: Policy improvement: update policy using onestep look-ahead with resulting converged (but not optimal!) utilities as future values
 - Repeat steps until policy converges (it does)
- Facts about policy iteration:
 - | It's still optimal!
 - Can converge faster under some conditions. Why??

Implementing Policy Iteration

- Simple change:
 - I. Evaluate policy somehow
 - option I: solve as linear system
 - option 2: use Bellman for a while

$$V_0^{\pi}(s) \leftarrow 0$$

$$V_{t+1}^{\pi}(s) \leftarrow R(s, \pi_t(s)) + \gamma \sum_{s'} P(s'|s, \pi_t(s)) V_t^{\pi}(s')$$

2. Improve policy using 1-step lookahead

$$\pi_{k+1}^*(s) = \arg\max_{a} \left[R(s, a) + \gamma \sum_{s'} P(s'|s, a) V^{\pi_k}(s') \right]$$

Policy Iteration Convergence

Policy iteration convergence proof sketch:

- (1) In every step the policy improves. Means that a given policy can be encountered at most once. This means that after we have iterated as many times as there are different policies (i.e., $|A|^{|S|}$), we must be done and hence have converged.
- (2) By definition at convergence we have that $\pi_{k+1}(s) = \pi_k(s) \quad \forall s \in S$. This implies that $V^{\pi_k} = \max_a \left[R(s, a) + \gamma \sum_{s'} P(s'|s, a) V^{\pi_k}(s') \right]$ for all states. This satisfies the Bellman equation, which means V^{π_k} is equal to the optimal value function V^* .

Comparison to Value Iteration

- What's the real difference vs.VI?
 - Just puts more effort into policy evaluations in between policy updates
 - Why might this be helpful??
 - Early convergence criterion (policy stops changing)
 - When we have lots of actions, so update is expensive

Reinforcement Learning

- Notice: all previous methods required the model
 - What if we don't have it? Can we learn from pure exploration??
- Yes! This is "reinforcement learning"
- Today we'll derive Q-learning, simplest model-free RL algorithm

Life of an RL Agent

- Agent lives in loop:
 - I. receive observation (eg camera image)
 - 2. select action
 - 3. receive reward

Review of MDPs

How do we use V(s) for planning?

$$\pi^*(s) = \arg\max_{a} \left[R(s, a) + \gamma \sum_{s'} P(s'|s, a) V(s') \right]$$

(I-step look-ahead)

We assumed a model for P(s'|s,a)

What do we do if such a model does not exist?

P(s'|s,a) unknown!

Model (without walls)

We assumed a model for P(j|i,a)

What do we do if such a model does not exist?

?

- Learn one (e.g. Bayesian RL)
- "Model-Free" RL (e.g. Q-Learning)

Want: $\pi^*(s)$ – Optimal policy in the state

Can't use: V*(s) — Value of a state

Learn instead: Q*(S_i,a) - Value of taking an action in a state

Q-function Definition

Key Relationship:

$$V(s) = \max_{a} Q(s, a)$$

Q(s,a) = Value of Taking action**a**in state**S**

How do we use Q(s,a) for planning?
$$\pi^*(s) = \arg\max_a Q(s,a)$$

Q-function Definition

Definition of Q function:

$$Q(s,a) = R(s,a) + \gamma \max_{a'} \mathbb{E} \left[Q(s',a') \right]$$
$$= R(s,a) + \gamma \max_{a'} \sum_{s'} P(s'|s,a)Q(s',a')$$

How to remove dependency on model?

From Q-function to Q-Learning

→ Key question: How to remove dependency on model?

$$\begin{array}{lll} Q(s,a) &=& R(s,a) + \gamma \max_{a'} \sum_{s'} P(s'|s,a) Q(s',a') & \text{by definition} \\ &\approx & R(s,a) + \gamma \max_{a'} Q(s',a'), \quad s' \sim P(s'|s,a) & \text{by sample approximation} \\ &\approx & (1-\alpha)Q(s,a) + \alpha \left(R(s,a) + \gamma \max_{a'} Q(s',a')\right) & \text{smoothing} \\ &\approx & Q(s,a) - \alpha Q(s,a) + \alpha R(s,a) + \alpha \gamma \max_{a'} Q(s',a') & \\ &\approx & Q(s,a) + \alpha \left(R(s,a) + \gamma \max_{a'} Q(s',a') - Q(s,a)\right) & \text{canonical form} \\ &\approx & Q(s,a) + \alpha (\delta_{TD}) & \text{TD error} \end{array}$$

$$\alpha = .7$$

	1			
S ₁	0	0	0	0
S ₂	0	0	0	0
S ₃	0	0	0	0
S ₄	0	0	0	0

Q-Table

Qest(S₁,
$$\mathbf{1}$$
) = .7(-1 + .9 max (0, 0, 0, 0)) + .3 x 0

	1	↓	—	
S ₁	7	0	0	0
S ₂	0	0	0	0
S ₃	0	0	0	0
S ₄	0	0	0	0

Q-Table

$$Q^{est}(S_2, \square) =$$
 .7(-1 + .9 max (0, 0, 0, 0)) + .3 x 0

	1	↓	—	
S ₁	7	0	0	0
S ₂	0	0	0	7
S ₃	0	0	0	0
S ₄	0	0	0	0

Q-Table

Qest(S₃,
$$\Longrightarrow$$
) = .7(-1 + .9 max (0, 0, 0, 0)) + .3 x 0

	1	↓	—	
S ₁	7	0	0	0
S ₂	0	0	0	7
S ₃	0	0	0	7
S ₄	0	0	0	0

Q-Table

Qest(S₃,
$$\downarrow$$
) = .7(-1 + .9 max (0, 0, 0, 0)) + .3 x 0

	1	↓	—	
S ₁	7	0	0	0
S ₂	0	0	0	7
S ₃	0	7	0	7
S ₄	0	0	0	0

Q-Table

$$Q^{est}(S_4, \leftarrow) =$$
 .7(10 + .9 max (0, 0, 0, 0)) + .3 x 0

	1			
S ₁	7	0	0	0
S ₂	0	0	0	7
S ₃	0	7	0	7
S ₄	0	0	7	0

Q-Table

$$Q^{est}(S_4, \uparrow \uparrow) =$$
 .7(10 + .9 max (0, -.7, 0, -.7)) + .3 x 0

	1			
S ₁	7	0	0	0
S ₂	0	0	0	7
S ₃	0	7	0	7
S ₄	7	0	7	0

Q-Table

Qest(S₃,
$$\downarrow$$
) = .7(-1 + .9 max (7,0,7,0)) + .3 x -.7

	1			
S ₁	7	0	0	0
S ₂	0	0	0	7
S ₃	0	3.5	0	7
S ₄	7	0	7	0

Q-Table

On-Policy Learning: SARSA

 Key idea: perform backups on action actually selected, rather than estimate of optimal action

- Otherwise same as Q-learning, but "on-policy"
- Less greedy, so addresses problem of <u>locally</u> high-reward/risk states (e.g. cliff task)

TD and eligibility traces

- Problem: Q-values spread slowly
- Solution: Propagate over history
- Mechanism: exponential decay w.p. λ

TD error for last action

$$\delta_{td} = R(s, a) + \gamma \max_{a'} Q(s', a') - Q(s, a)$$

TD error at time T-t

$$e(s,a) = \gamma^t \lambda^t \delta_{td}$$

SARSA(λ)

This is the TD-error

Path Taken

action values increased by I-step SARSA

action values increased by SARSA(λ), λ =0.9

 $s \leftarrow s'; a \leftarrow a'$ until s is terminal

Take-home

- Use Q-learning/SARSA when:
 - state space is tiny
 - interested in full policy
 - don't have access to model
- Use eligibility traces when:
 - always.

- Recall:
 - V.I., P.I., Q-Learning, & SARSA are all direct implementations of bellman recursion, via dynamic programming
- MCRL is direct implementation of <u>reward</u> expectation, via sampling

$$V_\pi(s) = \mathbb{E}_\pi \left[\sum_{t=0}^T \gamma^t r_t
ight]$$
 • Returns are simply averaged together variance of the error decreases as I/n

Unpacking the bellman recursion:

The point: you can approximate bellman using finite sums

How to visualize:

- Key properties:
 - runtime independent of |S| (!)
 - can learn from actual and simulated experience
 - can target parts of the state space we care about (!)
- Problems:
 - Slow
 - When to stop?
 - Variance falls as I/n, can we do better?

Sparse-Sampling (MCTS)

- ONLINE MCRL algorithm with provable loss bounds
 - Kearns, Mansour, Ng (ML 2002)
- Key idea: rewards in future matter less than rewards now
- Outputs:
 - ε-optimal policy

$$|V^{\mathcal{A}}(s) - V^*(s)| \le \varepsilon$$

Sparse-Sampling (MCTS)

Running Time:
$$O((kC)^H)$$

Hairy Math:

$$H = \left\lceil \log_{\gamma}(\lambda/V_{\text{max}}) \right\rceil$$

$$C = \frac{V_{\text{max}}^{2}}{\lambda^{2}} \left(2H \log \frac{kHV_{\text{max}}^{2}}{\lambda^{2}} + \log \frac{R_{\text{max}}}{\lambda} \right)$$

$$\lambda = (\epsilon(1-\gamma)^{2})/4, \ V_{\text{max}} = R_{\text{max}}/(1-\gamma)$$

Planning horizon

Number of rollouts

Useful Constants

- Running time depends only on R_{max} , ϵ , and $\gamma!$
- The point: can do MCRL with <u>provable</u> guarantees. But how useful??

Sparse-Sampling (MCTS)

• Problem: C can be HUGE

Take-home

- Use MCRL/MCTS when:
 - state space is huge
 - interested in subset of S (online planning)
 - planning horizon is small
 - can efficiently sample from model
- Related work:
 - UCT (Kocsis et al 2006) ← Reigning GO champion!
 - FSSS (Walsh et al 2010)