arXiv:1610.08777v1 [math.OC] 27 Oct 2016

A Multiobjective MPC Approach for Autonomously Driven Electric
Vehicles

Sebastian Peitz”, Kai Schéfer”, Sina Ober-Blébaum™, Julian Eckstein™ ", Ulrich Kohler™, and
Michael Dellnitz"

*Department of Mathematics, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany
“Department of Engineering Science, University of Oxford, Parks Road, Oxford OXI 3PJ, UK

kokk

Hella KGaA Hueck & Co., Beckumer Str. 130, 59552 Lippstadt, Germany

Abstract

We present a new algorithm for model predictive control of non-linear systems with respect to multiple,
conflicting objectives. The idea is to provide a possibility to change the objective in real-time, e.g. as a
reaction to changes in the environment or the system state itself. The algorithm utilises elements from
various well-established concepts, namely multiobjective optimal control, economic as well as explicit model
predictive control and motion planning with motion primitives. In order to realise real-time applicability, we
split the computation into an online and an offline phase and we utilise symmetries in the open-loop optimal
control problem to reduce the number of multiobjective optimal control problems that need to be solved in
the offline phase. The results are illustrated using the example of an electric vehicle where the longitudinal
dynamics are controlled with respect to the concurrent objectives arrival time and energy consumption.

1 Introduction

In many applications from industry and economy,
the simultaneous optimisation of several criteria is
of great interest. In transportation, for example, one
wants to reach a destination as fast as possible while
minimising the energy consumption. This example il-
lustrates that in general, the different objectives con-
tradict each other. Therefore, the task of computing
the set of optimal compromises between the conflict-
ing objectives, the so-called Pareto set, arises, lead-
ing to a multiobjective optimisation problem (MOP)
or multiobjective optimal control problem (MOCP).
Based on the knowledge of the Pareto set, a deci-
ston maker can design improved systems or even al-
low for changes in control parameters during opera-
tion as a reaction on external influences or changes
in the system state itself. There exist various algo-
rithms for the solution of MOCPs such as scalarisa-
tion techniques (cf. [I] for an overview), evolutionary
algorithms ([2]) or set oriented methods ([3]). All
approaches have in common that a large number of
function evaluations is typically needed. Thus, the
direct computation of the Pareto set is time consum-
ing and a computation in real-time is not possible.
However, in particular the design of optimal drive
strategies requires online adaption of control strate-
gies. This is even more the case now that autonomous
driving and battery electric vehicles (EVs) with com-

paratively low ranges are both gaining increased at-
tention, requiring advanced control algorithms.

Control theory has been influenced significantly by
the advances in computational power during the last
decades. For a large variety of systems, it is nowa-
days possible to use model based optimal control al-
gorithms to design sophisticated feedback laws. This
concept is known as model predictive control (MPC)
(see e.g. [, B]). The general goal of MPC is to
stabilise a system by using a combination of open
and closed-loop control: using a model of the system
dynamics, an open-loop optimal control problem is
solved in real-time over a so-called prediction hori-
zon. The first part of this solution is then applied
to the real system while the optimisation is repeated
to find a new control function, with the prediction
horizon moving forward (for this reason, MPC is also
referred to as moving horizon control or receding hori-
zon control).

Due to the huge success of MPC, a large variety
of algorithms has been established, where a first dis-
tinction can be made between linear and non-linear
MPC. The first category refers to schemes in which
linear models and quadratic objective functions are
used to predict the system dynamics. The resulting
optimisation problems are convex, i.e. global solu-
tions can be computed very fast. Linear MPC ap-
proaches have been very successful in a large variety
of industrial applications (see e.g. [6] and [7] for an

overview in applications and theory). The advantage
of non-linear MPC ([5]), on the other hand, is that
the typically non-linear system behaviour can be ap-
proximated in a more accurate way. Furthermore,
special optimality criteria and non-linear constraints
can be incorporated easily. However, the complexity
and thus the time to solve the resulting optimisa-
tion problem increases such that it is often difficult
to preserve real-time capability (see e.g. [§]). Fur-
ther extensions are, for example, economic MPC' (see
e.g. [9,10]) or explicit MPC' (see e.g. [11]). In the first
approach alternative, economic objectives are pur-
sued instead of stabilising the system. In the second
approach the problem of real-time applicability is ad-
dressed by introducing an offline phase during which
the open-loop optimal control problem is solved for a
large number of possible situations, using e.g. multi-
parametric non-linear programming. The solutions
are then stored in a library such that they are di-
rectly available in the online phase.

Another way for optimal strategy planning is the
concept motion planning with motion primitives go-
ing back to [12] (see also [13| 14]). The challenge of
online applicability is addressed with a two-phase ap-
proach similar to explicit MPC but here, valid control
as well as state trajectories are obtained by combin-
ing several short pieces of simply controlled trajec-
tories that are stored in a motion planning library.
These motion primitives can be sequenced to longer
trajectories in various combinations. In the online
phase, the optimal sequence of motion primitives is
determined from the motion planning library using
e.g. graph search methods (see e.g [13]). To reduce
the computational effort, the motion primitive ap-
proach extensively relies on exploiting symmetries
in the dynamical control system such that a motion
primitive can be used in multiple situations, e.g. by
performing a translation or rotation under which the
dynamics are invariant.

In this article, we present a new algorithm for mul-
tiobjective MPC of non-linear systems. Problems
with multiple criteria have been addressed by several
authors using scalarisation techniques (see e.g. [15]
for a weighted sum or [I6] for a reference point ap-
proach). For non-convex problems, scalarisation ap-
proaches often face difficulties such that we here want
to compute the entire Pareto set in advance. To this
end, we combine elements from multiobjective opti-
mal control, explicit MPC and motion planning with
motion primitives. The resulting algorithm consists
of an offline phase during which multiobjective opti-
mal control problems are solved and stored in a li-
brary for a wide range of possible scenarios (i.e. con-

stant velocity, braking, accelerating). Invariances in
the optimal control problem are exploited in order
to reduce the number of problems that need to be
solved. In the online phase, the currently active sce-
nario is identified and the corresponding Pareto set
is selected from the library. According to a deci-
sion maker’s preference, an optimal compromise is
then selected from the Pareto set and the first part
of the solution is applied to the system. Similar to
MPC, this is done repeatedly such that a feedback
control behaviour is realised. The difference to other
approaches is the possibility to interactively choose
between different objectives such that the system be-
haviour can be modified easily. This can be very use-
ful for autonomous driving, where one is interested in
reaching a destination as fast as possible while min-
imising the energy consumption.

The outline of the article is as follows. In Section[2]
we introduce the multiobjective MPC problem and
the concept of Pareto optimality before describing the
algorithm in detail and comparing it to other MPC
approaches. In Section |3, we describe the application
of the algorithm to an electric vehicle. The aim is
to realise autonomous driving where the passenger
can decide between the objectives fast and energy
efficient driving. We present the results in Section
before drawing a conclusion in Section

2 Problem Formulation and Methodology

Before describing the algorithm, we will briefly intro-
duce the two main concepts we will be making use
of, namely multiobjective optimal control and model
predictive control. For more detailed introductions,
we refer to [I] and [5], respectively.

A multiobjective optimal control problem (MOCP)
can be formulated mathematically using differential(-
algebraic) equations describing the physical be-
haviour of the system together with optimisation cri-
teria and optimisation constraints in the following
way

win J(euty) = " Cla(t), u(t)) dt + D(a(ty)
(1)
such that
i(t) = f(x(t),ut)) Vteltots], =z(to) =m0 (2)
h(z(t),u(t)) <0 V€ [to, ts], (3)

where z(t) € X is the system state (e.g. the posi-
tion and velocity of a car) and u(t) € U the control
(e.g. the engine torque or the steering wheel posi-
tion). X and U are the spaces of feasible states and
controls, respectively. The constraints may depend

on the state as well as the control, e.g. limiting the
velocity or energy consumption. J describes crite-
ria that have to be optimised. When there exists
a unique solution z(t) € X for every u(t) € U and
zg € X and we fix the time frame, we can introduce
a reduced objective J : U x X — R¥, where k is the
number of objectives, and the corresponding reduced
problem:

" Clpulzo,t)) dt + B(pu(o,t)).

(4)

Here ¢, (xo,t) is the flow of the dynamical control

system .

min J(u,) = /

to

AJs

Ji

(b)

Figure 1: Pareto set (a) and front (b) of the multiob-
jective optimisation problem mingeg J(u), J : R —
R2.

In many applications from industry and economy,
one is interested in simultaneously optimising not
only one but several criteria and hence, £ > 1 and
J is vector-valued. In this situation the solution
does in general not consist of isolated optimal points
but of the set of optimal compromises, the so-called
Pareto set (cf. [1] for a detailed introduction). The
set consists of all functions u(t) that are nondomi-
nated, i.e. for which there does not exist a solution
u*(t) that is superior in all objectives (cf. Figure [1)).
For the solution of , we here use a scalarisation

J2 J2

J(ui—1) J(ui-1)

min, ||T; — J(ui)][3
J(u;) L J(ui) J(up,it1)

7 .,/ .

)Jl)Jl

(a)

Figure 2: Reference point method in image space.
(a) Determination of the i-th point on the Pareto
front by solving a scalar optimisation problem. (b)
Computation of new target point T;11 and predictor
step in decision space (upit1)-

technique by which the Pareto set is approximated
by a finite set of points that are computed consecu-

tively by minimising the euclidean distance between
a point J(u,xo) and a so-called target point T which
lies outside the reachable set in image space (see Fig-
urefor an illustration). Since a point computed this
way lies on the boundary of the reachable set, there
exists no point which is superior in all objectives and
hence, the point is Pareto optimal. Starting with one
point (e.g. the scalar minimum of one of the objec-
tives), the next points can be computed recursively
until the other end of the Pareto front (i.e. the other
scalar minimum) is reached. In [I7], this method is
used to compute the Pareto set for the conflicting ob-
jectives driven distance and energy consumption for
EVs. The scalar optimal control problems are solved
using an SQP method (cf. [1§]).

A Reference state

/ Measured state

Predicted control

/ Prediction horizon Sample
/ time

]]]]]]]]

— —t——t—1+—1>

é+2 ts+p

Figure 3: Sketch of the MPC methodology. While
the first part of the predicted control is applied to
the system, the next control is predicted (via open-
loop optimal control) on a shifted horizon.

The algorithm presented here builds on these re-
sults, but we need to extend them in order to con-
struct a feedback controller. This is realised by an
MPC approach, where the problem is solved re-
peatedly for varying time frames (to = ts, ty = tsip,
s =1,2,...) while the system is running at the same
time. Then, the first interval of the predicted con-
trol, u(ts), is applied to the real system and the op-
timal control problem is solved again with a time
frame shifted by one. The procedure is illustrated in
Figure The concept of MPC was initially devel-
oped to stabilise a system ([5]), i.e. to drive the sys-
tem state to a (potentially time dependent) reference
state. However, stabilisation is not always the main
concern. Considering the EV, for example, we only
require a part of the state, namely the velocity, to re-
main within prescribed bounds, which then gives us
the opportunity to pursue additional objectives such
as minimising the energy consumption. This concept
is known as economic MPC' (see e.g. [9, [10]).

2.1 The Offline-Online Multiobjective MPC
Concept

Since MOCPs are considerably more expensive to
solve than scalar problems, it is computationally in-
feasible to directly include them in an MPC frame-
work. A simple way to circumvent this problem is
to scalarise the objective function by introducing a
weighting factor (i.e. J = Y% piJ;, pi € [0,1]). In
this case however, an assumption has to be made in
advance which can in practice lead to unfavourable
results. A slight increase in one objective might al-
low for a strong reduction in another one, for exam-
ple. Hence, we are interested in providing the entire
Pareto set during the MPC routine. To avoid large
computing times during execution, we therefore split
the computation in an offline and an online phase,
similar to explicit MPC approaches (cf. [I1]).

The offline phase consists of several steps. First,
various scenarios are identified for which MOCPs
need to be solved. The scenarios are determined
by the system states and the constraints. Secondly,
in order to reduce the number of scenarios, the dy-
namical control system is analysed with respect to
invariances, which are formally described by a finite-
dimensional Lie group G and its group action v : X x
G — X. A dynamical control system, described by
(2), is invariant under the group action 1, or equiv-
alently, G is a symmetry group for the system , if
for all g € G, xg € X, t € [to,ty] and all piecewise-
continuous control functions w : [tg,tf] — U it holds

Y(g, pul®0,t)) = wu(¥(g, 70), 1) (5)

That means that the group action on the state com-
mutes with the flow. Invariance leads to the concept
of equivalent trajectories. Two trajectories are equiv-
alent if they can be exactly superimposed through
time translation and the action of the symmetry
group. In the classical concept of motion primitives
([12]), all equivalent trajectories are summed up in
an equivalence class, i.e. only a single representative
is stored that can be used at many different points
when transformed by the symmetry action. In other
words, controlled trajectories that have been com-
puted for a specific situation are suitable in many
different (equivalent) situations as well. In our ap-
proach, we extend this concept by identifying sym-
metries in the solution of the MOCP with respect
to the initial conditions zg:

Vg € G.

arg min J(u, xg) = arg min J(u, ¥ (g,x9)) Vg € G.
(6)

This means that we require the Pareto set to be in-
variant under group actions on the initial conditions.

If the objective function is also invariant under the
same group action, then all trajectories contained in
an equivalence class defined by will also be con-
tained in an equivalence class defined by @ How-
ever, this class may contain more solutions since we
do not explicitly pose restrictions on the state but
only require the solution of to be identical. Al-
ternatively, if the objective function is linear in the
states and the group action corresponds to transla-
tions in initial states, we do not require invariance of
the objective function to satisfy @

Identifying invariances according to (@, the num-
ber of MOCPs can be reduced. If the system is in-
variant under translation of the initial position p(to),
for example, we do not need to solve multiple MOCPs
that only differ in the position. Once these equiva-
lence classes have been identified, we can reduce the
number of possible scenarios accordingly. We then
solve the resulting MOCPs on the prediction horizon
Ty, introduce a parametrisation p (which can then
be chosen by the decision maker in the online phase)
and store the Pareto sets and fronts in a library such
that they can be used in the online phase. Since in
general there is an infinite number of feasible initial
conditions, there consequently exists an infinite num-
ber of scenarios that we have to consider. In practice,
this obviously cannot be realised and we have to in-
troduce a finite set of scenarios. In the online phase,
we then pick the scenario that is closest to the true
initial condition. If a violation of the state constraints
has to be avoided (the EV, e.g., is not allowed to go
faster than the maximum speed), then a selection to-
wards the ”safe” side can be made. In case of the EV,
we would consequently pick a solution corresponding
to a velocity slightly higher than the actual velocity.
This way, the maximally allowed acceleration would
be bounded such that exceeding the speed limit is
not possible.

The online phase is now basically a standard MPC
approach, the difference being that we obtain the so-
lution of our control problem from a library instead
of solving it in real-time, similar to explicit MPC ap-
proaches:

1. measure the current system states that are nec-
essary for the identification of the current sce-
nario,

2. choose the corresponding Pareto set from the li-
brary, i.e. the one with initial conditions closest
to the current system state. (Due to the ap-
proximation, we cannot formally guarantee that
the constraints are not violated. However, as a
start we consider applications where this is ac-
ceptable.)

3. choose one optimal compromise u from the set,
according to a decision maker’s preference p,

4. apply the first step (i.e. the sample time) of the
solution u to the real system and go back to 1.

The resulting algorithm thus provides a feedback law.
In the offline phase, we define the scenarios in such a
manner that the system cannot be steered out of the
set of feasible states. This means that only controls
u are valid that do not lead to a violation of the
constraints. Additionally, we include scenarios which
steer the system into the set of feasible states from
any initial condition. In the literature, this is known
as viability, cf. [5]. In case of the EV, for example, we
have to include controls such that the velocity can be
steered to values satisfying the constrains from any
initial velocity.

The presented algorithm can be seen as an exten-
sion of (extended) MPC approaches to multiple ob-
jectives. We consider economic objectives (cf. [9])
and do not focus on the stabilisation of the sys-
tem. This allows us to pursue multiple objectives
between which a decision maker can choose dynam-
ically, e.g. in order to react on changes in the en-
vironment or the system state itself. In contrast to
weighting methods, the entire Pareto set is known,
providing increased system knowledge.

3 Application to Electric Vehicle

In this section the algorithm is utilised to control the
longitudinal dynamics of an EV, thereby extending
prior work, see [19] for a scalar optimal control prob-
lem, [I7] for a multiobjective optimal control prob-
lem and [§] for a comparison of two scalar MPC ap-
proaches.

3.1 Vehicle Model

The EV model is derived by coupling the equations
for the electrical and the mechanical subsystem via
efficiency maps. This yields a system of four coupled,
non-linear ordinary differential equations for the sys-
tem state x(t) = (v(t), S(t),Uq,r(t),Uqs(t)). Here, v
is the vehicle velocity, S is the battery state of charge
and Uy 1, and Uy g are the long and short term volt-
age drops, respectively. The system is controlled by
setting the torque wu(t) of the front wheels. Addi-
tionally, the battery current I(¢) is computed from
the state x(t) via an algebraic equation and the po-
sition by integrating the velocity: p(t) = fti) v(T)dr.
For the derivation and the exact formulation of the
dynamical system, we refer the reader to [§].

Based on the system dynamics, we formulate the
MOCP for the EV with variable final time:

miny (500867

.%'(t) - f(l'(t),u(t)), (8)
'Umm(t) < 'U(t) < vmaz(t)y t [7tf] (9)
Tnin () < 1(t) < Ipaz(t), te0,ty] (10)

2(0) = wo, p(ty) = py (11)

We set the final position py to 100m, which means
that we here define the prediction horizon based on
the position. Correspondingly, the sample time is
also specified with respect to the position, 6 = 20 m.
The conflicting objectives are to reach py as fast as
possible (J2) while minimising the energy consump-
tion (J1). The battery current I is limited in order to
avoid damaging the battery which results in implicit
constraints on the control u. The velocity constraints
are part of the scenarios which are defined in the of-
fline phase.

3.2 Offline Phase: System Analysis and Solu-
tion of Multi- objective Optimal Control
Problems

In this section we describe how the different steps of

the offline phase are applied to the EV.

3.2.1 Symmetry Analysis

5(0) = 80%

0 20 40 60 80 100

v(0) =0 [km/h]

S(t) - 5(0) [%]

0 50 100
t[s]

()

Figure 4: (a) Almost invariance of S(t) with respect
to the initial value S(0). (b) Invariance of the velocity
v(t) with respect to the initial value S(0) for S(0) >
5%. (c) No invariance of the state of charge S(t) with
respect to the initial velocity v(0).

The more invariances the MOCP possesses (in the
sense of Equation @), the fewer problems need to be
solved which significantly reduces the computational
effort. Hence, we numerically analyse the system in
this regard. Since the position p does not occur in the
dynamical system , the dynamics are obviously in-
variant under translations in p. Moreover, when ex-
emplary looking at the velocity v and the state of
charge S (cf. Figures [dp and [4p), we see that, on the
one hand, the trajectories are almost invariant for a
wide range of translated initial values of the state of
charge S(0). Note that this is not a strict invariance.
However, as argued in Section [2.1] we do not require
invariances according to Equation but according
to the weaker condition @ which is satisfied much
more accurately for the EV application. When look-
ing at Figure [dc on the other hand, we observe that
the dynamics are clearly not invariant under transla-
tions in the initial velocity v(0). After performing the
same analysis with regards to the other state vari-
ables Uy 1, and Uy g, we can conclude that we only
need to define scenarios with respect to the initial
velocity v(0) and the active constraints v, (t) and

Vmaz ().

3.2.2 Constraints

100

% N @

a (d)

ae
i
v [km/h]

v [km/h]

0
0 1000 2000

p [m]
(a)

Figure 5: (a) Possible scenarios of boundary condi-
tions. a: constant velocity. b: acceleration. c: de-
celeration. d: stop sign. (b) Computation of lower
bound @y, for the velocity gradient dv/dp.

3000 1000 pi pf

A constraint on the velocity is given by the current
speed limit v, (p) which depends on the current
vehicle position. Since we need to avoid interfering
with other vehicles by driving too slow, we define a
minimal velocity vpin(p) = 0.8 « Uymaz(p). (Here we
have written the velocities as functions of the posi-
tion because they are given by the problem formu-
lation this way. In the MOCP, they have to be re-
formulated as functions of time.) Our set of feasible
states is now determined by the velocity constraints,
i.e. Umin(t) < v(t) < Umaz(t), which determine the
different scenarios. We distinguish between four cases
(see Figure [Fp). While the cases constant velocity
(box constraints) and stopping (v = 0 at the stop

sign) are easily implemented, we introduce a linear
constraint for the scenarios (b) and (c), respectively
(see Figure) where, depending on the current ve-
locity, a minimal increase Gpmin = (dv/dp)min or de-
crease, respectively, must not be violated. An exam-
ple is shown in Figure [} where the Pareto set (Gp)
and the resulting velocity profiles @b) are shown for
the scenario v(0) = 60 km/h and Gy, = 0.05 %
Note that here, we have chosen the control u to
be constant over the prediction horizon in order to
reduce the numerical effort. As mentioned in Sec-
tion [2.1, we cannot solve an MOCP for every initial
condition. Solving an MOCP for every step of 0.1 in
the initial velocity leads to 1727 MOCPs in total.

m|

= 400

N

S
300 65

200 60
0 50 100 0 50 100
p [m] p[m]

(a) (b)

Figure 6: (a) Pareto set for an accelerating scenario
with v(0) = 60 km/h and @y, = 0.05 2% (1) The
corresponding trajectories of v(t).

3.3 Online Phase: Multiobjective MPC with
Paretooptimal Control Primitives

The online phase is now exactly as described in Sec-
tion In each sample time, the current velocity
and the active constraints (for the current position)
are evaluated in order to determine the valid scenario.
The corresponding Pareto set is then selected from
the library and according to the weighting parame-
ter p € [0,1] determined by the decision maker, an
optimal compromise is chosen which is then applied
to the system. On a standard computer, this opera-
tion takes in the order of 1073 seconds in Matlab.

4 Results and Discussion

In Figure [7] several solutions with different weights
p are shown for an example track including two stop
signs. The set of feasible states is bounded by the
red lines v, and vyez:. The dashed lines corre-
spond to constant weights, varying from p = 0 (en-
ergy efficiency) to p = 1 (high velocity) and the solid
green line is a solution where the weighting is changed
from 0 over 0.5 to 1 during driving. We clearly see
that the vehicle is driving according to the decision
maker’s preference. This means that we have realised
a closed-loop control for which the objectives can be

100

m

*’ff)()

Figure 7: Different trajectories computed by the
MPC approach. The dashed lines use a constant
weight p whereas the green line possesses dynamic
weighting (p = 0/0.5/1.0, respectively)

adjusted dynamically. This can either be done man-
ually or by an additional algorithm, which for exam-
ple takes into account the track, the battery state of
charge and the current traffic. The objective func-
tion values for the entire track and different values of
p are depicted in Figure [8h.

Figure 8: Function values for the scenarios depicted
in Figure [7] and in Figure [9] for different weights p
and in comparison to the Dynamic Programming so-
lution.

In order to evaluate the quality of our solution, we
compare it to a control computed via dynamic pro-
gramming (DP, see [20] for an introduction and [21]
for the algorithm that is used): For computational
reasons, the comparison is performed on a shorter
track without stop signs and a relatively coarse dis-
cretisation leading to a 100-dimensional problem. In
the DP problem, we use a simplified linear model
(cf. [8]) and the objective is a weighted sum of
the MOCP @, J =ty + BE(ly), where E is the
consumed energy computed by integrating over the
wheel torque and 3 = 6 - 107°. In Figure , we see
that the solution obtained via DP is superior to our
MPC approach. This is not surprising since in MPC,
we only consider a finite horizon such that the results
are at best suboptimal ([5]), whereas the entire track
is considered at once in DP. Consequently, the DP
algorithm is not real-time applicable and does not
possess feedback behaviour. Additionally, we have

until now only considered constant torques over the
prediction horizon in our approach. We intend to re-
fine the discretisation in future work and expect an
improved performance.

100 ¢

2000

205 -
0 ‘ v
2000 3000
p [m]

Figure 9: Validation of the approach versus a Dy-
namic Programming solution (blue). Green line: dy-
namic weighting according to the lower plot.

When using a simple, manually tuned heuristic for
the preference p instead of fixed values (larger values
for p at low velocities, lower values at high velocities
and linear changes in p when approaching braking
manoeuvres, see Figure @ bottom), we see that we
can improve the quality of our solution significantly
which is now comparable to the global optimum ob-
tained by DP. We see in Figures |§| (top) and , re-
spectively, that the resulting trajectories as well as
the function values J; and Jo almost coincide. By
this, we obtain two different ways to utilise the re-
sults. On the one hand, a decision maker can select
the preference according to his wishes and on the
other hand, p can be determined by a heuristic, lead-
ing to solutions of a quality comparable to the global
optimum.

5 Conclusion

We present an algorithm for MPC of non-linear
dynamical systems with respect to multiple criteria.
The algorithm utilises elements from economic and
explicit MPC, multiobjective optimal control and
motion planning. According to a decision maker’s
preference, the system is controlled in real-time with
respect to an optimal compromise between con-
flicting objectives. Using a simple heuristic for the
weighting factor p, we obtain solutions of equivalent
quality compared to a global optimum computed by
open loop DP. In the future, we intend to analyse
the proposed method from a more theoretical point
of view, addressing questions concerning feasibility
and stability for systems where these aspects are
critical. Furthermore, we want to improve our

control strategies by developing intelligent heuristics
for the preference weighting function p.

Acknowledgement: This research was funded by
the German Federal Ministry of Education and Re-
search (BMBF) within the Leading-Edge Cluster In-
telligent Technical Systems OstWestfalenLippe (it’s
OWL).

References

1]
2]

M. Ehrgott. Multicriteria optimization. Springer
Berlin Heidelberg New York, 2005.

C. A. Coello Coello, G. B. Lamont, and D. A.
van Veldhuizen. FEwvolutionary Algorithms for
Solving Multi-Objective Problems, volume 2.
Springer New York, 2007.

O. Schiitze, K. Witting, S. Ober-Blébaum, and
M. Dellnitz. Set Oriented Methods for the Nu-
merical Treatment of Multiobjective Optimiza-
tion Problems. In Emilia Tantar et al., editor,
EVOLVE - A Bridge between Probability, Set
Oriented Numerics and Evolutionary Computa-
tion, volume 447 of Studies in Computational
Intelligence, pages 187-219. Springer Berlin Hei-
delberg, 2013.

J. M. Maciejowski. Predictive Control: With
Constraints. Prentice Hall, Harlow, England,
2002.

L. Griine and J. Pannek. Nonlinear model pre-
dictive control. Springer, 2011.

S. J. Qin and T. A. Badgwell. An overview of
industrial model predictive control technology.
In AICRE Symposium Series, volume 93, pages
232-256. American Institute of Chemical Engi-
neers, 1997.

J. H. Lee and B. Cooley. Recent advances in
model predictive control and other related ar-
eas. In AIChE Symposium Series, volume 93,
pages 201-216. American Institute of Chemical
Engineers, 1997.

J. Eckstein, K. Schéfer, S. Peitz, P. Friedel,
S. Ober-Blobaum, and M. Dellnitz. A Com-
parison of two Predictive Approaches to Control
the Longitudinal Dynamics of Electric Vehicles.
Procedia Technology, 26:465-472, 2016.

J. B. Rawlings and R. Amrit. Optimizing pro-
cess economic performance using model predic-
tive control. In Nonlinear model predictive con-
trol, pages 119-138. Springer, 2009.

M. Diehl, R. Amrit, and J. B. Rawlings. A lya-
punov function for economic optimizing model
predictive control. IEEE Transactions on Auto-
matic Control, 56(3):703-707, 2011.

[11]

[12]

[13]

[14]

A. Alessio and A. Bemporad. A Survey on Ex-
plicit Model Predictive Control. In Lalo Magni,
Davide Martino Raimondo, and Frank Allgéwer,
editors, Nonlinear Model Predictive Control:
Towards New Challenging Applications, pages
345-369. Springer Berlin Heidelberg, 2009.

E. Frazzoli, M. A. Dahleh, and E. Feron.
Maneuver-Based Motion Planning for Nonlinear
Systems with Symmetries. IEEE Transactions
on Robotics, 21(6):1077-1091, 2005.

M. Kobilarov. Discrete geometric motion control
of autonomous vehicles. PhD thesis, University
of Southern California, 2008.

K. Flalkamp, S. Ober-Blébaum, and M. Kobi-
larov. Solving Optimal Control Problems by
Exploiting Inherent Dynamical Systems Struc-
tures. Journal of Nonlinear Science, 22(4):599—
629, 2012.

A. Bemporad and D. Mutioz de la Pena. Multi-
objective model predictive control. Automatica,
45(12):2823-2830, 2009.

V. M. Zavala and A. Flores-Tlacuahuac.
Stability of multiobjective predictive control:

A utopia-tracking approach. Automatica,
48(10):2627-2632, 2012.
M. Dellnitz, J. FEckstein, K. Flalkamp,

P. Friedel, C. Horenkamp, U. Ko&hler, S. Ober-
Blobaum, S. Peitz, and S. Tiemeyer. Multiob-
jective Optimal Control Methods for the De-
velopment of an Intelligent Cruise Control. In
G. Russo et al., editor, Progress in Industrial
Mathematics at ECMI 2014 (to appear), 2016.
J. Nocedal and S. J. Wright. Numerical Opti-
mization. Springer Science & Business Media,
2006.

M. Dellnitz, J. Eckstein, K. Flalkamp,
P. Friedel, C. Horenkamp, U. Kohler, S. Ober-
Blobaum, S. Peitz, and S. Tiemeyer. Develop-
ment of an Intelligent Cruise Control Using Op-
timal Control Methods. In Procedia Technology,
volume 15, pages 285-294. Elsevier, 2014.

R. E. Bellmann and S. E. Dreyfus. Applied dy-
namic programmang. Princeton University Press,
2015.

O. Sundstrom and L. Guzzella. A generic dy-
namic programming Matlab function. In 2009
IEEE Control Applications, (CCA) & Intelligent
Control, (ISIC), pages 1625-1630, 2009.

	1 Introduction
	2 Problem Formulation and Methodology
	2.1 The Offline-Online Multiobjective MPC Concept

	3 Application to Electric Vehicle
	3.1 Vehicle Model
	3.2 Offline Phase: System Analysis and Solution of Multi- objective Optimal Control Problems
	3.2.1 Symmetry Analysis
	3.2.2 Constraints

	3.3 Online Phase: Multiobjective MPC with Paretooptimal Control Primitives

	4 Results and Discussion
	5 Conclusion

