
Stagefright: Scary Code
in the Heart of Android
Researching Android Multimedia
Framework Security

Joshua "jduck" Drake
August 5th 2015
Black Hat USA

Agenda
Introduction
System Architecture
Attack Surface
Attack Vectors
Vulnerability Discovery / Issues Found
Exploitability / Mitigations
Disclosure
Conclusions

Introduction

About the presenter and this research

About Joshua J. Drake aka jduck
Focused on vulnerability research and exploit development
for the past 16 years

Current Affiliations:

Zimperium's VP of Platform Research and Exploitation
Lead Author of Android Hacker's Handbook
Founder of the #droidsec research group

Previous Affiliations:

Accuvant Labs (now Optiv), Rapid7's Metasploit,
VeriSign's iDefense Labs

Motivations
1. Improve the overall state of mobile security

1. Discover and eliminate critical vulnerabilities
2. Spur mobile software update improvements

2. Increase visibility of risky code in Android
3. Put the Droid Army to good use!

Special thanks go to Amir Etemadieh of Optiv / Exploiteers
for his help with this research.

Sponsors
This work was sponsored by Accuvant Labs (now Optiv) with
continuing support from Zimperium.

 &

Additional thanks to Collin Mulliner and Mathew Solnik!

What is Stagefright?
Android's Multimedia Framework library

written primarily in C++
Handles all video and audio files
Provides playback facilities - e.g. {Nu,Awesome}Player
Extracts metadata for the Gallery, etc.

Brief History
Android launched with an engine called OpenCORE
Added to AOSP during Android Eclair (2.0) dev
Optionally used in Android Froyo (2.2)

Both devices I have on 2.2 have it enabled
Set as the default engine in Gingerbread (2.3) and later

It's also used in Firefox, Firefox OS, etc.
first shipped in Firefox version 17
Used on Mac OS X, Windows, and Android
NOT used on Linux (uses gstreamer)

Why Stagefright?
1. Exposed via multiple attack vectors

some of which require no user interaction
2. Binary file format parsers are often vulnerable

Especially those written in native code
3. Various public mentions of instability (crashes)

/r/Android, AOSP bug tracker, googling for
"mediaserver crash", etc.

4. Related publications about fuzzing the code

Related Work I
 ()Fuzzing the Media Framework in Android Slides

by Alexandru Blanda and his team from Intel

They released their tools! See:
Interesting results!

tons of things reported
7 accepted as security issues
3 fixed in AOSP

CVE-2014-7915, CVE-2014-7916, CVE-2014-7917

MFFA

MORE ON THESE LATER ;-)

http://elcabs2015.sched.org/event/dac435c46b36746bebed29a3f2da0cd8?iframe=yes&w=i:100;&sidebar=yes&bg=no#?iframe=yes&w=i:100;&sidebar=yes&bg=no
http://events.linuxfoundation.org/sites/events/files/slides/ABS2015.pdf
https://github.com/fuzzing/MFFA

Related Work II
On Designing an Efficient Distributed Black-Box Fuzzing
System for Mobile Devices

by Wang Hao Lee, Murali Srirangam Ramanujam, and S.P.T.
Krishnan of Singapore's Institute for Infocomm Research

Focused on tooling more than bugs
Not focused on Android only
Found several bugs, but analysis seems lacking/incorrect
Unclear if any issues were fixed as a result

http://dl.acm.org/citation.cfm?id=2714607&dl=ACM&coll=DL&CFID=527134869&CFTOKEN=38465324

Related work
Pulling a John Connor: Defeating Android

by Charlie Miller at Shmoocon 2009

Discusses fuzzing a media player
got crashes in mediaserver

Focused on opencore, not Stagefright
Focused on pre-release G1
Really old, research done in 2008

However, due to apparent lack of proactive Android security
research it seems relevant still.

http://www.openrce.org/repositories/users/camill8/shmoocon09.ppt

About this research
Stagefright is big and supports a wide variety of multimedia
file formats.

Rather than dividing my focus among multiple formats, I
focused on MPEG4.

This allowed me to be more thorough in eliminating issues.

As such, the rest of this presentation will be somewhat
specific to Stagefright's MPEG4 processing.

System Architecture

Processes, privileges, etc.

Android Architecture

Picture from in the Android Developer documentationAndroid Interfaces

Android is very modular
Things run in separate
processes
Lots of inter-process
communications

"Sandbox" relies on modified
scheme based on Linux users
and groups
libstagefright executes inside
"MEDIA SERVER"

https://source.android.com/devices/index.html

Process Architecture
The mediaserver process runs in the background:
media 181 1 120180 10676 [...] S /system/bin/mediaserver

It's a native service that's started at boot from /init.rc:
service media /system/bin/mediaserver
 class main
 [...]

As such, the process automatically restarts when it crashes.

Process Privileges (Nexus 5)
The last part of the service definition in /init.rc shows the
privileges that the service runs with:
service media /system/bin/mediaserver
 class main
 user media
 group audio camera inet net_bt net_bt_admin net_bw_acct drmrpc mediadrm

WHOA! This service is very PRIVILEGED!

Android apps CANNOT request/receive permissions like
audio, camera, drmrpc, and mediadrm

But there's more...

mediaserver Privilege Survey
A Droid Army provides quick and valuable survey results!!

I surveyed 51 devices. The breakdown by OEM was:
Count $(BRAND)
====== ====================
17 Nexus/Google
13 Motorola
9 Samsung
6 HTC
3 LG
1 Sony
1 Amazon
1 ASUS
1 Facebook
1 OnePlus/Cyanogen
1 SilentCircle/SGP

Let's look at accessible groups, sorted by # of devices...

Privilege Survey Results I
CNT GROUP PURPOSE
51 3003(inet) /* can create AF_INET and AF_INET6 sockets */
51 3002(net_bt) /* bluetooth: create sco, rfcomm or l2cap sockets */
51 3001(net_bt_admin) /* bluetooth: create any socket */
51 1006(camera) /* camera devices */
51 1005(audio) /* audio devices */
[...]

All devices had this level of access, with which you can:

Monitor, record, and playback audio
Access camera devices
Connect to hosts on the Internet
Access and configure bluetooth

Ouch! This allows an attacker to spy on you already.

Privilege Survey Results II
Continuing down the line, things get interesting...
CNT GROUP PURPOSE
33 3007(net_bw_acct) /* change bandwidth statistics accounting */
33 1026(drmrpc) /* group for drm rpc */
27 1000(system) /* system server */
20 1003(graphics) /* graphics devices */
19 1031(mediadrm) /* MediaDrm plugins */
18 3004(net_raw) /* can create raw INET sockets */
11 3009(qcom_diag) /* <jduck> baseband debugging? */
9 1028(sdcard_r) /* external storage read access */
8 1023(media_rw) /* internal media storage write access */
8 1004(input) /* input devices */
7 1015(sdcard_rw) /* external storage write access */
4 2000(shell) /* adb and debug shell user */
4 1001(radio) /* telephony subsystem, RIL */

and more!

Architecture Recap
To recap the important bits...

1. libstagefright processes media inside mediaserver
2. The service runs privileged, potentially even as "system"
3. mediaserver automatically restarts

The additional attack surface exposed to a compromised
mediaserver is large — even compared to ADB. Beware.

Attack Surface

Where is the code under attack?

Locating the Attack Surface

NOTE: Released tools include some helper scripts.

Once you have your environment set up, finding the MPEG4
attack surface is relative straight-forward.

1. Attach debugger to mediaserver process
2. Place breakpoint on open
3. Open an MPEG4 video file
4. Sift through breakpoint hits until r0 points at your file
5. Look at the backtrace
6. Dig in and read the surrounding code

What do you find?
[*] open("/sdcard/Music/playing.mp4",...) called from:
#0 open (pathname=<value optimized out>, flags=0) at bionic/libc/unistd/open.c:38
#1 0x40b345e8 in FileSource (this=0x479038, filename=0x478d08 "/sdcard/Music/playing.mp4") at frameworks/base/media/libstagefright/FileSource.cpp:37
#2 0x40b332fe in android::DataSource::CreateFromURI (uri=0x478d08 "/sdcard/Music/playing.mp4", headers=0x4780c0) at frameworks/base/media/libstagefright/DataSource.cpp:139
#3 0x40b2ef50 in android::AwesomePlayer::finishSetDataSource_l (this=0x478058)
 at frameworks/base/media/libstagefright/AwesomePlayer.cpp:2085
#4 0x40b2efb2 in android::AwesomePlayer::onPrepareAsyncEvent (this=<value optimized out>) at frameworks/base/media/libstagefright/AwesomePlayer.cpp:2168
#5 0x40b2c990 in android::AwesomeEvent::fire (this=<value optimized out>, queue=0x20000) at frameworks/base/media/libstagefright/AwesomePlayer.cpp:81
#6 0x40b50c28 in android::TimedEventQueue::threadEntry (this=0x47806c) at frameworks/base/media/libstagefright/TimedEventQueue.cpp:299
#7 0x40b50c6c in android::TimedEventQueue::ThreadWrapper (me=0x47806c) at frameworks/base/media/libstagefright/TimedEventQueue.cpp:214
#8 0x400e8c50 in __thread_entry (func=0x40b50c59 <android::TimedEventQueue::ThreadWrapper(void*)>, arg=0x47806c, tls=<value optimized out>) at bionic/libc/bionic/pthread.c:217
#9 0x400e87a4 in pthread_create (thread_out=<value optimized out>, attr=0xbe81ea28, start_routine=0x40b50c59 <android::TimedEventQueue::ThreadWrapper(void*)>, arg=0x47806c) at bionic/libc/bionic/pthread.c:357

frame #3 - frameworks/base /
media/libstagefright/AwesomePlayer.cpp:2085

(note: moved to frameworks/av in Android >= 4.1)

AwesomePlayer.cpp:2085
2085 dataSource = DataSource::CreateFromURI(mUri.string(), &mUriHeaders);
2086 }
....
2092 sp<MediaExtractor> extractor;
2093
2094 if (isWidevineStreaming) {
....
2109 } else {
2110 extractor = MediaExtractor::Create(
2111 dataSource, sniffedMIME.empty() ? NULL : sniffedMIME.c_str());
....
2127 status_t err = setDataSource_l(extractor);

Okay, so it calls setDataSource_l(sp<MediaExtractor>)...

Let's look at that.

AwesomePlayer::setDataSource_l
 349 status_t AwesomePlayer::setDataSource_l(const sp &extractor) {
 ...
 356 for (size_t i = 0; i < extractor->countTracks(); ++i) {

... calls MPEG4Extractor::countTracks:
 305 size_t MPEG4Extractor::countTracks() {
 ...
 307 if ((err = readMetaData()) != OK) {

In turn, that calls readMetaData. Let's check that out...
 365 status_t MPEG4Extractor::readMetaData() {
 ...
 372 while ((err = parseChunk(&offset, 0)) == OK) {
 373 }

readMetaData calls parseChunk. Let's look at that!

MPEG4Extractor::parseChunk
This function is the primary attack surface for MPEG4
parsing!

primary dispatch for handling MP4 atoms / FourCC values
between 80 and 140 depend on Android version

it's implemented using recurison
 671 switch(chunk_type) {
 672 case FOURCC('m', 'o', 'o', 'v'):
 673 case FOURCC('t', 'r', 'a', 'k'):
 ...
 724 while (*offset < stop_offset) {
 725 status_t err = parseChunk(offset, depth + 1);

More specific examples will follow in later sections.

Attack Vectors

What would an attack look like?

Vector Enumeration Methodology
Ultimate goal: Find out how to get attacker controlled
media files processed by this code.

Try all possible ways to send yourself a media file!
Depends on knowledge of "all possible ways"

A Thorough Methodology:

1. Find all calls into this function.
2. Ask yourself "Can an attacker's data reach here?"
3. Repeat until all vectors are identified.

Modularity Complicates Matters
Executing the thorough methodology is challenging due to:

A mix of Java and native code
Object-oriented (OO) code
Must be mindful of member objects & instantiation
Code paths traverse a variety of Service and
BroadcastReceiver end points
Some vectors might be closed source (e.g. Google apps)

IMHO this is still the best way to learn "all possible ways".

