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ABSTRACT 
Continuous Integration/Continuous Deployment (CI/CD) is 
fundamental for advanced software development, supporting 
faster and more efficient delivery of code changes into cloud 
environments. However, security issues in the CI/CD pipeline 
remain challenging, and incidents (e.g., DDoS, Bot, Log4j, etc.) 
are happening over the cloud environments. While plenty of 
literature discusses static security testing and CI/CD practices, 
only a few deal with network traffic pattern analysis to detect 
different cyberattacks. This research aims to enhance CI/CD 
pipeline security by implementing anomaly detection through AI 
(Artificial Intelligence) support. The goal is to identify unusual 
behaviour or variations from network traffic patterns in pipeline 
and cloud platforms. The system shall integrate into the 
workflow to continuously monitor pipeline activities and cloud 
infrastructure. Additionally, it aims to explore adaptive response 
mechanisms to mitigate the detected anomalies or security 
threats. This research employed two popular network traffic 
datasets, CSE-CIC-IDS2018 and CSE-CIC-IDS2017. We 
implemented a combination of Convolution Neural Network 
(CNN) and Long Short-Term Memory (LSTM) to detect unusual 
traffic patterns. We achieved an accuracy of 98.69% and 98.30% 
and generated log files in different CI/CD pipeline stages that 
resemble the network anomalies affected to address security 
challenges in modern DevOps practices, contributing to 
advancing software security and reliability. 
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1  Introduction 
In today's fast-paced software development world, the CI/CD 
pipeline becomes the foundation of delivering applications 
quickly and efficiently. This integration, often guided by DevOps 
principles, streamlines collaboration between development and 
operations teams, allowing for rapid deployment of code changes 
[1, 2]. Cloud computing has revolutionised the way 
organisations manage their IT infrastructure. Many businesses, 
healthcare providers, and government agencies rely on cloud 
platforms to host critical applications and data. However, new 
cybersecurity risks come with the benefits of cloud computing 
[3]. Despite the numerous advantages of the CI/CD pipeline, it 
also presents significant security challenges [4], especially when 
deployed in cloud environments. Threats like ransomware 
attacks, denial of service (DoS), distributed denial of service 
(DDoS), Bot, Cross-Site Scripting (XSS), and supply chain 
vulnerabilities have become increasingly common, posing severe 
challenges to the security of cloud environments.  

Cloud platforms face persistent security threats, including 
downgrade attacks on Transport Layer Security (TLS), a crypto 
protocol [4] (e.g., ROBOT, DROWN, POODLE) and software 
supply chain attacks [5] (e.g., Log4j, SolarWinds, CodeCov, etc.). 
These breaches can go undetected for extended periods, leading 
to significant consequences. For example, the CodeCov attackers 
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exploited a configuration flaw, gaining unauthorised access to 
the source code repositories of 23,000 clients [6]. 

In 2021, Verizon Communications and Facebook experienced 
cloud-related security incidents that exposed user data due to 
Amazon Web Service (AWS) vulnerabilities. The attacks 
comprised DDoS, social engineering, and vulnerabilities in 
client-side online applications that allowed server-side systems 
to be compromised [7]. 

Failure to update vulnerable dependencies within deadlines can 
lead to pipeline breaks, exacerbating the effects of human errors 
[8]. 

Similarly, insecure build processes, facilitated by widely used 
tools such as Tekton, Jenkins, and GitHub Actions (GHA), create 
opportunities for intruders. The Apache Struts vulnerability, 
which exposed sensitive information from Equifax, exemplifies 
these vulnerabilities [9]. 

Addressing these challenges requires a multifaceted approach 
that combines technological innovation, best practices, and 
collaboration across organisational boundaries. 

We aim to develop a system to identify unusual behaviour or 
deviations from expected patterns within the CI/CD pipeline and 
cloud platforms. This system intends to integrate into existing 
workflows to continuously monitor pipeline activities and cloud 
infrastructure. 

The CI/CD pipeline makes software development more 
manageable, significantly automating code distribution and 
integration and accelerating the release cycle. However, there is 
always a constant risk associated with this flow. Security flaws 
may exist at every stage of the continuous integration and 
delivery (CI/CD) pipeline, from code commits to deployment.  

Securing the CI/CD pipeline is critical since a breach anywhere 
along the pipeline can result in widespread implications such as 
unauthorised access, data loss, and code manipulation. 

This study addresses the necessity of safeguarding the CI/CD 
pipeline, concentrating on potential risks and challenges and the 
usefulness of deep learning algorithms such as CNNs and LSTMs 
in detecting cyberattacks and forming log files of attack 
information.  

Many previous studies recommended and implemented different 
types of CI/CD security measures, which are mainly based on 
static and dynamic application security testing (SAST and DAST) 
[10], source composition analysis (SCA) [11], access controls, 
and continuous monitoring and incident response [12]. 
However, these studies have drawbacks regarding attack 
detection rates, huge false positive rates, dependency and 
maintenance complexity, and resource intensive. 

We aim to explore adaptive response mechanisms to mitigate 
detected anomalies or security threats. In this research, we 
employed two publicly available network traffic datasets named 
CSE-CIC-IDS2018 [13] and CSE-CIC-IDS2017 [13], which 
comprised different types of cyberattacks. 

We are utilising these two datasets because they contain realistic 
and common cyberattack types, such as DDoS, brute force, 
botnets, etc. Both datasets include various features, such as flow, 
packet, and connection details, which support feature selection 
and analysis in machine learning models. 

After that, we performed extensive data pre-processing 
techniques and performed optimal feature selection, which 
comprised extracting relevant features, data normalisation, and 
data resampling techniques. 

Later, we leverage a hybrid deep learning (DL) algorithm, which 
is comprised of Convolutional Neural Networks (CNN) [14] and 
Long Short-Term Memory (LSTM) [15]. 

The trained CNN-LSTM model is deployed and loaded in the 
Jenkins pipeline. After the model integration, we monitor the 
CI/CD pipeline network activities and analyse the real-time data. 

Finally, the model can identify potential cyberattacks and 
generate log files (Figures 6 and 7) in different CI/CD stages of 
the pipeline that resemble the types of attacks. 

The main contributions of this work are given below: 

1. We employed a hybrid CNN-LSTM model to detect different 
types of cyberattacks and utilized two network traffic 
datasets, CSE-CIC-IDS2018 and CSE-CIC-IDS2017, which 
resemble real-world traffic patterns. 

2. We perform extensive data preprocessing techniques, 
including missing value handling missing values, and 
feature selection techniques comprised of feature selection 
using Random Feature Elimination (RFE) with Random 
Forests (RF), data normalisation, and data resampling 
techniques, Synthetic Minority Oversampling Technique 
(SMOTE) for oversampling and edited nearest neighbour 
(ENN) for undersampling. 

3. We used the trained model, then deployed and integrated it 
in the CI/CD pipeline and continuously monitored the 
network traffic behaviour. 

4. The model can predict seven types of cyberattacks inside 
the CI/CD pipeline and generate log files containing 
information about network anomalies. 

The rest of the paper is as follows: Section 2 states the 
backgrounds and works of those related to our research, 
including detailed research gaps. Section 3 presents the methods 
of this study, where Research Objectives (Section 3.1) and 
Research Methodology (Section 3.2) are presented. Then, we 
report our results (Section 4) with working procedures and 
present our graphical output. Section 5 concludes our work with 
future works and the lessons learned from Sections 3 and 4. 

2  Background and Related Work 
CI/CD pipeline becomes indispensable for ensuring the 
efficiency and reliability of software development, integration, 
testing, and deployment processes. 
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Security issues persist throughout the entire application 
development and deployment lifecycle, including pre-and post-
deployment phases in the cloud. 

Despite their widespread adoption, several research gaps and 
challenges persist, hindering the realisation of their full 
potential. 

Addressing the following gaps and challenges is essential for 
enhancing the effectiveness and scalability of the CI/CD pipeline 
in cloud environments. Findings from Mahboob and Coffman 
[16] and Huang, Minyan, et al. [17] support this. 

Furthermore, numerous challenges arise across various security 
domains, including network and communication security [18], 
data privacy [16], and response time [19]. 

Moreover, security in every stage of the CI/CD pipeline is 
monitored by static application security testing (SAST), dynamic 
application security testing (DAST), and interactive application 
security testing (IAST) tools. These tools detect code 
vulnerabilities and identify and remediate security issues [10]. 

Source composition analysis (SCA) is used in CI/CD pipelines to 
detect open-source and license package vulnerabilities and 
ensure that software does not have insecure packages. 

However, existing security measures have drawbacks in 
providing quick and real-time response, parallel pipeline jobs, 
flexible deployment and testing techniques, and generating 
vulnerability reports. 

To address these challenges, a focus on AI-based anomaly 
detection emerges as a promising approach. This approach offers 
potential solutions for identifying and mitigating security threats 
in cloud environments. 

Addressing the following gaps and challenges is indispensable 
for enhancing the effectiveness and scalability of the CI/CD 
pipeline in cloud environments by utilising AI techniques. 

Research gaps include a limited focus on real-time ML system 
monitoring and a lack of emphasis on ML models' ethical and 
fair usage [20]. 

System observations and impact analysis for system 
modifications need more attention [21]. Also, the absence of 
proposals for efficient ML techniques in Software Engineering 
(SE) and future exploration of SE-ML fusion for scaling-up 
operations are notable research gaps [22]. 

The lack of discussion on real-world implementation challenges, 
limited focus on the scalability and adaptability of proposed 
frameworks, and the absence of detailed insights on framework 
integration with existing systems are critical areas requiring 
attention [23]. 

The limited research on bug report incompleteness in software 
maintenance and the effectiveness of follow-up questions in bug 
reports pose significant gaps in current studies [24]. 

The lack of exploration of kernel tracing impacts anomaly 
detection, and the potential for using other Natural Language 
Processing (NLP) techniques to enhance detection performance 
represents areas ripe for further investigation [25]. 

Similarly, the absence of specific examples of AI-driven CI/CD 
implementations, limited discussion of potential adoption 
challenges, and lack of comparative analysis with other 
emerging software development methodologies highlight 
important research aspects [26]. 

Lastly, the lack of focus on rigorous scientific methods in the 
Cybersecurity in Software Development and Systems (CSDS) 
domain and the need for developing best practices through 
experimentation and core research underscores the importance 
of advancing research efforts in this field [27]. 

Integrating machine learning (ML) technologies into various 
domains, including software engineering (SE), introduces new 
security challenges. 

Dhabliya et al. (2024) emphasise the importance of securing ML 
ecosystems through robust monitoring and incident response 
mechanisms [20]. 

Despite this emphasis, there are gaps in the real-time monitoring 
of ML systems and ethical considerations in ML model usage. 
SafeOps, as proposed by Fayollas et al. (2020), introduces a 
framework for continuous safety assurance in autonomous 
vehicles (AVs) by integrating DevOps principles [21]. 

While SafeOps aims to improve safety and reliability, more focus 
should be placed on system observations and impact analysis for 
system modifications. 

Abubakar et al. (2020) explore the interplay between ML and SE 
for software quality estimations [22]. While ML models show 
promise in accuracy, a gap exists in proposing efficient ML 
techniques in SE. 

Future research could explore the fusion of SE and ML for 
scaling operations and enhancing tool integration. 

The framework proposed by Aktas et al. (2023) integrates AI for 
anomaly detection in cloud computing systems, emphasising 
continuous monitoring and automation [23]. However, there is 
limited discussion on real-world implementation challenges and 
scalability issues. 

Kohyarnejadfard et al. (2022) present an NLP-based approach for 
anomaly detection in microservice environments, achieving high 
accuracy [24]. Further investigation is needed to explore the 
impact of kernel tracing on anomaly detection and to leverage 
other NLP techniques for enhanced performance. 

AI-driven CI/CD, as Mohammed et al. (2024) discussed, enhances 
software delivery processes, reducing manual effort and errors 
[25]. However, there is a lack of specific examples of AI-driven 
CI/CD implementations and discussions on potential challenges 
during adoption. 
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Chhillar and Sharma (2019) proposed Automated Continuous 
Testing (ACT) to enhance software reliability and speed up 
releases in cloud service models [26]. While ACT introduces 
innovative testing methodologies, future research could focus on 
improving software quality metrics and addressing security 
concerns. 

As Lyubomir et al. (2021) discussed, evaluating machine learning 
models for IoT network security highlights the importance of 
robust algorithms like Support Vector Machine (SVM) and 
Random Forest [27]. However, challenges such as data 
limitations and resource-intensive classifiers need further 
exploration. 

This synthesised section overviews the current landscape in 
securing ML ecosystems, continuous safety assurance, ML-SE 
interplay, anomaly detection, AI-driven CI/CD, automated 
continuous testing, and IoT network security. Further research 
in these areas can address existing gaps and contribute to 
advancing the field. 

Unlike the research mentioned above gaps, our research 
objectives focused on enhancing the security of CI/CD pipelines 
in cloud environments through anomaly detection and anomaly 
log report generation. 

To achieve this, we implemented deep learning (DL) based 
anomaly detection techniques, integrated them into the CI/CD 
pipeline workflow, and explored adaptive response mechanisms 
for mitigating security threats. 

The CSE-CIC-IDS2018 and CSE-CIC-IDS2017 datasets were used 
to collect diverse network traffic data, including multiple attack 
types. Relevant features were extracted to train AI-based 
anomaly detection models. These models were then deployed 
into the CI/CD pipeline for real-time monitoring and threat 
detection. The system was evaluated for its effectiveness in 
improving security and reducing risks, focusing on detection 
accuracy and minimising false positives. 

3  Methodology 
This work proposes a deep learning (DL) based security 
architecture to advance software security and reliability in cloud 
environments. We provide insights, methodologies, and 
recommendations for enhancing the effectiveness and security of 
the CI/CD pipeline in cloud environments. 

The proposed framework comprises six stages: data pre-
processing, optimal feature selection, model learning, model 
deployment and integration, continuous monitoring, and finally 
anomaly detection.  

Figure 1 shows the overall architecture of the proposed model 
for detecting network anomalies in the CI/CD pipeline. 

 

Figure 1: Proposed Model Architecture 

3.1 Data Collection 
Our research utilised the CSE-CIC-IDS 2018 and CSE-CIC-IDS 
2017 [13] datasets published by the Canadian Institute of 
Cybersecurity (CIC).  

CSE-CIC-IDS2018 [13] on AWS is a collaborative project aiming 
to generate benchmark datasets for intrusion detection. It 
features seven attack scenarios, including DoS, DDoS, bot, brute-
force, Heartbleed, and web attacks, simulated on an AWS 
infrastructure, aligning with our objectives for enhancing CI/CD 
pipeline security through anomaly detection. 

Utilising user profiles generates realistic benign traffic and 
describes attack scenarios. The dataset includes network 
captures, system logs, and 80 traffic features extracted using 
CICFlowMeter-V3, labelled based on attack schedules. This 
contribution aids in evaluating anomaly detection systems in 
real-world network environments.  
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The CSE-CIC-IDS2017 network traffic data consists of eight CSV 
files, each including five days of regular and irregular network 
activity from Monday to Friday. For testing, they set up an attack 
network with a router and switch and a victim network with a 
firewall, router, and switches. 

Using CICFlowMeter software, 80 features were extracted from 
traffic-generated Pcap files, including regular and aberrant 
traffic. CIC-IDS2017 covers a range of assaults, including 
portscan, infiltration, brute force, DDoS, web, and botnet.  

3.2 Data Pre-processing 
The datasets we utilised are both generated in a simulated 
environment that depicts the real-world traffic flow and 
collected 80 different network traffic features. However, we 
excluded various features that resulted in abnormal traffic 
behaviour.  

We also calculated the percentage of zeros in each feature and 
removed a feature if more than 30% of samples were zero. The 
data samples with missing values are removed from the data 
frame. 

We also removed time-related and switch-related features. We 
used a label encoder to encode categorical features like ‘protocol’ 
and ‘service’. Web attacks are grouped because they exhibit 
similar network traffic characteristics to brute force, XSS, and 
SQL injection. 

Additionally, several DoS assaults, such as DoS slowHTTP, DoS 
hulk, DoS slowloris, and DoS goldeneye, are classified as DoS. 

3.3 Optimal Feature Selection 
Feature selection is selecting the most relevant features from an 
extensive set and removing irrelevant ones to enhance the model 
performance and reduce computational loads on prediction 
models. 

Removing superfluous and noisy features improves learning 
efficiency and reduces model training time. Furthermore, feature 
significance assesses the value of each feature in the prediction 
model. 

After pre-processing the data, we perform feature selection 
techniques to identify the relevant features from both datasets. 
We employed Random Feature Elimination (RFE) with Random 
Forest (RF) to select the relevant features. RFE used wrapper-
style and filter-based feature selection techniques, initially 
searching a subset of features from the entire dataset and 
removing them until the desired number of features remained. 
RFE with RF iteratively removed all the less important features 
from the datasets with the least contribution to the predictive 
models. 

RFE commences by training a Random Forest model on the 
entire dataset. The Random Forest algorithm determines how 
important a feature is based on how much a feature reduces 
prediction errors. The least significant characteristics are 

eliminated in each iteration, and the model is then retrained 
using the remaining features. This process is repeated until a 
performance condition is satisfied or the required number of 
features is reached. 

After the feature selection, we normalise our entire data to scale 
our dataset between 0 and 1. It is a common approach in 
machine learning (ML) because we do not know about all the 
data points in the entire dataset. By transforming it between 0 
and 1, we ensure that all the data points are contributed equally 
to the model. Normalising data from multiple scales ensures 
equitable contribution during model training. Scaling the data 
equalises all features, allowing for faster convergence and 
optimisation using gradient descent. The mathematical 
formulation for the min-max scaler is given below: 

min − max =
𝑥−min(𝑥)

max(𝑥)−min(𝑥)
   (1) 

After data normalisation was achieved, we performed data 
resampling techniques, where we used the Synthetic Minority 
Oversampling Technique (SMOTE) [28] to oversample the 
minority class and edited nearest neighbour (ENN) to 
undersample the majority class. 

In ML, imbalanced data is a classification problem where all the 
classes are not distributed equally in the entire dataset. 

As a result, imbalanced data is biased towards one or more 
classes, with few samples for others. Training a model with 
uneven data can lead to bias toward one or two classes. To 
overcome this problem, we utilised SMOTE and ENN. SMOTE 
uses Euclidean distance to calculate sample distances, followed 
by modification of the k-nearest neighbour. After taking n 
number of samples, they calculate the imbalance ratio and 
determine the required samples. The created samples (y) are 
taken from the k-nearest neighbour and used to create fresh 
synthetic samples. The majority class was chosen as an 
undersampling strategy. ENN removes the majority of the k-
nearest neighbours sample. 

3.4 Model Learning 
After completing the feature selection steps, we split our 
datasets into training and testing data. Training data is used to 
train the deep learning (DL) model, and testing is used to 
evaluate the model's performance in unseen data. Overall, 80% of 
the data are used for model training, and the remaining 20% are 
used to evaluate the predictive model's performance. 

Our experiment used a combination of CNN [14] and LSTM [15]; 
CNN-LSTM. CNNs are a type of deep neural network that is 
commonly used to analyse visual images. They include 
convolutional layers, pooling layers, and fully linked layers. 
Convolutional layers use filters on input data to detect different 
features. Pooling layers minimise the spatial dimensions of the 
data, making the representations more manageable and less 
prone to distortion and translation. 
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The identified features are integrated into fully linked layers at 
the network's end to create final predictions.  LSTMs are a form 
of recurrent neural network (RNN) that models sequential data 
and detects long-term dependencies. They have gates (input, 
output, and forget gates) that control the flow of information, 
allowing the network to learn which information to keep or 
reject. This architecture enables LSTMs to recall essential 
information over extended periods, making them useful for 
sequence prediction problems. 

The CNN-LSTM model combines the capabilities of CNNs and 
LSTMs, making it ideal for applications that require both spatial 
and temporal data. The architectural Overview of CNN-LSTM is 
given below: 

CNN Component: The earliest layers include convolutional and 
pooling layers that extract spatial features from the input data. 
These traits may signify key local trends or attributes. We used 
three convolutional and pooling layers followed by two dropout 
layers. The rectified linear activation function (ReLU) is used as 
the activation function. 

Flattening Layer: Following the convolutional layers, the data is 
usually flattened into a one-dimensional vector containing all 
retrieved features.  

LSTM Component: The flattened vector is fed into LSTM layers, 
which examine the temporal correlations and dependencies 
among the retrieved features. We used two LSTM cells in the 
experiments. 

Fully Connected Layer: The final prediction is produced by 
passing the final output of the LSTM layers through fully 
connected layers. A SoftMax activation function is used in this 
layer. 

Overall, we used Adam as the optimiser with a learning rate of 
0.001, categorical cross-entropy to measure the loss, and the 
weighted average accuracy of the model. 

3.5 Model Deployment & Integration 
After training the model in the model training phase, we saved 
the trained model in a hierarchical data format (.h5).  

We load the model in the Jenkins server for CI/CD pipeline 
integration. For our research, we employed a plugin titled 
“Machine Learning” [23], provided by Jenkins, to seamlessly 
integrate our model within the CI/CD Pipeline. 

This plugin integrates Machine Learning workflows, including 
Data preprocessing, Model Training, Evaluation, and Prediction, 
with Jenkins build tasks. 

This plugin can execute code fragments via the IPython kernel 
currently supported by Jupyter. We integrate the CNN-LSTM 
model into the Jenkins pipeline. Once the model has been trained 
and validated, it must be packaged as a deployable artefact. 

This includes saving the model weights, configurations, and any 
dependencies needed to execute the model. Jenkins 

automatically runs tests and validation processes whenever new 
code is posted to the repository, ensuring that code changes are 
continuously integrated. This helps to identify bugs early on and 
guarantees that the codebase remains stable. 

3.6 Continuous Monitoring 
Jenkins offers real-time monitoring of pipeline executions. It 
tracks the status of each stage, making it simple to detect and 
debug errors. It also checks the deployed model's performance by 
measuring error rates, resource utilisation, and response time. 

We use automated scripts in the Jenkins workflow to identify 
model predictions or behaviour anomalies. For example, if the 
model detects an attack, it will record the information in the log 
file. Jenkins can also help retrain and redeploy the pipeline with 
new data. 

3.7 Evaluation Criteria  
The unified data frame was partitioned 80 to 20 for training and 
testing purposes. Performance indicators, including accuracy, 
precision, recall, and f1 score, were used to evaluate model 
performance and optimise hyperparameters.  

We used a confusion matrix to visualise classification 
performance and output in matrix format. A confusion matrix 
categorises classification model outcomes as true positive (TP), 
true negative (TN), false positive (FP), or false negative (FN). A 
confusion matrix can help describe the outcomes of a 
classification model. The definitions are as follows: 

𝐴𝑐𝑐𝑢𝑎𝑟𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
   (2) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
   (3) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
    (4) 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  (5) 

 

3.8 Software and Hardware Requirements 
In this experiment, a Windows 10 PC with a 4 GB NVIDIA 
GeForce RTX 3050 graphics processing unit (GPU), an AMD 
Ryzen 9 5900HX processor, 16 GB of RAM, and a 512 GB solid-
state drive (SSD) was used. 

Several Python 3.7 modules, such as Keras [29], TensorFlow 2.8.0 
[30], and Scikit-learn [31], were used to create the Network 
Intrusion Detection System (NIDS) model. 

In addition, NumPy was used for numerical calculations, the 
Pandas library was used for data analysis, and Matplotlib and 
Seaborn were used to create graphical representations of the 
experimental results. 
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4  Results and Discussions 
In our experiment, we performed feature selection using RFE 
(RF), through which we selected the optimal number of features 
that contribute to predicting the different types of network 
anomalies. Figures 2 and 3 show the selected features from both 
datasets. 

 

Figure 2: Feature Importance of CSE-CICIDS2018 

After the feature selection, we applied data resampling 
techniques for both datasets, as they were imbalanced. Table 1 
shows the data distribution before and after the data resampling. 

Our experiments used a CNN-LSTM architecture to detect the 
CI/CD pipeline network anomalies. Table 2 shows the proposed 
CNN-LSTM's performance comparison with other state-of-the-
art experiments in the CSE-CICIDS2017 dataset. 

 

Figure 3: Feature Importance of CSE-CIC-IDS2017 

The proposed CNN-LSTM outperforms the existing works with a 
high accuracy rate of 98.30%. Figure 4 shows the confusion 
matrix of the proposed CNN-LSTM model for the CSE-
CICIDS2017 dataset. 

 

Table 1: Data Resampling of the Datasets 

Anomalies CIC-IDS2107 CIC-IDS2018 
Before 

Resampling 
(%) 

After 
Resampling 

(%) 

Before 
Resampling 

(%) 

After 
Resampling 

(%) 

Benign 26 20 33 21 
DoS 24 17 19 14 

DDoS 22 16 13 15 
Web 19 17 1 9 

Portscan 7 11 15 14 
Bot 1 9 - - 

Brute Force 1 10 19 13 
Infiltration - - 9 14 

 

The proposed model can detect attacks with more than 97% 
accuracy, except for Bots, which can be detected only 88.3% of 
the time. The rest are misclassified by benign network traffic. 

Table 2: Comparison of CNN-LSTM for CIC-IDS2017 with 
Existing Work 

Model Accuracy Precision Recall F1 Score 
CNN [32] 97.5 97.7 97.6 97.3 

RBF-BLS [33] 96.63 - 96.87 - 
Bi-RNN GRU [34] 98.99 - - - 

CNN-LSTM 
(proposed) 

98.30 98.45 98.30 98.34 

 

For CSE-CICIDS 2018, our model achieves higher accuracy than 
existing works. It receives an accuracy of 98.69%, higher than 
other recent works. 

 

Figure 4: Confusion Matrix of CSE-CIC-IDS 2017 

It performs better because merging CNN with LSTM allows us to 
take advantage of CNN's effectiveness in extracting features 
from unprocessed data and LSTM's comprehension of temporal 
connections. 
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Figure 5 shows the confusion matrix for the CSE-CIC-IDS 2018 
dataset. It can detect almost all types of attacks, more than 96%. 
It can detect 95.7% of infiltration and 89% of web attacks, 
whereas 8.1% were misclassified as brute-force attacks. 

 

Figure 5: Confusion Matrix of CSE-CIC-IDS 2018 

Figure 6 shows the log file output while monitoring the CI/CD 
pipeline. This log report gives the traffic details, types of 
network anomalies, and timestamps in the monitored network 
traffic. We also generated the log report while monitoring the 
Jenkins CI/CD pipeline, where log data shows information about 
traffic flows, attack types, timestamps, and types of network 
traffic. 

Table 3: Comparison of CNN-LSTM for CIC-IDS2018 with 
Existing Work 

Model Accuracy Precision Recall F1 Score 
LSTM + AM [35] 96.2 - - - 
Light GBM [36] 97.5 - - - 

CFBLS + BLS [33] 97.46 - - 97.45 
CNN-LSTM 
(proposed) 

98.69 98.73 98.68 98.70 

 

 

Figure 6: Log files of Jenkins Pipeline (Monitoring Stage) 

We also captured the log file during different CI/CD pipeline 
stages, such as the build, test, deploy, and monitoring stages. 
Figure 7 shows the sample output for different stages of the 
Jenkins pipeline, the build, test, deploy, and monitoring stages. 

 

Figure 7: Log files of Jenkins Pipeline (Different Stages) 

5  Conclusions and Future Works 
This study has demonstrated the efficacy of utilising AI-based 
anomaly detection techniques, particularly Convolutional Neural 
Network (CNN) and Long Short-Term Memory (LSTM) 
architectures, to enhance the security and reliability of the 
CI/CD pipeline in cloud platforms. 

We utilised two popular network traffic datasets and performed 
extensive data pre-processing, and applied data resampling 
techniques using SMOTEENN after selecting the relevant 
features using RFE (RF). 

Our proposed CNN-LSTM outperforms the existing works by 
achieving an accuracy of 98.69% and 98.30% in the CSE-
CICIDS2018 and CSE-CICIDS2017 datasets, respectively. 

By integrating these techniques into the CI/CD pipeline 
workflow and exploring adaptive response mechanisms, we have 
identified unusual behaviour or deviations from expected 
patterns within CI/CD pipeline activities and cloud 
infrastructure. 

The results indicate that the implemented anomaly detection 
system contributes significantly to mitigating security threats 
and enhancing the overall integrity of software delivery 
processes. 

Through rigorous experimentation and evaluation, we have 
shown this approach's practical feasibility and effectiveness in 
addressing security challenges in modern DevOps practices. 

The main limitations of the proposed study are that our attack 
surface is fixed, and the system is unable to detect new network 
anomalies. Moreover, our system was not tested in a real-world 
software development project, and we did not utilise any 
existing cloud infrastructure. 
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In the future, the scalability and applicability of the AI-based 
anomaly detection system can be extended to handle larger and 
more complex CI/CD pipeline environments and diverse cloud 
platforms like AWS, Google Cloud, and Microsoft Azure. 

Additionally, incorporating real-time monitoring capabilities and 
adaptive learning mechanisms could enhance the system's 
responsiveness to emerging security threats. 

Furthermore, investigating the integration of other AI 
techniques, such as reinforcement learning and ensemble 
methods, may offer additional insights into optimising anomaly 
detection performance. 

Overall, future work in this area should focus on enhancing AI-
driven anomaly detection systems' robustness, scalability, and 
effectiveness for safeguarding the CI/CD pipeline and cloud 
environments against emerging security threats. 
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