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Abstract: The term computational thinking (CT) was popularized a decade ago as an “attitude and 
skillset” for everyone. However, since it is equated with thinking by experts in solving problems, 
more than a decade of discourse to capture its cognitive essence has resulted in a rather broad set of 
skills whose teaching to novices continues to pose challenges because of the reliance on the use of 
electronic computers and programming concepts that are often found too abstract and difficult by 
young students. The ongoing struggle in the field by teachers and educators on how to integrate CT 
practices and skills into K-12 education indicates that there still remain major trouble spots including 
definition, methods of measurement, cognitive aspects, and universal value of CT. This article 
redefines computational thinking by separating it from both the expert thinking and the use and 
programming of electronic computing devices. By merging concepts from epistemology, computing, 
cognitive and neurosciences, it introduces a framework which links CT to fundamental cognitive 
competencies that can be fostered at early ages using readily available tools in schools. The new 
framework also links computer science to natural sciences by putting computation at the heart of how 
everything forms and evolves in the universe.  

 
 
Introduction 
 

About forty years ago, Seymour Papert (1980) pioneered the idea of procedural thinking and programming 
for children through his LOGO programming project at MIT. However, it did not get much traction until Janette Wing 
(2006), then a division director at the National Science Foundation (NSF), championed computational thinking (CT) 
as a competency area using a general framework based on how computer scientists use computing to solve problems. 
It was a genuine and scholarly effort to link computing to fundamental functions of thinking at a time the field of 
computer science (CS) was suffering from low enrollments, thereby needing a radical reform to raise the interest and 
readiness of high school students. As such, it spread quickly as a concept and received national attention through 
federal funding programs, particularly NSF. Most of the literature on CT to this date still uses Wing’s article as a 
springboard – according to Google Scholar it has been cited more than two thousand times! However, since a computer 
scientist employs a broad set of skills and strategies, this has made it hard to narrow CT down to a small set of 
competencies that everyone could agree on right away, let alone to teach it to everyone universally. 

 
Workshops were encouraged by NSF to bring the community together in order to break down the meaning 

of CT. One of the early community-wide efforts that sought a consensus on the nature of CT and its cognitive and 
pedagogical implications was the two workshops by the National Research Council in 2010 and 2011. However, many 
questions remained unanswered. Given the concerns over the number of students seeking an education and a career in 
computer science, raising student interest and readiness in programming understandably had to be part of the overall 
enrollment initiative. So, while the workshops wanted the community to identify and share examples of how 
computing was used in solving problems by other sciences, the discourse could not break away from computer 
programming. Efforts continued diligently and persistently, including a revisit to the topic by Aho (2012) and Wing 
(2011) to clarify CT as the thought process carried out by an information-processing agent in order to formulate and 
solve a problem. Wing also stressed the need for CT research in learning sciences. 

 
The CT initiative generated sizable momentum for teaching computational competencies in secondary 

schools. It even gained an international status. A pilot program was launched in 2012 to teach computing to all 
schoolchildren in England. In America, workshops were held to introduce computing concepts to college faculty and 
schoolteachers in order for them to test their applicability in the field. In 2011, the Computer Science Teachers 
Association (CSTA) explored operational definition of CT for K-12 teachers. A pilot AP course on Computer Science 
Principles was launched by the College Board (http://www.csprinciples.org/). And, finally, K-12 student learning 
standards in mathematics (http://www.corestandards.org/math), natural sciences (http://www.nextgenscience.org), 
and computer science (https://k12cs.org/) all started recommending the teaching of CT skills. 



 
While periodic reviews, such as those by Grover & Pea (2013) and Denning (2017), on the status of CT 

education indicate wide agreement on what comprises CT, there is a struggle in the field by teachers and educators on 
how to integrate its practices and skills into K-12 education. Many researchers and educators who initially supported 
the idea of teaching CT skills to everyone have become wary of its promise. According to Denning, a prominent CS 
educator, some of the remaining trouble spots include definition, methods of measurement, cognitive aspects, and 
universal value of CT. This is no short order, and some of the letters to the editor, in response to his resent CACM 
paper (2017), suggest that unless somebody comes up with a more insightful definition, it may be time to retire 
“computational thinking” as a concept. To help ease such frustration in the CT education community, this article 
merges concepts from epistemology, computing, cognitive and neurosciences (Brown, Roediger, and McDaniel 2014; 
Hebb 1949; Montague 2006; Turing 1936; Yaşar 2016-2018) to introduce a new perspective that could address not 
only the remaining trouble spots of CT but also put computation at the heart of how everything behaves in the universe 
(Yaşar 2017b). 
 
 
Current definition of CT and related skills 

 
A recent article by Grover and Pea (2013) frames the current state of discourse on CT in K-12 education by 

reviewing recent academic publications. Denning (2017) offers an additional update by listing a growing number of 
various CT frameworks currently under consideration by the international community. These include operational 
definitions of CT by the Computer Science Teachers Association in 2011, The British Computer Society in 2015, and 
the International Society for Technology in Education in 2016. While there is a growing consensus as to what 
comprises CT and its curricular basis, no less than a dozen skills fall under these definitions as listed below. 

Table 1: CT skills currently agreed upon by the computer science community. 

1. Logical reasoning 7. Collecting and analyzing data 

2. Algorithmic thinking 8. Systematic processing of information (automation) 

3. Iterative, recursive, and parallel thinking 9. Symbol systems and representations 

4. Abstraction 10. Efficiency and performance constraints 

5. Structured problem decomposition (modularizing) 11. Testing 

6. Pattern generalization (including models & simulations) 12. Evaluation for efficiency and correctness 

 
While these constitute a comprehensive set of basic skills in computer science, most of them are related to 

problem solving using electronic devices with an ultimate goal of preparing tomorrow’s programmers. In fact, Grover 
and Pea (2013) argue “Programming is not only a fundamental skill of CS and a key tool for supporting the cognitive 
tasks involved in CT but a demonstration of computational competencies as well.” (p. 40). They further claim that 
efforts such as CS Unplugged (http: www.csunplugged.org) that introduce computing concepts without the use of a 
computer may be keeping learners from the crucial computational experiences involved in CT’s common practice. 
There is no scientific evidence to support this view, which maybe justifiably a mere reflection of the anxiety within 
the CS community about enrollments and its future as a natural field of science. In fact, to the contrary, the evidence 
suggests that teaching experts’ habits of mind to novices is inherently problematic because of prerequisite content 
knowledge and practice skills needed to engage in the same thinking processes, not to mention the cost of providing 
them a similar environment to conduct inquiry and design (Kirschner, Sweller, and Clark 2006).  

 
Much has happened to teach computing principles outside the context of programming but more than a 

decade of discourse and experimentation has yet to produce effective ways to separate CT from programming and the 
use of electronic devices. And, the lack of such separation continues to preclude us from capturing the cognitive 
essence of CT. Programming is probably the Achilles heel as far as preventing us from finding a simple and concise 
definition of CT in terms of basic fundamental skills that schoolchildren can learn and easily relate to without having 
to use computers initially. Programming electronic devices may be the central tool for computer scientists, but there 
are non-programming tools available to and used by other scientists who also use electronic computers. So, even if 
CT is tightly linked to problem solving with electronic computers, not every computer user solves problems the way 
a computer scientist does.  



While the computer science community has recently expressed intent to generalize its original definition of 
CT to a thought process by an information-processing agent, be it a computer or any human (Aho 2012; Wing 2011), 
current curricular CT practices still continue to deal only with teaching of electronic CT skills. So, unless we 
reorganize the above CT skills into those that are cognitive in nature (i.e., biological CT skills) and those that are 
specific to use of an electronic computer device (i.e., electronic CT skills), we may still face a tall order to address 
remaining trouble spots described by Denning (2017). Thinking along those lines, here we suggest to organize them 
as shown in Figure 1 by assuming that information-processing by a device, be it electronic or biological, will have 
device-independent aspects. Then, to help realize a universal CT reform that everyone can benefit from, we educators 
can undertake two sequential steps to teach CT skills. We can first foster cognitive skills that are common to both 
biological and electronic computing devices, followed by others that are related to use of electronic computing devices 
alone. This would still leave us a task of narrowing down and simplifying electronic and biological CT skills so they 
can be taught to novices, but it would at least give us a framework to agree on a universal definition for CT – i.e., 
thinking generated and facilitated by computation, regardless of the device that does the computation – and seek a 
device-independent computational methodology/tool to facilitate both cognitive (biological) and electronic CT skills.  
 
 
Device-independent storage, retrieval, and processing of information 
  
 The attempt to link electronic and biological (i.e., cognitive) computing goes back to Alan Turing (1936), the 
founder of computer science, who suggested that information processing by a device would depend on the nature of 
information that needs processing as well as the hardware that does the processing. His idea that our thoughts consist 
of quantifiable constructs of information suggested that any computing device, be it electronic or biological, could 
add, subtract, and re-arrange them as our brains do. While each device would have a different hardware to do this, a 
similarity (i.e., a device-independent pattern) can be expected in their processing because of an invariant computable 
(addition and subtraction) nature of information.  
 
 Electronic machines have since taken many 
complex and voluminous computations off our brains, 
further supporting the cognitive science view of brain 
as a biological computational device (Montague 
2006). While such a view has yet to fully capture 
complex mental representations and emotions of our 
brains (Goleman 2006), recent imaging techniques in 
neurosciences continue to help us understand how at 
least the brain stores, retrieves and processes 
information from electrical activities of a distributed 
structure of neurons.  
 

Basically, information gets stored into the 
memory in the form of a specific pattern of neurons 
placed on a pathway and fired together (Hebb 1949). 
A memory or a newly learned concept can be a 
combination of previously formed memories, each of 
which might also involve a vast network of concepts 
and details mapped onto the brain’s neural network in 
a hierarchical way as shown in Figure 2. The key to storing a concept more permanently into the memory is, then, to 
link it to previously stored basic and retrievable concepts. When new information arrives, it lights up all related cues, 
neurons and pathways in a distributive process that is similar to the top-down action in Fig. 2, where a new concept is 
broken up into related pieces. With the same token, retrieving a memory is a reassembly of its original pattern of 
neurons and pathways in an associative process that is similar to the bottom-up action in Fig. 2.  

 
Neuroscientists now see little or no distinction between the act of thinking and the acts of information storage 

and retrieval (Brown, Roediger, and McDaniel 2014). If so, Turing’s idea that the act of thinking involves information 
processing for (distributive) storage and (associate) retrieval of thoughts and concepts has more support today than 
ever before. The brilliance of it, of course, was the consideration of information as consisting of quantifiable 
constructs, just like the granular matter. It appears, then, that our brain’s inclination to store, retrieve, and process 

Device-independent computational processes 

Figure 1: Information processing by electronic and biological 
computing devices include both device-independent and 
device-dependent processes. 



information in an associative/distributive fashion is just a manifestation of a duality in the nature of quantifiable 
information. Such duality may simply be caused by the dual (quantifiable) behavior of the matter that the sensory 
information is a reflection of. Whatever the underlying cause, our brain’s cognitive inclination is probably an 
evolutionary response, shaped up over many years, to optimize its handling of sensory information whose quantifiable 
nature only resonates with distributive and associative operations. We can see a similar evolution in electronic 
computing. Turing’s idea of an electronic device to imitate the biological brain has indeed evolved quite dramatically 
since its first design; particularly in regard to decentralization of information processing and storage. For example, 
today’s electronic computing devices process and store information in a distributed way, somehow similar to the 
distributed brain circuitry. Accordingly, programmers of parallel computers know that management and utilization of 
a distributed hardware necessitates scatter and gather type communication functionalities in software and that is also 
similar to how the distributed neural structure stores and retrieves data. 

 
While the brain does not work exactly like today’s electronic computers, it is important to note two natural 

sources of their similarities. One is obviously the deliberate 
design, use, and control of electronic computing devices by 
biological computing agents. The other is the appearance of a 
computational (associative/distributive) process (Fig. 2) with 
which information constructs conform (Yaşar 2017a). So, be 
it electronic or biological, computing devices are likely to use 
similar ways to track and tally the invariant behavior of 
information constructs. In fact, as we will see in the next 
section this device-level pattern of computation carries itself 
up to higher levels of computational and cognitive processing. 
One could argue, then, one of the best ways an electronic 
computing device can benefit its human user cognitively is to 
help him/her with associative/distributive processing of 
information. A simple form of such help has been basic 
computations (addition and subtraction of numbers) that we 
already do with our calculators. There isn’t much cognitive 
benefit from that, obviously, and some of us could do it 
without such tools. Yet, one wonders if there are other higher-
level associative/distributive computations we can delegate 
that are known to facilitate thinking. The answer is “Yes,” and 
luckily just like calculators, they are available to novices these 
days. To identify, we need to review some common concepts 
in cognitive sciences and epistemology as summarized below. 

 
 

Cognitive view of thinking and learning 
 

While the distributed structure of neurons and their connections (i.e., hardware) influence cognitive 
processing (i.e., software), the relationship between software (mind) and hardware (brain) is not a one-to-one 
relationship. Accordingly, our mind consists of a hierarchy of many patterns of information processing and, just as it 
is the case in electronic computing, these levels may range from basic computations to more complex functions 
(sequence or structure of instructions) and models (mental representations) of perceived reality and imaginary 
scenarios (Montague 2006). As such, when we encounter a new concept and information, we attempt to interpret it in 
terms of previously registered models ─ objects, faces, scenarios, etc. This is known as deductive reasoning, or an act 
of analysis, and it is consistent with how neurons fire distributively (similar to top-down action in Fig. 2). As the time 
goes, the relationships among registered information constructs lead to interplay of various combinations and 
scenarios that eventually end up clustering related details into conclusions, generalizations, and more inclusive 
constructs of information in an associative fashion (similar to bottom-up action in Fig. 2). This is called inductive 
reasoning, or an act of synthesis. Eventually, the details our brain registers and stores and the hierarchical connections 
it establishes between them, along with these generalizations and conclusions, build over time like a pyramid-like 
structure that we have come to call mind (Bransford, Brown, and Cocking 2000). 

 
Neuropsychologists and evolutionary biologists point out to a structural (hardware) factor that makes us 

appear to be caught between two brains (Evans and Frankish 2009) with opposite tendencies to control our decision-

 Concept 

Basic concepts, details & facts 

Figure 2: A mechanism by which information (and the 
granular matter) form and evolve (Yaşar 2017a). 



making process. Our autopilot limbic system (animal-like brain) appears to be interfering with the outer parts of our 
brains (neocortex) to by-pass, simplify, or even reduce its elaborate cognitive functions. It is as though the limbic 
system wants to simplify things for quicker and automated decision-making while the cortex wants to dig things deeper 
for more informed and yet slower decision-making. Cognitive scientists point out rather to non-structural (software) 
factors to explain this competition. For example, Montague (2006) suggests that concern for efficiency, as part of our 
survival, is a major factor. He argues that we assign value, cost, and goals to our thoughts, decisions, and actions, and 
we choose among them those that save us energy and help our survival. To assigns these attributes, the mind carries 
out computations, builds models, and conducts hypothetical simulations of different scenarios before it decides what 
to do. Whether the causes are structural or non-structural, there is enough evidence to suggest an overriding cognitive 
inclination to either simplify things or to dig them deeper. An underlying information-processing mechanism to derive 
such cognitive functioning appears to be the very associative/distributive pattern in Fig. 2 that we discussed in the 
previous section as being an outcome of the quantifiable nature of information.  

 
 

Modeling & Simulation: A high-level device-independent process 
 

To optimize our response to (and survival against) a changing environment, our need for simplicity and 
generalization via inductive reasoning (which employs associative processing of information) as well as for 
complexity and details via deductive reasoning (which employs distributive processing of information) has pushed us 
into an iterative and cyclical use of them which has over time driven us to think harder and become smarter. We use 
inductive reasoning to filter out details and place our focus on more general patterns, thereby assigning priority and 
importance to the newly acquired information. We also use deductive reasoning to help us make decisions and draw 
conclusions from general concepts. There are many benefits of each, but since they require effort, the efficiency, 
intactness, and effort-fullness with which we all use them iteratively and cyclically would depend on the individual. 
A scientist is a good example of someone who employs them in a more frequent, consistent, and methodological way 
than most people (Kant 1787). Scientists have enjoyed this methodology for several centuries, some more than others, 
but today’s easy-to-use technology is now slowly bringing the same culture and benefits to a wider audience. 

 
Modeling has been an important tool for scientific research for hundreds of years. In principle, it works 

exactly as illustrated in Fig. 2. Scientists ideally start with a model (concept/theory) of reality based on current 
research, facts, and information. They test the model’s predictions against experiment. If results do not match, they, 
then break down the model deductively into its parts (sub models) to identify what needs to be tweaked. They retest 
the revised model through what-if scenarios by changing relevant parameters and characteristics of the sub models. 
By putting together inductively new findings and relationships among sub models, the initial model gets revised. This 
cycle of modeling, testing, what-if scenarios, synthesis, decision-making, and re-modeling is often known as 
conceptual change and the process is repeated while resources permit until there is confidence in or satisfaction with 
the revised model’s (or concept’s) validity. Electronic computers have recently accelerated this cycle because not only 
do they speed up the model building and testing via simulations but they also help conduct studies that are impossible 
experimentally due to size, access and cost. No wonder that the scientific progress of the last 50 years far exceeds that 
of the previous several centuries. 

 
Modeling and simulation (M&S) appears to be a high-level device-independent process of information that 

links computing and cognition. Its inductive/deductive reasoning mechanism has been used by biological computing 
agents for ages and by the electronic computing devices whose design/use/control by some of those agents have 
evolved, in the past 50 years, to a point of making Turing very proud. Some may argue that part (or all) of the credit 
should go to the nature itself because it is the heterogeneity of matter (and information) that has made such a dynamic 
evolution possible. There will certainly be some benefit to the CS community to engage in a discourse with other 
sciences to link computation to nature’s inherent behavior. M&S’s associative and distributive processes are indeed 
so universal that they describe computable actions of all quantifiable things. For example, formation of physical 
objects or particles from smaller ones resembles the act of modeling because both seem to involve packing parts 
together associatively to form a whole. And, such act of modeling is often driven by external forces or by a collective 
“trial and error” process controllable by conditions and rules of engagement ─ much like a simulation.  

 
Philosophers and psychologists have been studying the parts-and-whole dynamics since Plato (Findlay and 

Thagard 2012) to explain the nature and human behavior. Recently, with help from technology, cosmologists and 
cognitive scientists have also been searching for a universal process that may be guiding the growth of all networked 
systems, ranging from the tiny brain cells to atoms, to the Internet, and even the galaxies. The view that such a process 



may be described computationally, as in Fig. 2, is now gaining traction because formation and evolution of an abstract 
idea or a computational model of information appears to be no different than that of a system of physical particles 
(Yaşar 2017a-b). If so, then not only can we learn from an ongoing millennial argument of such a universal topic, but 
we can also put computing at the center of a discourse well beyond CT to understand the nature itself. 
 
 
The essence of computational thinking 
 
 

As suggested earlier, we need to distinguish between 
electronic and biological CT skills in order to more effectively 
teach each at relevant grade levels. Figure 3 illustrates this 
relationship (Yaşar 2017a). Since associative/distributive way of 
processing, storing, and retrieval of information appears to be 
the essence of thinking generated and facilitated by a 
computational mind, we put this duality at the core of 
information processing involved in both electronic and 
biological computing skills. Such processing of information at 
the most basic level involves fundamental computations (+ and 
-) of simple information constructs. At higher-levels, the 
constructs become larger and more complex but the operations 
and algorithms to manipulate these constructs still build upon the 
most basic computations at the device level.  

 
Since M&S is considered to be common to both 

electronic and biological (cognitive) computing (Montague 
2006), knowingly or unknowingly everyone employs its 
associative/distributive processing (Fig. 2) in order to make 
decisions. While cognitive scientists agree that this type of information processing facilitates inductive reasoning (i.e., 
synthesis) and deductive reasoning (i.e., analysis), its full potential actually lies in an iterative and cyclical use of these 
opposite processes for learning progression and conceptual change. If one’s use of these mental processes can be 
facilitated by the use of electronic M&S tools during teaching and learning, then such potential may be tapped into 
more fully. Empirical data in the past decade supports this assertion as discussed in the next section. 

 
All in all, the hierarchy shown in Fig. 3 illustrates the core essence of computational thinking that we all 

employ for learning, conceptual change, scientific inquiry, problem solving, and even everyday decisions (Bransford, 
Brown, and Cocking 2000; Montague 2006). While everyone, not just computer scientists, does this kind of 
computational thinking for survival on a needs base, its utilization will depend on the underlying device structure and 
the quality and quantity of the environmental input it receives. The desired situation would be that one employs the 
processes of analysis and synthesis more frequently, effectively and methodologically to make better and more 
informed decisions. Those who wanted to further facilitate such cognitive functions certainly have used other 
computing devices in the past, and the use of computer modeling and simulation by researchers reflect such a use. 
Yet, these researchers already had a habit of using those cognitive functions. Accordingly, prior to teaching students 
electronic CT skills (the outer circle in Fig. 3), we first need to teach them a cognitive habit of conceptual change that 
is facilitated by an iterative and cyclical use of inductive and deductive reasoning. This is not a short order either but 
it at least puts the horses ahead of the carriage.  
 
 Some elements of the electronic CT skillset in Table 1 naturally overlap with the fundamental cognitive 
processes shown in Fig. 3. Of all the skills in Table 1, only those on the left column appear to have a cognitive 
correspondence in biological CT, as we defined here. Those on the right column can be considered as device-
dependent skills resulting from the use of an electronic device for problem solving by a biological computing agent. 
Of those on the left, the two most essential cognitive and electronic CT skills are abstraction and decomposition 
because they directly involve the kind of associative and distributive processing of information that we discussed 
above. Abstraction is an inductive process which helps our cognition, especially at its developmental stages, by 
simplifying, categorizing, and registering key information and knowledge for quicker retrieval and processing 
(Bransford, Brown, and Cocking 2005). Decomposition is a deductive process which helps us deal with a complicated 
situation, by dividing the complexity into smaller and simpler pieces and then attack each one separately until a 

Figure 3: The essence of electronic and biological 
CT skill sets (Yaşar 2017a). 



cumulative solution is found. If abstraction is considered as 
packaging (modeling) of things, then decomposing 
(analyzing) a concept, a package, or a model deductively is 
as important as constructing it inductively. They are 
equally essential, and we use them in our daily lives but not 
everyone is equally aware of their importance, nor are we 
all practicing and utilizing them fully and equally. But, 
since abstraction and decomposition skills are heavily used 
in programming and problem solving having students 
improve them has been a concern of educators (Armoni 
2013). A good programmer is expected to be able to 
oscillate between various levels of abstraction (see Fig. 4) 
and employ decomposition skills to divide the problem and 
programming into functional and modular units. According 
to some CS educators, undergraduate CS students barely 
move beyond language-specific (level 2) or algorithm-
specific (level 3) biases (Armoni 2013). While reaching 
level 4 is important to transform appropriate algorithmic 
and programming skills into different application contexts, the teaching of programming itself does not seem to 
accomplish this. Students would gain more from their education if, prior to taking programming courses, they 
appreciate the importance of inductive thinking for abstraction and of deductive thinking for decomposition skills in 
their assignments and large and complex software projects. It appears that such appreciation can be gained at the 
secondary school level as some of the recent curricular CT practices have shown (Yaşar et al., 2014). 
 
 
CT Education Research 
 

In addition to the nature, cognitive essence, and universality of CT, it is important to address some of the 
implementation and curricular issues. Luckily, there is a tight link between the iterative and cyclical process of 
inductive/deductive reasoning and the thought process involved in conceptual change – an important element of what 
has been known as the scientific method or recently referred to as scientific thinking (ST) (Vosniadou 2013). So, 
fostering such fundamental ST skills ought to come before an electronic CT education. While ST education research 
goes back decades and even centuries earlier than CT education, teaching expert-level ST skills to novices have also 
run into similar roadblocks (Dunbar & Klahr 2012; Yaşar, Maliekal, Veronesi, and Little 2017). We should be able to 
learn much from the ST education community, particularly in regard to conceptual change aspect of ST because it is 
an essential element of thinking and learning progression, regardless of the area of knowledge that uses it. In fact, 
biological computational thinking, as we discussed here, is the essence of expert thinking not only in computing but 
also in other areas such as scientific thinking and engineering thinking (Yaşar et al. 2017). 

 
The science education community has considerably researched effectiveness of M&S on learning and this 

also makes us lucky if were to use such tools in CT education. A literature review by Smetana & Bell (2012) identifies 
M&S as an exemplar of inquiry-guided learning. Its effectiveness is also well grounded in contemporary learning 
theories that recognize the role of abstract thinking and reflection in constructing knowledge and developing ideas and 
skills (Bransford, Brown, and Cocking 2000). Since these theories suggest that students learn better when they are 
engaged in activities closely resembling the way scientists think and work, it should not come as a surprise that M&S 
helps students learn as well. Additional details about pedagogical aspects of M&S, as supported by a quasi-
experimental study, can be found in (Yaşar 2016; Yaşar et al. 2016; Yaşar et al. 2015; Yaşar and Maliekal 2014).  

 
While educational researchers have done a good job of measuring the impact of M&S on learning, there is a 

need to measure its impact on conceptual change, abstraction, decomposition, and metacognitive skills, particularly 
in relation to CT and programming education. Besides M&S tools, researchers should explore other modular and 
scalable design toys as well as reading and writing practices to offer similar CT practices. There are many instruments 
with good psychometric properties to measure the impact of technological pedagogical content development tools on 
teaching and learning (Koehler, Shin, and Mishra 2012). M&S’s interdisciplinary and changing technological nature 
require customization of its use in instruction and the assessment of its effectiveness in teaching of the content under 
consideration. Researchers may need to use not only quantitative methods to measure variables involved but also 
qualitative methods to initially identify those variables and to later understand and triangulate them for validity. The 

Figure 4: Multi-level abstraction in programming, 
From low to high: (1) machine-level, (2) program-
level, (3) object-level, and (4) problem-level). 



quantitative sources of data often include surveys to gather pre/post activity data, unit test scores, course passing rates, 
report cards, graduation rates, and achievement scores in standardized tests) while qualitative sources of data may be 
interviews, classroom observations, and computational artifacts (Fincher and Petre 2005). 
 
 
Conclusion 

 
The discourse on what constitutes CT and how it can be taught and evaluated still goes on. The anxiety and 

enthusiasm that initially fueled the promise and spread of CT reform, the ongoing pressure by government agencies 
and professional organizations to implement it, and the remaining confusion by teachers and educators to bring a 
closure to or retire the concept of CT altogether warrant a new perspective. A decade ago, prominent educators 
inductively arrived at a concept/model of what comprises CT which obviously did not fully stand the test of time. As 
a result, many patches have been offered over the years that are not fully satisfactory to some who are invested in it. 
A product of decades of research and education in computing and cognitive sciences, the CT perspective and 
framework articulated in this paper has deductively broken down the current concept of CT and re-modeled it 
iteratively and cyclically to bring much-needed coherence, simplicity, and relevance to realize its universal promise. 
The cognitive CT framework presented here as a whole is based on the sum of several parts, including Kant’s 
epistemological method (1787), Turing’s computational theory of mind (1936), and Hebb’s neuropsychological view 
of memory storage and retrieval (1949). As Koffka (1935) noted, when put together parts generate a holistic view that 
is not only more than the sum of the parts but also other than any view that each part may convey alone.  

 
While the computational theory of mind may not fully capture complex mental representations and emotions, 

it helps us to understand some fundamental aspects of both ordinary and expert thinking. A computational mind equips 
us to process incoming sensory information in two distinct (and opposite) ways, thereby setting us up for an evaluative 
decision-making which requires assigning value, priority, and cost to all potential paths and actions we can take. To 
meet this requirement, the mind carries out computations, builds models, and conducts evaluative and hypothetical 
simulations of different scenarios. Everyone benefits cognitively from associative/distributive processing of modeling 
and simulation by the virtue of having a computational mind that employs inductive/deductive reasoning. Some use it 
in a more systematic way in their lives and some use it in a more automated way in their professions with the help of 
electronic or other computing devices.  

 
The computer science community has traditionally kept a distance to computational M&S because of its 

focus on programming. This caused it to miss on being a key player in development of computational science programs 
in the 80s and 90s by leaders of physical and life sciences (Denning 2009). At the same time, despite its importance 
computational M&S education did not grow beyond a few PhD and master’s programs within science and engineering 
fields, either, because of needed expertise in computer programming. However, both the CT initiative by the computer 
science community and the availability of non-programming M&S tools have recently created an opportunity for 
computational skills education to move all the way down to the middle and even elementary schools. As such, many 
K-12 STEM courses have already been using M&S tools and the national learning outcomes are now recommending 
the teaching of computational thinking skills. To help overcome the trouble spots, though, computing, cognitive, 
physical, and life sciences need to join hands together. The CT framework described in this article and the relevant 
publications below offer additional information for researchers as well as teacher and technology educators who may 
want to test or implement curricular resources developed by the author and his colleagues. Currently, these resources 
are being utilized at a rate of 80-100 downloads per day (see http://digitalcommons.brockport.edu/cmst_institute/). 

 
As a final note, computation, and particularly M&S, appears to have a universal value far beyond its relation 

to cognition. In fact, M&S’s iterative and cyclical mechanism of associative and distributive processing appears to be 
the essence of natural dynamism of all discrete forms (Yaşar 2017b). By putting computation at the heart of natural 
sciences, M&S provides an opportunity for us to claim that computer science deals with natural phenomena, not 
artificial (Denning 2009). So, a call for action here for the CS community is to put more emphasis on M&S as a crucial 
part of student practice and education. Since it facilitates an iterative and cyclical process of deductive and inductive 
reasoning, it could definitely be used to teach novices better abstraction and decomposition skills. Some studies have 
already shown that it not only teaches students such CT skills but it also motivates them to learn computer 
programming (Yaşar & Maliekal 2014).  
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