Advancing Software Security and Reliability in Cloud
Platforms through Al-based Anomaly Detection

Ibrahim

Mohammed Sayem
Computer Science
University of Western
Ontario
London, ON, Canada
isayem@uwo.ca

Sabbir M. Saleh

Computer Science
University of Western
Ontario
London, ON, Canada
ssaleh47@uwo.ca

ABSTRACT

Continuous Integration/Continuous Deployment (CI/CD) is
fundamental for advanced software development, supporting
faster and more efficient delivery of code changes into cloud
environments. However, security issues in the CI/CD pipeline
remain challenging, and incidents (e.g., DDoS, Bot, Log4j, etc.)
are happening over the cloud environments. While plenty of
literature discusses static security testing and CI/CD practices,
only a few deal with network traffic pattern analysis to detect
different cyberattacks. This research aims to enhance CI/CD
pipeline security by implementing anomaly detection through AI
(Artificial Intelligence) support. The goal is to identify unusual
behaviour or variations from network traffic patterns in pipeline
and cloud platforms. The system shall integrate into the
workflow to continuously monitor pipeline activities and cloud
infrastructure. Additionally, it aims to explore adaptive response
mechanisms to mitigate the detected anomalies or security
threats. This research employed two popular network traffic
datasets, CSE-CIC-IDS2018 and CSE-CIC-IDS2017. We
implemented a combination of Convolution Neural Network
(CNN) and Long Short-Term Memory (LSTM) to detect unusual
traffic patterns. We achieved an accuracy of 98.69% and 98.30%
and generated log files in different CI/CD pipeline stages that
resemble the network anomalies affected to address security
challenges in modern DevOps practices, contributing to
advancing software security and reliability.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned
by others than the author(s) must be honored. Abstracting with credit is permitted.
To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.

CCSW 24, October 14-18, 2024, Salt Lake City, UT, USA

© 2024 Copyright is held by the owner/author(s). Publication rights licensed to
ACM.

ACM 979-8-4007-1234-0/24/10.

https://doi.org/10.1145/3689938.3694779

Nazim Madhavji
Computer Science
University of Western
Ontario
London, ON, Canada
madhavji@gmail.com

John Steinbacher
IBM Canada Lab

Toronto, ON, Canada

jstein@ca.ibm.com

CCS CONCEPTS

« Computing methodologies~ Machine learning~ Machine
learning approaches~ Neural networks

KEYWORDS
CI/CD, cloud, security, Deep Learning, CNN-LSTM

ACM Reference format:

Sabbir M. Saleh, Ibrahim Mohammed Sayem, Nazim Madhavji and John
Steinbacher. 2024. Advancing Software Security and Reliability in Cloud
Platforms through Al-based Anomaly Detection. In Proceedings of the
2024 Cloud Computing Security Workshop (CCSW ’24), October 14-18,
2024, Salt Lake City, UT, USA. ACM, New York, NY, USA, 10 pages
https://doi.org/10.1145/3689938.3694779

1 Introduction

In today's fast-paced software development world, the CI/CD
pipeline becomes the foundation of delivering applications
quickly and efficiently. This integration, often guided by DevOps
principles, streamlines collaboration between development and
operations teams, allowing for rapid deployment of code changes
[1, 2]. Cloud computing has revolutionised the way
organisations manage their IT infrastructure. Many businesses,
healthcare providers, and government agencies rely on cloud
platforms to host critical applications and data. However, new
cybersecurity risks come with the benefits of cloud computing
[3]. Despite the numerous advantages of the CI/CD pipeline, it
also presents significant security challenges [4], especially when
deployed in cloud environments. Threats like ransomware
attacks, denial of service (DoS), distributed denial of service
(DDoS), Bot, Cross-Site Scripting (XSS), and supply chain
vulnerabilities have become increasingly common, posing severe
challenges to the security of cloud environments.

Cloud platforms face persistent security threats, including
downgrade attacks on Transport Layer Security (TLS), a crypto
protocol [4] (e.g., ROBOT, DROWN, POODLE) and software
supply chain attacks [5] (e.g., Log4j, SolarWinds, CodeCov, etc.).
These breaches can go undetected for extended periods, leading
to significant consequences. For example, the CodeCov attackers

mailto:Permissions@acm.org

CCSW’24, October, 2024, Salt Lake City, Utah, USA

exploited a configuration flaw, gaining unauthorised access to
the source code repositories of 23,000 clients [6].

In 2021, Verizon Communications and Facebook experienced
cloud-related security incidents that exposed user data due to
Amazon Web Service (AWS) vulnerabilities. The attacks
comprised DDoS, social engineering, and vulnerabilities in
client-side online applications that allowed server-side systems
to be compromised [7].

Failure to update vulnerable dependencies within deadlines can
lead to pipeline breaks, exacerbating the effects of human errors

[8].

Similarly, insecure build processes, facilitated by widely used
tools such as Tekton, Jenkins, and GitHub Actions (GHA), create
opportunities for intruders. The Apache Struts vulnerability,
which exposed sensitive information from Equifax, exemplifies
these vulnerabilities [9].

Addressing these challenges requires a multifaceted approach
that combines technological innovation, best practices, and
collaboration across organisational boundaries.

We aim to develop a system to identify unusual behaviour or
deviations from expected patterns within the CI/CD pipeline and
cloud platforms. This system intends to integrate into existing
workflows to continuously monitor pipeline activities and cloud
infrastructure.

The CI/CD pipeline makes software development more
manageable, significantly automating code distribution and
integration and accelerating the release cycle. However, there is
always a constant risk associated with this flow. Security flaws
may exist at every stage of the continuous integration and
delivery (CI/CD) pipeline, from code commits to deployment.

Securing the CI/CD pipeline is critical since a breach anywhere
along the pipeline can result in widespread implications such as
unauthorised access, data loss, and code manipulation.

This study addresses the necessity of safeguarding the CI/CD
pipeline, concentrating on potential risks and challenges and the
usefulness of deep learning algorithms such as CNNs and LSTMs
in detecting cyberattacks and forminglog files of attack
information.

Many previous studies recommended and implemented different
types of CI/CD security measures, which are mainly based on
static and dynamic application security testing (SAST and DAST)
[10], source composition analysis (SCA) [11], access controls,
and continuous monitoring and incident response [12].
However, these studies have drawbacks regarding attack
detection rates, huge false positive rates, dependency and
maintenance complexity, and resource intensive.

We aim to explore adaptive response mechanisms to mitigate
detected anomalies or security threats. In this research, we
employed two publicly available network traffic datasets named
CSE-CIC-IDS2018 [13] and CSE-CIC-IDS2017 [13], which
comprised different types of cyberattacks.

Sabbir M. Saleh, Ibrahim Mohammed Sayem, Nazim Madhavji and John Steinbacher

We are utilising these two datasets because they contain realistic
and common cyberattack types, such as DDoS, brute force,
botnets, etc. Both datasets include various features, such as flow,
packet, and connection details, which support feature selection
and analysis in machine learning models.

After that, we performed extensive data pre-processing
techniques and performed optimal feature selection, which
comprised extracting relevant features, data normalisation, and
data resampling techniques.

Later, we leverage a hybrid deep learning (DL) algorithm, which
is comprised of Convolutional Neural Networks (CNN) [14] and
Long Short-Term Memory (LSTM) [15].

The trained CNN-LSTM model is deployed and loaded in the
Jenkins pipeline. After the model integration, we monitor the
CI/CD pipeline network activities and analyse the real-time data.

Finally, the model can identify potential cyberattacks and
generate log files (Figures 6 and 7) in different CI/CD stages of
the pipeline that resemble the types of attacks.

The main contributions of this work are given below:

1. We employed a hybrid CNN-LSTM model to detect different
types of cyberattacks and utilized two network traffic
datasets, CSE-CIC-IDS2018 and CSE-CIC-IDS2017, which
resemble real-world traffic patterns.

2. We perform extensive data preprocessing techniques,
including missing value handling missing values, and
feature selection techniques comprised of feature selection
using Random Feature FElimination (RFE) with Random
Forests (RF), data normalisation, and data resampling
techniques, Synthetic Minority Oversampling Technique
(SMOTE) for oversampling and edited nearest neighbour
(ENN) for undersampling.

3. We used the trained model, then deployed and integrated it
in the CI/CD pipeline and continuously monitored the
network traffic behaviour.

4. The model can predict seven types of cyberattacks inside
the CI/CD pipeline and generate log files containing
information about network anomalies.

The rest of the paper is as follows: Section 2 states the
backgrounds and works of those related to our research,
including detailed research gaps. Section 3 presents the methods
of this study, where Research Objectives (Section 3.1) and
Research Methodology (Section 3.2) are presented. Then, we
report our results (Section 4) with working procedures and
present our graphical output. Section 5 concludes our work with
future works and the lessons learned from Sections 3 and 4.

2 Background and Related Work

CI/CD pipeline becomes indispensable for ensuring the
efficiency and reliability of software development, integration,
testing, and deployment processes.

Advancing Software Security and Reliability in Cloud Platforms through Al-based
Anomaly Detection

Security issues persist throughout the entire application
development and deployment lifecycle, including pre-and post-
deployment phases in the cloud.

Despite their widespread adoption, several research gaps and
challenges persist, hindering the realisation of their full
potential.

Addressing the following gaps and challenges is essential for
enhancing the effectiveness and scalability of the CI/CD pipeline
in cloud environments. Findings from Mahboob and Coffman
[16] and Huang, Minyan, et al. [17] support this.

Furthermore, numerous challenges arise across various security
domains, including network and communication security [18],
data privacy [16], and response time [19].

Moreover, security in every stage of the CI/CD pipeline is
monitored by static application security testing (SAST), dynamic
application security testing (DAST), and interactive application
security testing (IAST) tools. These tools detect code
vulnerabilities and identify and remediate security issues [10].

Source composition analysis (SCA) is used in CI/CD pipelines to
detect open-source and license package vulnerabilities and
ensure that software does not have insecure packages.

However, existing security measures have drawbacks in
providing quick and real-time response, parallel pipeline jobs,
flexible deployment and testing techniques, and generating
vulnerability reports.

To address these challenges, a focus on Al-based anomaly
detection emerges as a promising approach. This approach offers
potential solutions for identifying and mitigating security threats
in cloud environments.

Addressing the following gaps and challenges is indispensable
for enhancing the effectiveness and scalability of the CI/CD
pipeline in cloud environments by utilising Al techniques.

Research gaps include a limited focus on real-time ML system
monitoring and a lack of emphasis on ML models' ethical and
fair usage [20].

System observations and impact analysis for system
modifications need more attention [21]. Also, the absence of
proposals for efficient ML techniques in Software Engineering
(SE) and future exploration of SE-ML fusion for scaling-up
operations are notable research gaps [22].

The lack of discussion on real-world implementation challenges,
limited focus on the scalability and adaptability of proposed
frameworks, and the absence of detailed insights on framework
integration with existing systems are critical areas requiring
attention [23].

The limited research on bug report incompleteness in software
maintenance and the effectiveness of follow-up questions in bug
reports pose significant gaps in current studies [24].

CCSW’24, October, 2024, Salt Lake City, Utah, USA

The lack of exploration of kernel tracing impacts anomaly
detection, and the potential for using other Natural Language
Processing (NLP) techniques to enhance detection performance
represents areas ripe for further investigation [25].

Similarly, the absence of specific examples of Al-driven CI/CD
implementations, limited discussion of potential adoption
challenges, and lack of comparative analysis with other
emerging software development methodologies highlight
important research aspects [26].

Lastly, the lack of focus on rigorous scientific methods in the
Cybersecurity in Software Development and Systems (CSDS)
domain and the need for developing best practices through
experimentation and core research underscores the importance
of advancing research efforts in this field [27].

Integrating machine learning (ML) technologies into various
domains, including software engineering (SE), introduces new
security challenges.

Dhabliya et al. (2024) emphasise the importance of securing ML
ecosystems through robust monitoring and incident response
mechanisms [20].

Despite this emphasis, there are gaps in the real-time monitoring
of ML systems and ethical considerations in ML model usage.
SafeOps, as proposed by Fayollas et al. (2020), introduces a
framework for continuous safety assurance in autonomous
vehicles (AVs) by integrating DevOps principles [21].

While SafeOps aims to improve safety and reliability, more focus
should be placed on system observations and impact analysis for
system modifications.

Abubakar et al. (2020) explore the interplay between ML and SE
for software quality estimations [22]. While ML models show
promise in accuracy, a gap exists in proposing efficient ML
techniques in SE.

Future research could explore the fusion of SE and ML for
scaling operations and enhancing tool integration.

The framework proposed by Aktas et al. (2023) integrates Al for
anomaly detection in cloud computing systems, emphasising
continuous monitoring and automation [23]. However, there is
limited discussion on real-world implementation challenges and
scalability issues.

Kohyarnejadfard et al. (2022) present an NLP-based approach for
anomaly detection in microservice environments, achieving high
accuracy [24]. Further investigation is needed to explore the
impact of kernel tracing on anomaly detection and to leverage
other NLP techniques for enhanced performance.

Al-driven CI/CD, as Mohammed et al. (2024) discussed, enhances
software delivery processes, reducing manual effort and errors
[25]. However, there is a lack of specific examples of Al-driven
CI/CD implementations and discussions on potential challenges
during adoption.

CCSW’24, October, 2024, Salt Lake City, Utah, USA

Chhillar and Sharma (2019) proposed Automated Continuous
Testing (ACT) to enhance software reliability and speed up
releases in cloud service models [26]. While ACT introduces
innovative testing methodologies, future research could focus on
improving software quality metrics and addressing security
concerns.

As Lyubomir et al. (2021) discussed, evaluating machine learning
models for IoT network security highlights the importance of
robust algorithms like Support Vector Machine (SVM) and
Random Forest [27]. challenges such as data
limitations and resource-intensive classifiers need further
exploration.

However,

This synthesised section overviews the current landscape in
securing ML ecosystems, continuous safety assurance, ML-SE
interplay, anomaly detection, Al-driven CI/CD, automated
continuous testing, and IoT network security. Further research
in these areas can address existing gaps and contribute to
advancing the field.

Unlike the research mentioned above gaps, our research
objectives focused on enhancing the security of CI/CD pipelines
in cloud environments through anomaly detection and anomaly
log report generation.

To achieve this, we implemented deep learning (DL) based
anomaly detection techniques, integrated them into the CI/CD
pipeline workflow, and explored adaptive response mechanisms
for mitigating security threats.

The CSE-CIC-IDS2018 and CSE-CIC-IDS2017 datasets were used
to collect diverse network traffic data, including multiple attack
types. Relevant features were extracted to train Al-based
anomaly detection models. These models were then deployed
into the CI/CD pipeline for real-time monitoring and threat
detection. The system was evaluated for its effectiveness in
improving security and reducing risks, focusing on detection
accuracy and minimising false positives.

3 Methodology

This work proposes a deep learning (DL) based security
architecture to advance software security and reliability in cloud
environments. We provide insights, methodologies, and
recommendations for enhancing the effectiveness and security of
the CI/CD pipeline in cloud environments.

The proposed framework comprises six stages: data pre-
processing, optimal feature selection, model learning, model
deployment and integration, continuous monitoring, and finally
anomaly detection.

Figure 1 shows the overall architecture of the proposed model
for detecting network anomalies in the CI/CD pipeline.

Sabbir M. Saleh, Ibrahim Mohammed Sayem, Nazim Madhavji and John Steinbacher

| Network Traffic i
: Data Collection ,

Data Pre-processing

[Clean and Preprocess Data]

[Handling Missing Values]

\ [

Encode Categorical Features I

b

lExtract Relevant Features: RFECV (RF)]

I
I
'
1
I [Data Normalization: min-max scaler]
|
'
A S

[Data Resampling: SMOTE + ENN]

Model Learning

[Split Data: Training and Testing]

[Train DL Models: CNN-LSTM]

______________________________ s
e S T :
Model Deployment & Integration

[S;l\'e Trained Model (.h5 f()rmat)]

1
'
]
1
: [Dcplu}' and Load Model in Jenkins Pipulinl:]
'
A\l

[Integrate Models into Jenkins Pipeline]

Continuous Monitoring

A
L}
(Monitor Network Traffic in CI/CD Activities | '
L]
L
s

I Collect Real-Time Data]

N e r e e e e e . -——————-- i
: Anomaly Detection
1
. [
i
i
*

Use Model to Predict Cyberattacks]

0\ -
I
wa&l ka 2 | 41\((&“,;{ n-1 Attmk n Files

Figure 1: Proposed Model Architecture

3.1 Data Collection

Our research utilised the CSE-CIC-IDS 2018 and CSE-CIC-IDS
2017 [13] datasets published by the Canadian Institute of
Cybersecurity (CIC).

CSE-CIC-IDS2018 [13] on AWS is a collaborative project aiming
to generate benchmark datasets for intrusion detection. It
features seven attack scenarios, including DoS, DDoS, bot, brute-
force, Heartbleed, and web attacks, simulated on an AWS
infrastructure, aligning with our objectives for enhancing CI/CD
pipeline security through anomaly detection.

Utilising user profiles generates realistic benign traffic and
describes attack scenarios. The dataset includes network
captures, system logs, and 80 traffic features extracted using
CICFlowMeter-V3, labelled based on attack schedules. This
contribution aids in evaluating anomaly detection systems in
real-world network environments.

Advancing Software Security and Reliability in Cloud Platforms through Al-based
Anomaly Detection

The CSE-CIC-IDS2017 network traffic data consists of eight CSV
files, each including five days of regular and irregular network
activity from Monday to Friday. For testing, they set up an attack
network with a router and switch and a victim network with a
firewall, router, and switches.

Using CICFlowMeter software, 80 features were extracted from
traffic-generated Pcap files, including regular and aberrant
traffic. CIC-IDS2017 covers a range of assaults, including
portscan, infiltration, brute force, DDoS, web, and botnet.

3.2 Data Pre-processing

The datasets we utilised are both generated in a simulated
environment that depicts the real-world traffic flow and
collected 80 different network traffic features. However, we
excluded various features that resulted in abnormal traffic
behaviour.

We also calculated the percentage of zeros in each feature and
removed a feature if more than 30% of samples were zero. The
data samples with missing values are removed from the data
frame.

We also removed time-related and switch-related features. We
used a label encoder to encode categorical features like ‘protocol’
and ‘service’. Web attacks are grouped because they exhibit
similar network traffic characteristics to brute force, XSS, and
SQL injection.

Additionally, several DoS assaults, such as DoS slowHTTP, DoS
hulk, DoS slowloris, and DoS goldeneye, are classified as DoS.

3.3 Optimal Feature Selection

Feature selection is selecting the most relevant features from an
extensive set and removing irrelevant ones to enhance the model
performance and reduce computational loads on prediction
models.

Removing superfluous and noisy features improves learning
efficiency and reduces model training time. Furthermore, feature
significance assesses the value of each feature in the prediction
model.

After pre-processing the data, we perform feature selection
techniques to identify the relevant features from both datasets.
We employed Random Feature Elimination (RFE) with Random
Forest (RF) to select the relevant features. RFE used wrapper-
style and filter-based feature selection techniques, initially
searching a subset of features from the entire dataset and
removing them until the desired number of features remained.
RFE with RF iteratively removed all the less important features
from the datasets with the least contribution to the predictive
models.

RFE commences by training a Random Forest model on the
entire dataset. The Random Forest algorithm determines how
important a feature is based on how much a feature reduces
prediction errors. The least significant characteristics are

CCSW’24, October, 2024, Salt Lake City, Utah, USA

eliminated in each iteration, and the model is then retrained
using the remaining features. This process is repeated until a
performance condition is satisfied or the required number of
features is reached.

After the feature selection, we normalise our entire data to scale
our dataset between 0 and 1. It is a common approach in
machine learning (ML) because we do not know about all the
data points in the entire dataset. By transforming it between 0
and 1, we ensure that all the data points are contributed equally
to the model. Normalising data from multiple scales ensures
equitable contribution during model training. Scaling the data
equalises all features, allowing for faster convergence and
optimisation using gradient descent. The mathematical
formulation for the min-max scaler is given below:
. x—min(x)
min —max = "t (1)

After data normalisation was achieved, we performed data
resampling techniques, where we used the Synthetic Minority
Oversampling Technique (SMOTE) [28] to oversample the
minority class and edited nearest neighbour (ENN) to
undersample the majority class.

In ML, imbalanced data is a classification problem where all the
classes are not distributed equally in the entire dataset.

As a result, imbalanced data is biased towards one or more
classes, with few samples for others. Training a model with
uneven data can lead to bias toward one or two classes. To
overcome this problem, we utilised SMOTE and ENN. SMOTE
uses Euclidean distance to calculate sample distances, followed
by modification of the k-nearest neighbour. After taking n
number of samples, they calculate the imbalance ratio and
determine the required samples. The created samples (y) are
taken from the k-nearest neighbour and used to create fresh
synthetic samples. The majority class was chosen as an
undersampling strategy. ENN removes the majority of the k-
nearest neighbours sample.

3.4 Model Learning

After completing the feature selection steps, we split our
datasets into training and testing data. Training data is used to
train the deep learning (DL) model, and testing is used to
evaluate the model's performance in unseen data. Overall, 80% of
the data are used for model training, and the remaining 20% are
used to evaluate the predictive model's performance.

Our experiment used a combination of CNN [14] and LSTM [15];
CNN-LSTM. CNNs are a type of deep neural network that is
commonly used to analyse visual images. They include
convolutional layers, pooling layers, and fully linked layers.
Convolutional layers use filters on input data to detect different
features. Pooling layers minimise the spatial dimensions of the
data, making the representations more manageable and less
prone to distortion and translation.

CCSW’24, October, 2024, Salt Lake City, Utah, USA

The identified features are integrated into fully linked layers at
the network's end to create final predictions. LSTMs are a form
of recurrent neural network (RNN) that models sequential data
and detects long-term dependencies. They have gates (input,
output, and forget gates) that control the flow of information,
allowing the network to learn which information to keep or
reject. This architecture enables LSTMs to recall essential
information over extended periods, making them useful for
sequence prediction problems.

The CNN-LSTM model combines the capabilities of CNNs and
LSTMs, making it ideal for applications that require both spatial
and temporal data. The architectural Overview of CNN-LSTM is
given below:

CNN Component: The earliest layers include convolutional and
pooling layers that extract spatial features from the input data.
These traits may signify key local trends or attributes. We used
three convolutional and pooling layers followed by two dropout
layers. The rectified linear activation function (ReLU) is used as
the activation function.

Flattening Layer: Following the convolutional layers, the data is
usually flattened into a one-dimensional vector containing all
retrieved features.

LSTM Component: The flattened vector is fed into LSTM layers,
which examine the temporal correlations and dependencies
among the retrieved features. We used two LSTM cells in the
experiments.

Fully Connected Layer: The final prediction is produced by
passing the final output of the LSTM layers through fully
connected layers. A SoftMax activation function is used in this
layer.

Overall, we used Adam as the optimiser with a learning rate of
0.001, categorical cross-entropy to measure the loss, and the
weighted average accuracy of the model.

3.5 Model Deployment & Integration

After training the model in the model training phase, we saved
the trained model in a hierarchical data format (.h5).

We load the model in the Jenkins server for CI/CD pipeline
integration. For our research, we employed a plugin titled
“Machine Learning” [23], provided by Jenkins, to seamlessly
integrate our model within the CI/CD Pipeline.

This plugin integrates Machine Learning workflows, including
Data preprocessing, Model Training, Evaluation, and Prediction,
with Jenkins build tasks.

This plugin can execute code fragments via the IPython kernel
currently supported by Jupyter. We integrate the CNN-LSTM
model into the Jenkins pipeline. Once the model has been trained
and validated, it must be packaged as a deployable artefact.

This includes saving the model weights, configurations, and any
dependencies needed to execute the model. Jenkins

Sabbir M. Saleh, Ibrahim Mohammed Sayem, Nazim Madhavji and John Steinbacher

automatically runs tests and validation processes whenever new
code is posted to the repository, ensuring that code changes are
continuously integrated. This helps to identify bugs early on and
guarantees that the codebase remains stable.

3.6 Continuous Monitoring

Jenkins offers real-time monitoring of pipeline executions. It
tracks the status of each stage, making it simple to detect and
debug errors. It also checks the deployed model's performance by
measuring error rates, resource utilisation, and response time.

We use automated scripts in the Jenkins workflow to identify
model predictions or behaviour anomalies. For example, if the
model detects an attack, it will record the information in the log
file. Jenkins can also help retrain and redeploy the pipeline with
new data.

3.7 Evaluation Criteria

The unified data frame was partitioned 80 to 20 for training and
testing purposes. Performance indicators, including accuracy,
precision, recall, and f1 score, were used to evaluate model
performance and optimise hyperparameters.

We used a confusion matrix to visualise -classification
performance and output in matrix format. A confusion matrix
categorises classification model outcomes as true positive (TP),
true negative (TN), false positive (FP), or false negative (FN). A
confusion matrix can help describe the outcomes of a
classification model. The definitions are as follows:

TP+TN
Accuarcy = —————— (2)
TP+TN+FP+FN

.. TP
Precision = (3)
TP+FP
TP
Recall = 4)
TP+FN

F1Score = 2 Precision*Recall (5)

Precision+Recall

3.8 Software and Hardware Requirements

In this experiment, a Windows 10 PC with a 4 GB NVIDIA
GeForce RTX 3050 graphics processing unit (GPU), an AMD
Ryzen 9 5900HX processor, 16 GB of RAM, and a 512 GB solid-
state drive (SSD) was used.

Several Python 3.7 modules, such as Keras [29], TensorFlow 2.8.0
[30], and Scikit-learn [31], were used to create the Network
Intrusion Detection System (NIDS) model.

In addition, NumPy was used for numerical calculations, the
Pandas library was used for data analysis, and Matplotlib and
Seaborn were used to create graphical representations of the
experimental results.

Advancing Software Security and Reliability in Cloud Platforms through Al-based
Anomaly Detection

4 Results and Discussions

In our experiment, we performed feature selection using RFE
(RF), through which we selected the optimal number of features
that contribute to predicting the different types of network
anomalies. Figures 2 and 3 show the selected features from both
datasets.

Feature Importance of CICIDS-2018

|
fow_iat_std

fow_iat_mean
fow_iat_min
fwd_iat_mean
fwd_iat_min
fwd_iat_max

flow_iat_max

Feature

fwd_iat_tot
fow_duration
bwd_iat_max
bwd_iat_tot
bwd_lat_mean

bwd_iat_min

bwd_psh_flags
) 1 2 3 4 H 6 7 8
Chi-square Score lel3

Figure 2: Feature Importance of CSE-CICIDS2018

After the feature selection, we applied data resampling
techniques for both datasets, as they were imbalanced. Table 1
shows the data distribution before and after the data resampling.

Our experiments used a CNN-LSTM architecture to detect the
CI/CD pipeline network anomalies. Table 2 shows the proposed
CNN-LSTM's performance comparison with other state-of-the-
art experiments in the CSE-CICIDS2017 dataset.

Feature Importances of CICIDS-2017

ack_fiag_count [—
bwd_packet_length_mean [NN
packet_length_mean _
destination_port _
packet_length_std _
avg_bwd_seg mentﬁsize_
urg_ﬂag_(uunt_
bwd_packet_length_std _
averageipacketisize-
fwd_packet_length_min -
down,’up_ratiu-
maxﬁpa(ketjength-
min_seg_size_forward -

min_packet_length .

Features

0.00 0.02 0.04 0.06 0.08 0.10 0.12
Score

Figure 3: Feature Importance of CSE-CIC-IDS2017

The proposed CNN-LSTM outperforms the existing works with a
high accuracy rate of 98.30%. Figure 4 shows the confusion
matrix of the proposed CNN-LSTM model for the CSE-
CICIDS2017 dataset.

CCSW’24, October, 2024, Salt Lake City, Utah, USA

Table 1: Data Resampling of the Datasets

Anomalies CIC-IDS2107 CIC-IDS2018
Before After Before After
Resampling | Resampling | Resampling | Resampling

(% (% (% (%)
Benign 26 20 33 21
DoS 24 17 19 14
DDoS 22 16 13 15
Web 19 17 1 9
Portscan 7 11 15 14
Bot 1 9 - -
Brute Force 1 10 19 13
Infiltration - - 9 14

The proposed model can detect attacks with more than 97%
accuracy, except for Bots, which can be detected only 88.3% of
the time. The rest are misclassified by benign network traffic.

Table 2: Comparison of CNN-LSTM for CIC-IDS2017 with
Existing Work

Model Accuracy | Precision Recall F1 Score
CNN [32] 97.5 97.7 97.6 97.3
RBF-BLS [33] 96.63 - 96.87 -
Bi-RNN GRU [34] 98.99 - - -
CNN-LSTM 98.30 98.45 98.30 98.34
(proposed)

For CSE-CICIDS 2018, our model achieves higher accuracy than
existing works. It receives an accuracy of 98.69%, higher than
other recent works.

Confusion Matrix of CICIDS-2017 for CNN-LSTM

Benign 0.003 | 0.001 | 0.008 | 0.012 | 0.000 | 0.006
Back to Project
G, Stalus got | 0117 [OREER 0,000 | 0,000 | 0.000 | 0.000 | 0.000 08
~> Changes
B Console Output Brute-force | 0.003 [0.000 0.000 | 0.006 | 0.000 | 0.000
= Edit Build Information o8
a2
© Delete build 3 Dos | 0.000 | 0.000 | 0.000 0.000 | 0.000 | 0.000
4 Git Build Data = 04
& NoTeos DDoS | 0.001 | 0.000 | 0.000 | 0.000 0,000 | 0.000
Images and HTML

Portscan | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 0.000 Loz

4 Previous Build
Webattack | 0.007 | 0.000 | 0.000 | 0.000 | 0.009 | 0.000

-00
o

8

Benign
Bot

DDos
Portscan
Webattack

Brute-force

Predicted Label

Figure 4: Confusion Matrix of CSE-CIC-IDS 2017

It performs better because merging CNN with LSTM allows us to
take advantage of CNN's effectiveness in extracting features
from unprocessed data and LSTM's comprehension of temporal
connections.

CCSW’24, October, 2024, Salt Lake City, Utah, USA

Figure 5 shows the confusion matrix for the CSE-CIC-IDS 2018
dataset. It can detect almost all types of attacks, more than 96%.
It can detect 95.7% of infiltration and 89% of web attacks,
whereas 8.1% were misclassified as brute-force attacks.

Confusion Matrix of CICIDS-2018 for CNN-LSTM

£ Back o Project Benign 0.009 | 0.001 ‘ 0010 | 0.014 | 0.000 | 0.006
0 Status
= Infilteration | 0.043 0.000 | 0.000 | 0.000 | 0.000 | 0.000 08
_= Changes
oneck O Brute-force | 0,002 | 0,000 0.000 | 0.007 | 0.000 | 0.000
:/ Edit Build Information 5 06
2
© Delete buid E Dos | 0.000 | 0.000 | 0.000 0.000 | 0.000 | 0.000
0 Git Build Data E
04
[No Tags DDoS | 0.002 | 0.000 | 0.000 | 0.000 0.000 | 0.000
Images and HTML
& Previous Buid Bot | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 0.000 L a5
Web | 0.011 | 0.000 | 0.081 | 0.000 | 0.011 | 0.000

P -00
& § & ¢

Benign

Brute-force

Infilteration

Predicted Label

Figure 5: Confusion Matrix of CSE-CIC-IDS 2018

Figure 6 shows the log file output while monitoring the CI/CD
pipeline. This log report gives the traffic details, types of
network anomalies, and timestamps in the monitored network
traffic. We also generated the log report while monitoring the
Jenkins CI/CD pipeline, where log data shows information about
traffic flows, attack types, timestamps, and types of network
traffic.

Table 3: Comparison of CNN-LSTM for CIC-IDS2018 with
Existing Work

Model Accuracy Precision Recall F1 Score
LSTM + AM [35] 96.2 E - -
Light GBM [36] 975 - - -
CFBLS + BLS [33] 97.46 - - 97.45
CNN-LSTM 98.69 98.73 98.68 98.70
(proposed)

Figure 6: Log files of Jenkins Pipeline (Monitoring Stage)

Sabbir M. Saleh, Ibrahim Mohammed Sayem, Nazim Madhavji and John Steinbacher

We also captured the log file during different CI/CD pipeline
stages, such as the build, test, deploy, and monitoring stages.
Figure 7 shows the sample output for different stages of the
Jenkins pipeline, the build, test, deploy, and monitoring stages.

Figure 7: Log files of Jenkins Pipeline (Different Stages)

5 Conclusions and Future Works

This study has demonstrated the efficacy of utilising Al-based
anomaly detection techniques, particularly Convolutional Neural
Network (CNN) and Long Short-Term Memory (LSTM)
architectures, to enhance the security and reliability of the
CI/CD pipeline in cloud platforms.

We utilised two popular network traffic datasets and performed
extensive data pre-processing, and applied data resampling
techniques using SMOTEENN after selecting the relevant
features using RFE (RF).

Our proposed CNN-LSTM outperforms the existing works by
achieving an accuracy of 98.69% and 98.30% in the CSE-
CICIDS2018 and CSE-CICIDS2017 datasets, respectively.

By integrating these techniques into the CI/CD pipeline
workflow and exploring adaptive response mechanisms, we have
identified unusual behaviour or deviations from expected
patterns within CI/CD pipeline activities and cloud
infrastructure.

The results indicate that the implemented anomaly detection
system contributes significantly to mitigating security threats
and enhancing the overall integrity of software delivery
processes.

Through rigorous experimentation and evaluation, we have
shown this approach's practical feasibility and effectiveness in
addressing security challenges in modern DevOps practices.

The main limitations of the proposed study are that our attack
surface is fixed, and the system is unable to detect new network
anomalies. Moreover, our system was not tested in a real-world
software development project, and we did not utilise any
existing cloud infrastructure.

Advancing Software Security and Reliability in Cloud Platforms through Al-based
Anomaly Detection

In the future, the scalability and applicability of the Al-based
anomaly detection system can be extended to handle larger and
more complex CI/CD pipeline environments and diverse cloud
platforms like AWS, Google Cloud, and Microsoft Azure.

Additionally, incorporating real-time monitoring capabilities and
adaptive learning mechanisms could enhance the system's
responsiveness to emerging security threats.

Furthermore, investigating the integration of other Al
techniques, such as reinforcement learning and ensemble
methods, may offer additional insights into optimising anomaly
detection performance.

Overall, future work in this area should focus on enhancing Al-
driven anomaly detection systems' robustness, scalability, and
effectiveness for safeguarding the CI/CD pipeline and cloud
environments against emerging security threats.

REFERENCES

[1] Fitzgerald, B. and Stol, KJ., 2014, June. Continuous Software Engineering and
Beyond: Trends and Challenges. In Proceedings of the 1st International
Workshop on Rapid Continuous Software Engineering (pp. 1-9).

[2] Lacoste, F.J., 2009, August. Killing the Gatekeeper: Introducing a Continuous
Integration System. In 2009 Agile Conference (pp. 387-392). IEEE.

[3] Saboor, Abdul, Mohd Fadzil Hassan, Rehan Akbar, Erwin Susanto, Syed Nasir
Mehmood Shah, Muhammad Aadil Siddiqui, and Saeed Ahmed Magsi. "Root-
Of-Trust for Continuous Integration and Continuous Deployment Pipeline in
Cloud Computing." Computers, Materials & Continua 73, no. 2 (2022).

[4] Drees, J.P., Gupta, P., Hilllermeier, E., Jager, T., Konze, A., Priesterjahn, C.,
Ramaswamy, A. and Somorovsky, J., 2021, November. Automated Detection
of Side Channels in Cryptographic Protocols: DROWN the ROBOTs!. In
Proceedings of the 14th ACM Workshop on Artificial Intelligence and
Security (pp. 169-180).

[5] Williams, Laurie. "Trusting Trust: Humans in the Software Supply Chain
Loop." IEEE Security & Privacy 20, no. 5 (2022): 7-10.

[6] Benedetti, G., Verderame, L. and Merlo, A. 2022, September. Alice in
(software supply) Chains: Risk Identification and Evaluation. In International
Conference on the Quality of Information and Communications Technology
(pp- 281-295). Cham: Springer International Publishing.

[7] https://www.aquasec.com/cloud-native-academy/cloud-attacks/cloud-
attacks/#:~:text=In%20February%202021%2C%20the%200nline,%2C%20metada
ta%2C%20and%20encrypted%20chats.

[8] Enck, W. and Williams, L., 2022. Top five Challenges in Software Supply
Chain Security: Observations from 30 Industry and Government
Organizations. IEEE Security & Privacy, 20(2), pp.96-100.

[9] Byrne, Anthony, Shripad Nadgowda, and Ayse K. Coskun. "Ace: Just-in-time
Serverless Software Component Discovery Through Approximate Concrete
Execution." Proceedings of the 2020 Sixth International Workshop on
Serverless Computing. 2020.

[10] Dencheva, L. (2022). Comparative Analysis of Static Application Security
Testing (SAST) and Dynamic Application Security Testing (DAST) by using
Open-Source Web Application Penetration Testing Tools (Doctoral
dissertation, Dublin, National College of Ireland).

[11] Rosado, D. G. Gémez, R., Mellado, D., & Fernandez-Medina, E. (2012).
Security Analysis In The Migration To Cloud Environments. Future
Internet, 4(2), 469-487.

[12] Ozkaya, E. (2021). Incident Response in the Age of Cloud: Techniques and
Best Practices To Effectively Respond To Cybersecurity Incidents. Packt
Publishing Ltd.

[13] Sharafaldin, 1., Habibi Lashkari, A. & Ghorbani, A.A. (2018). Toward
Generating a New Intrusion Detection Dataset and Intrusion Traffic

(14]

(15]

(16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

CCSW’24, October, 2024, Salt Lake City, Utah, USA

Characterization. International Conference on Information Systems Security
and Privacy.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based
Learning Applied to Document Recognition. Proceedings of the IEEE, 86(11),
2278-2324.

Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural
Computation, 9(8), 1735-1780.

Mahboob, J. and Coffman, J., 2021, January. A Kubernetes Ci/Cd Pipeline
With Asylo As A Trusted Execution Environment Abstraction Framework. In
2021 IEEE 11th Annual Computing and Communication Workshop and
Conference (CCWC) (pp. 0529-0535). IEEE.

Huang, M., Fan, W., Huang, W., Cheng, Y. and Xiao, H., 2020, June. Research
on Building Exploitable Vulnerability Database For Cloud-Native App. In
2020 IEEE 4th Information Technology, Networking, Electronic and
Automation Control Conference (ITNEC) (Vol. 1, pp. 758-762). IEEE.

Zampetti, F., Tamburri, D., Panichella, S., Panichella, A., Canfora, G. and Di
Penta, M., 2023. Continuous Integration And Delivery Practices For Cyber-
Physical Systems: An Interview-Based Study. ACM Transactions on Software
Engineering and Methodology, 32(3), pp.1-44.

Garg, S. and Garg, S., 2019, March. Automated Cloud Infrastructure,
Continuous Integration And Continuous Delivery Using Docker With Robust
Container Security. In 2019 IEEE Conference on Multimedia Information
Processing and Retrieval (MIPR) (pp. 467-470). IEEE.

Dhabliya, Dharmesh, Nuzhat Rizvi, Anishkumar Dhablia, A. Phani Sridhar,
Sunil D. Kale, and Dipanjali Padhi. "Securing Machine Learning Ecosystems:
Strategies for Building Resilient Systems." In E3S Web of Conferences, vol.
491, p. 02033. EDP Sciences, 2024.

C. Fayollas, H. Bonnin and O. Flebus, "SafeOps: A Concept of Continuous
Safety,” 2020 16th European Dependable Computing Conference (EDCC),
Munich, Germany, 2020, pp. 65-68, doi: 10.1109/EDCC51268.2020.00020.

H. Abubakar, M. S. Obaidat, A. Gupta, P. Bhattacharya and S. Tanwar,
"Interplay of Machine Learning and Software Engineering for Quality
Estimations," 2020 International Conference on Communications,
Computing, Cybersecurity, and Informatics (CCCI), Sharjah, United Arab
Emirates, 2020, pp. 1-6, doi: 10.1109/CCCI49893.2020.9256507.

G. Aktas, B. Ipek, E. Ali Konukoglu and Y. Aydin, "Development of Artificial
Intelligence Supported Tool for Anomaly Detection in Cloud Computing
Systems," 2023 International Conference on Electrical, Communication and
Computer Engineering (ICECCE), Dubai, United Arab Emirates, 2023, pp. 1-6,
doi: 10.1109/ICECCE61019.2023.10442490.

M. M. Imran, A. Ciborowska and K. Damevski, "Automatically Selecting
Follow-up Questions for Deficient Bug Reports,” 2021 IEEE/ACM 18th
International Conference on Mining Software Repositories (MSR), Madrid,
Spain, 2021, pp. 167-178, doi: 10.1109/MSR52588.2021.00029.

Kohyarnejadfard, I, Aloise, D., Azhari, S.V. and Dagenais, M.R., 2022.
Anomaly Detection In Microservice Environments Using Distributed Tracing
Data Analysis and NLP. Journal of Cloud Computing, 11(1), p.25.

A.S. Mohammed, V. R. Saddi, S. K. Gopal, S. Dhanasekaran and M. S. Naruka,
"Al-Driven Continuous Integration and Continuous Deployment in Software
Engineering," 2024 2nd International Conference on Disruptive Technologies
(ICDT), Greater Noida, India, 2024, pp- 531-536, doi:
10.1109/ICDT61202.2024.10489475.

Gotsev, Lyubomir, Milena Dimitrova, Boyan Jekov, Eugenia Kovatcheva, and
Elena Shoikova. "A Cybersecurity Data Science Demonstrator: Machine
Learning in IoT Network Security.” In World Multi-Conference on Systemics,
Cybernetics and Informatics, WMSCI 2021, vol. 2, pp. 1-6. 2021.

Chawla, N. V., Bowyer, K. W, Hall, L. O., & Kegelmeyer, W. P. (2002).
SMOTE: Synthetic Minority Over-Sampling Technique. Journal of artificial
intelligence research, 16, 321-357.

Gulli, A., & Pal, S. (2017). Deep learning with Keras. Packt Publishing Ltd.
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... & Zheng, X.
(2016). {TensorFlow}: A System For {Large-Scale} Machine Learning. In 12th
USENIX symposium on operating systems design and implementation (OSDI
16) (pp. 265-283).

CCSW’24, October, 2024, Salt Lake City, Utah, USA

[31]

[32]

[33]

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
... & Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. The
Journal of Machine Learning Research, 12, 2825-2830.

Sayem, I. M., Sayed, M. L, Saha, S., & Haque, A. (2024). ENIDS: A Deep
Learning-Based Ensemble Framework for Network Intrusion Detection
Systems. IEEE Transactions on Network and Service Management.

Rios, A. L. G, Li, Z., Bekshentayeva, K., & Trajkovi¢, L. (2020, October).
Detection of Denial of Service Attacks in Communication Networks. In 2020
IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 1-5).
IEEE.

Sabbir M. Saleh, Ibrahim Mohammed Sayem, Nazim Madhavji and John Steinbacher

(34]

(35]

(36]

Henry, A., & Gautam, S. (2022, October). Intelligent Intrusion Detection
System Using Deep Learning Technique. In International Conference on
Computing, Communication and Learning (pp. 220-230). Cham: Springer
Nature Switzerland.

Lin, P, Ye, K, & Xu, C. Z. (2019). Dynamic Network Anomaly Detection
System By Using Deep Learning Techniques. In Cloud Computing-CLOUD
2019: 12th International Conference, Held as Part of the Services Conference
Federation, SCF 2019, San Diego, CA, USA, June 25-30, 2019, Proceedings
12 (pp. 161-176). Springer International Publishing.

Seth, S., Chahal, K. K., & Singh, G. (2021). A Novel Ensemble Framework For
An Intelligent Intrusion Detection System. IEEE Access, 9, 138451-138467.

