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ABSTRACT. Web surveys are frequently based on samples drawn from panels with large amounts
of nonresponse or haphazard selection. The availability of large-scale consumer and voter data-
bases provides large amounts of auxilliary information for both panelists and population members.
Sample matching, where a conventional random sample is selected from a population frame and the
closest matching respondent from the panel is selected for interviewing, is proposed. It is shown that
under suitable assumptions (primarily ignorability of panel membership conditional upon the match-
ing variables), the resulting survey estimates are consistent with an asymptotic normal distribution.
Simulation results show that the matched sample estimators are superior to weighting a random sub-
sample from the panel and have a similar sampling distribution to simple random sampling from the
population. In an example involving the 2006 U.S. Congressional elections, estimates using sample
matching from an opt-in Web panel outperformed estimates based on phone interviews with RDD
samples.

1. INTRODUCTION

Prior to the 1970’s, nearly all survey interviewing was conducted in person or by mail. High
quality surveys were conducted in person using area probability samples, while much market re-
search was performed on mail access panels using quota sampling. With the advent of random
digit dialing (RDD), an intermediate possibility arose: it was possible to construct a respectable
probability sample from phone numbers and save substantial amounts by conducting interviews
over the phone (as well as by using some clever sampling designs such as that proposed by Mitof-
sky and Waksberg). Nearly all media polling and most academic surveys, except a few large and
generously funded projects such as the National Election Studies and the General Social Survey,
quickly moved to the phone. Most households had telephones and, initially, response rates were
quite high. However, over time response rates have deteriorated so that most media polls now have
response rates around 20 percent. With enough time and effort, it is possible to achieve response
rates of approximately 40 percent with RDD (largely by reducing non-contact), but there is little
evidence that the additional time and expense is worth the effort (Holbrooket al., 2005).

The advent of the World Wide Web in 1991 created yet another possibility for interviewing. A
number of large opt-in Web access panels were created in the 1990’s and now dominate survey
data collection for market research. However, unlike phone numbers, there was no obvious way
to sample email addresses, so that most Web surveys were conducted using convenience samples
(often involving quota sampling). Naturally, most surveys conducted on mail panels, which had
long ago abandoned probability sampling, were among the first to migrate to the Web and the
traditional mail panel vendors now operate some of the largest Web panels. Few in the academic
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or media world (at least in the U.S.) were willing to sacrifice probability sampling (in the form of
RDD) for the economies of Web interviewing if it required a switch to quota sampling.

Norman Nie and I founded Knowledge Networks (originally InterSurvey) in 1998 with the idea
of bringing probability sampling to the Web. The approach used by Knowledge Networks ad-
dresses the fundamental problems of sampling for Web surveys. The panel was recruited using
RDD, so the sampling methodology was not particularly controversial. Coverage of households
without Internet access was accomplished by providing respondents with an inexpensive device to
connect to the Internet. For many items, the panel produces estimates that appear quite similar to
conventional RDD surveys conducted using telephone interviewing.

There are, however, several drawbacks to this approach. First, it is quite expensive, so the feasi-
ble panel size is fairly small (currently about 35,000 households). Second, like most RDD surveys,
it suffers from falling response rates, leading to significant underrepresentation of certain groups
(minorities, low education, students). Further, panel attrition further compromises the sample, so
that the overall response rate is disappointingly low. In a report of a 2001 survey, for example, the
reported response rate for panel recruitment was 41%, of whom 64% had attrited. The within-panel
response rate for the survey was 73%, for a cumulative response rate of0.41×0.36×0.73 = 11%.
(Schlengeret al., 2003, p. 582)1 For the most part, panel biases could be adequately dealt with by
post-stratification on some demographic variables, but this means that inferences rest as much on
the effectiveness of the weighting adjustment as upon sample selection.

Over time, I’ve come to the belief that non-probability samples are a reasonable approach for
certain types of problems. There is little argument that convenience samples are adequate for exper-
imental studies, even when the conclusions are intended to apply to some larger population. These
are essentially model-based inferences that come from assuming that the experimental effects are
homogeneous within the relevant population. Similarly, substantial levels of nonresponse (as ex-
perienced, for example, by most surveys conducted for media organizations) require model-based
adjustments. Any inferences from such samples depends as much upon the validity of unverifiable
assumptions as on random selection. There is no logical difference between the type of modeling
assumptions needed for nonresponse adjustments and those needed for self-selected samples.

In the case of Web survey panels, all methods of recruitment (including those that start with
some form of probability sampling) will inevitably involve some degree of self-selection. Without
adjustment, survey estimates based upon such samples will be biased. Conventional methods of
adjustment, such as quota sampling or post-stratification based upon a few demographic variables,
are inadequate to address these biases. (See, for example, Couperet al., 2007.)

The purpose of this paper is to discuss methods of selecting subsamples from an opt-in Web
panel that simultaneously reduce bias and improve efficiency. The availability of large amounts of
auxiliary information from consumer and voter databases make it feasible to select a sample that is
approximately balanced on a large set of variables. Sample matching is proposed as a cost-effective
method for constructing samples with minimal bias. With sample matching, a population frame
that includes large amounts of auxilliary information is used to select a target sample using known
probabilities of selection. For each element of the target sample, the closest matching element
from the panel is selected for interviewing. Because of imperfect matching, the resulting sample

1This calculation does not take into account non-coverage of households without English speakers or toll-free
Internet access. It is unclear whether the reported response rate includes within-household selection.
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still needs to be weighted, but the weights are much smaller than would be required for either a
random subsample or a quota sample.

The plan of the paper is as follows. Section 2 establishes the notation and some basic definitions,
such as ignorable selection, that are used in the rest of the paper. Section 3 discusses the problems
of non-response in the context of a panel selected using probability sampling. Section 4 describes
quota sampling and its equivalence to post-stratification for non-response. Section 5 describes the
“closest neighbor” sample matching technique and some of its theoretical properties. Section 6
presents some Monte Carlo simulations showing that, if ignorability holds, the performance of
sample matching from a large panel is close to that of simple random sampling. Section 7 provides
an application of sample matching, as it was employed in the 2006 Cooperative Congressional
Election Study (CCES).

2. NOTATION AND DEFINITIONS

2.1. Notation. We are concerned with the estimation of characteristics of a large population
whose units shall be indexed byi. For simplicity, assume that the population size is infinite or
that we are sampling with replacement so that finite population corrections can be ignored. We
shall adopt the model-based or prediction approach where the observations are generated by an
unknown probability distributionP .

Let Yi denote the measurement of interest on theith unit. A survey will be conducted to collect
these measurements. LetXi denote a set of covariates. We shall assume that measurements on
the covariates are available for either the entire population or a probability sample (with known
selection probabilities) from that population or, in some cases, just the marginal distribution ofXi

in the population. For example,Xi could include party registration and vote history (e.g., whether
personi voted in the previous election) and demographics (e.g., age, gender and race) from a voter
registration list. We might conduct a survey to measure vote intention in the coming election (e.g.,
intend to vote for Bush or Kerry or not vote).

The data are collected from members of a pre-recruited panel. LetZi be an indicator of whether
personi belongs to the panel or not. The selected sample is drawn from the set of panel members.
To avoid unnecessary detail, all selected panelists are assumed to complete the survey so the within-
panel response rate is 100 percent. In fact, within-panel response rates vary from very low (a few
percent) to quite high (panels that are frequently purged of non-cooperators can have response
rates in excess of 70 percent). However, a non-response model is formally identical to a panel
membership model, so these complications could be dealt with by redefiningZi to be an indicator
of responding to the survey, rather than belonging to the panel, with no loss of generality.

To simplify the notation, we will letX̃1, . . . , X̃N denote the values of the covariates for theN
members of the panel. SimilarlỹY1, . . . , YN will denote the corresponding values of the measure-
ments for the panel members. LetP̃ denote the distribution of the panel,i.e.

P{X ∈ A, Y ∈ B|Z = 1} =
P{X ∈ A, Y ∈ B,Z = 1}

P{Z = 1}

for any Borel setsA andB. To avoid trivialities, assume that0 < P (Z = 1) < 1, so thatP̃ is
uniquely defined.
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In general, because of either non-response or self-selection, the two distributionsP andP̃ will
differ. The parameters of the panel distributionP̃ are generally not the ones we are interested in.
However, we do not sample fromP , but from the panel, which is governed by the conditional
distributionP̃ .

We will make minimal assumptions about the population data generating process. As is conven-
tional in model-based inferences, the observations are assumed to be independent and identically
distributed. This can generally be justified by an appeal to de Finetti’s Theorem.

Assumption 1 (IID Data Generating Process). The observations(Xi, Yi, Zi) are independently
and identically distributed with unknown probability measureP .

The parameter of interest for most purposes will be the mean ofY ,

θ0 = EY =

∫
Y dP =

∫
yfY (y) dy

wherefy is the density ofY .2

2.2. Selection Mechanisms.Two alternative assumptions are often made about the panel selec-
tion method. In conventional longitudinal panels (selected using area probability sampling) or
RDD panels it is assumed that the selection process is “representative,” so thatZ is independent
of bothX andY . This corresponds tomissing completely at random(MCAR) in Little and Rubin
(2002, p. 11).

Assumption 2(Random Selection). Z is independent of(X, Y ).

This is an extremely strong assumption. A weaker assumption is that the panel selection mecha-
nism is conditionally independent of the measurementsY given the covariatesX. This corresponds
to missing at random(MAR) or ignorablenon-response.3

Assumption 3(Ignorable Selection). Z is independent ofY givenX.

The plausibility of the ignorability assumption depends, of course, on what variables are in-
cluded among the covariates.

We restate these conditions in terms of the density functions forX andY in the population
and the panel. In the population, the joint density ofX andY will be denoted byfXY and the
corresponding joint density in the panel byf̃XY , so

P (X ∈ A, Y ∈ B) =

∫
A

∫
B

fXY (x, y) dy dx

P̃ (X ∈ A, Y ∈ B) = P (X ∈ A, Y ∈ B|Z = 1) =

∫
A

∫
B

f̃XY (x, y) dy dx

2Y may be either continuous (in which casedy is Lebesgue measure) or discrete (in which casedy is counting
measure) or some mixture. The densities are not uniquely defined, but two versions will be equal to one another
except for a set of measure zero. I have tried to eliminate discussion of measure theoretic issues from the text.

3“Ignorable” non-response is an unfortunate choice of terminology, since it certainly can’t be ignored by the analyst.
But the terminology seems to have stuck.
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The marginal distribution ofX is obtained by integrating outY ,

fX(x) =

∫
fXY (x, y) dy

f̃X(x) =

∫
f̃XY (x, y) dy

and similarly for the the marginal distribution ofY in each case. The conditional density ofY
givenX is given by

fY |X(y|x) = fXY (x, y)/fX(x)

f̃Y |X(y|x) = f̃XY (x, y)/f̃X(x)

The random selection assumption is that

f̃XY (x, y) = fXY (x, y)

for almost allx andy. The ignorable selection assumption is that

f̃Y |X(y|x) = fY |X(y|x)
for almost allx andy.

2.3. The Propensity Score.Rosenbaum and Rubin (1983) define thepropensity scoreto be

e(X) = P{Z = 1|X}.
Under ignorable selection,Z is independent ofX and the propensity score is constant.

The critical property of the propensity score is that it may be used to balance a sample for a large
number of covariates. Both post-stratification and matching run into problems when the number of
covariates is large. With post-stratification, small (or, worse yet, empty) cells lead to estimates with
large variance. As discussed later, there is a “curse of dimensionality” problem when matching on
a large number of characteristics. Thus, it is useful to have a one-dimensional measure that can be
used for either post-stratification or matching.

The following elementary result from Rosenbaum and Rubin (1983, Theorem 1) shows that
the propensity score incorporates all information necessary to balance a sample. Rosenbaum and
Rubin prove the result for discreteX, but it is easy to extend to arbitraryX, though, as shown
below, the result only holds with probability one.

Theorem 1.X andZ are conditionally independent givene(X).

Proof. By the argument in Dawid (1979),X andZ are conditionally independent givene(X) if
and only if

P{Z = 1|X, e(X)} = P{Z = 1|e(X)} a.s.

First, note that sinceZ is Bernoulli ande(X) is a (measurable) function ofX,

P{Z = 1|X, e(X)} = E[Z|X, e(X)] = E(Z|X) = e(X) a.s.

Second, by iterated expectations,

P{Z = 1|e(X)} = E[Z|e(X)] = E[E(Z|X)|e(X)]

= E[e(X)|e(X)] = e(X) a.s.

Combing these two results proves the theorem. �
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In practice, the propensity score must be estimated. If the distribution ofX in both the panel
and non-panel populations belong to a common exponential family (possibly with different para-
meters), then the propensity score can be estimated by a logit model.

Theorem 2. Suppose that the distribution ofX conditional onZ belongs to an exponential family
with canonical sufficient statistict(X), i.e.,

fX(x|Z = z) = exp{βT
z t(x)− αz − ψ(x)} (z = 0, 1).

Then

log

(
e(x)

1− e(x)

)
= α+ βT t(X),

where

α = log

(
P{Z = 1}
P{Z = 0}

)
+ α0 − α1

β = β1 − β0.

Proof. By Bayes’ Theorem,

e(x) = P{Z = 1|X = x} =
P{Z = 1}fX(x|Z = 1)

fX(x)
.

Similarly,

1− e(x) = P{Z = 0|X = x} =
P{Z = 0}fX(x|Z = 0)

fX(x)
.

Taking logs and subsituting for the densities proves the result. �

When the panel is small, there is little difference between the population densityfX(x) and the
non-panel densityfX(x|Z = 0), so, aside from the intercept, the propensity score can be estimated
by pooling the panel with a sample from the population and estimating a logistic regression for
membership in the population sample. The quantity estimated isnot the propensity score (since the
intercept is wrong), but the panel can be weighted by subclassification on the propensity score. The
method has been used by Harris Interactive for weighting samples from its Web panels. Recently,
semi-parametric alternatives have been developed which do not require parametric assumptions
about the distribution ofX.

3. RDD RECRUITMENT OF A WEB PANEL AND NON-RESPONSE

3.1. Practical Issues.There are fundamentally two problems with sampling for Web surveys:
lack of coverage for persons without Internet access and non-random selection. The undercover-
age problem, while not insignificant, is much less serious today, with roughly 70 percent Internet
penetration, than in 1998 when fewer than a quarter of U.S. households had Internet access. Even-
tually the undercoverage problem is likely to disappear, much as it did for telephones in the 1950’s
and 1960’s. However, nonrandom selection continues to be a problem as there is no ready analog
of either area probability sampling or random digit dialing for Internet users.

One approach is to use conventional sampling techniques, such as RDD, to recruit panelists.
If the target population consists only of Internet users (as, for example, it does for Web mea-
surement), then one just excludes anyone selected without Internet access. Nielsen//NetRatings
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recruited its original panel using this technique. Alternatively, one can supply selected households
with hardware to connect them to the Internet, as was done by Knowledge Networks (then called
InterSurvey) starting in 1999 (using Microsoft’s WebTV product, later renamed MSN TV). A sim-
ilar panel was subsequently recruited in Germany and the NSF is currently funding two device
panels in the U.S. (one using RDD, the other area probability sampling). Gallup has also recruited
an Internet-only panel from, I believe, persons who have participated in their phone surveys.

The use of conventional sampling methods is simple and relatively uncontroversial. However,
there are a number of practical difficulties:

• It’s expensive. It’s difficult to recruit respondents to join a panel and the cost of hardware
and ongoing maintenance is high.

• Response rates for non-Internet users are quite low. The primary reason that persons in the
U.S. do not have Internet access today is that they don’t want it, not that it is too expensive
or unavailable.

• Compliance is poor. About a third of the households that were provided with hardware did
not install it. Few were interested in receiving help from professional installers.

• Attrition is high. Although few respondents explicitly unsubscribe, many stop responding
to survey invitations. The effective attrition rate for commercial panels appears to be about
four percent per month.

• Even active panelists do not respond to all surveys. The within-panel response rate is
largely dependent on how aggressively inactive panelists are removed from the panel, but
even the best managed panels rarely achieve response rates above 70 percent for single
surveys.

Some of these problems (such as Internet access) have diminished and others are not as severe as
they might first appear (attrition is low among some groups that are difficult to recruit, such as the
elderly), so that the performance of this type of panel has generally been good. The Knowledge
Networks panel, for example, appears to give quite similar results to a good quality RDD sample.
However, both the KN and conventional RDD telephone samples require substantial amounts of
weighting.

The actual response rate, correctly calculated, for this type of panel is quite low. There are many
stages at which nonresponse can occur. First, it is impractical to enroll some households. For
example, flat rate Internet access is not available in some rural areas. Households with no English
speakers require a non-English operating system and instructions. If the recruitment is done by
phone, anyone outside of the RDD sampling frame (such as cellphone-only households) is lost.
Together, these factors eliminate over ten percent of the target population. Second, even with a long
field period (to reduce non-contact), recruitment response rates are in the range of about 30 percent.
This, it should be noted, is ahouseholdresponse rate. Not everyone in the household agrees
to participate (and cooperation is very low except for the person who completes the recruitment
interview). A good rate of participation within a household would be 75 percent. Once a person
is enrolled in the panel, one faces the challenge of getting their hardware installed (if hardware is
supplied to them) or to respond to an email invitation (if they already have email access). Roughly
a third of new recruits never complete a survey beyond the recruitment interview. Of those who
do complete a survey, one can count on about four percent a month becoming inactive. Finally,
among active panelists, a good response rate for a single survey is about 70 percent. Overall, this
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implies a cumulative response rate around 11 percent for a new panelist and falling to about half
that level after a year.

3.2. Equivalence of Non-response and Self-selection.There is no important difference between
non-response and self-selection: in both cases, the data are generated by an unknown distribution
which may be different from the population distribution. In a panel recruited using probability
sampling, there are actually two distinct components of selection. First, there is the probabilistic
selection of respondents by the surveyor using RDD or some other form of random selection.
Let Z∗i be an indicator for whether personi was selected at random from the population using
this mechanism. Once selected, there are still several ways that the respondent may end up being
unavailable, including non-contact, non-cooperation, and attrition from the panel. LetRi denote an
indicator of whether the selected respondent participates in the panel, so actual panel participation
(as opposed to panel selection, represented byZ∗i ), is given by

Zi = Z∗i Ri.

If simple random sampling is used to select the panel, thenP{Zi = 1} is constant andZi is
independent ofRi. However, the distribution ofRi is unknown and may be dependent upon the
covariates, so the joint distribution ofRi andXi is unknown. This implies that the conditional
distribution ofXi given Zi = 1 can be written as̃fX(x) and is proportional to the unknown
conditional density ofXi givenRi = 1.

If the amount of non-response is small, it is possible to put bounds on the size of the bias, as
suggested by Cochran, Mosteller and Tukey (1953).4 Unfortunately, as Cochran (1973, p. 362)
comments, “The limits are distressingly wide unless [the non-response rate] is very small.” The
“sad story,” as Cochran calls it, is that non-response rates higher than about ten percent make it
virtually impossible to “attain a highly guaranteed precision” within conventional sampling theory.
This does not imply that inferences from samples with moderate or large amounts of non-response
or self-selection are necessarily wrong, but that such inferences depend upon some modeling as-
sumptions that may be difficult or impossible to check.

4. QUOTA SAMPLING IN WEB PANELS

4.1. Practical Issues.At the other extreme are pure opt-in panels and “river samples.” For opt-in
panels, banner ads, email lists, co-registration sites, and other methods are used to recruit panelists.
For river samples, a large Web site (such as AOL) funnels persons with known characteristics who
are surfing the Web to take the survey. No one pretends that this yields a random sample of the
population, but samples can be selected using quotas to match the population distribution of some
variables. Quotas for age, race, and gender are common.

Quota sampling has a poor reputation among those schooled in sampling theory. However, quota
sampling on the Internet is rather different from that used for in-person interviewing (where the
interviewer is given discretion on whom to select so long as the requisite number of interviews is

4I first learned of this result from Chuck Manski when we were Fellows at the Center for Advanced Study in
the Behavioral Sciences during 1992-93. During that year I was involved in a consulting project involving some
sampling and, by chance, found (from a reference in Cochran’s textbook on sampling) that this simple bound had been
discovered much earlier, though neither of us were aware of it. It is also not cited in texts on survey methodology (e.g.,
Groveset al., 2004) and appears unknown to most practitioners.



SAMPLING FOR WEB SURVEYS 9

obtained in each quota cell). Quota sampling on the Internet generally amounts to drawing random
samples from the panelists in each cell. This is equivalent to post-stratifying on the quota cells.
Under an assumption of ignorability (discussed later), this estimator is a maximum likelihood
estimator and has some desirable properties.

The composition of most Web panels is skewed, though not entirely in the ways one would
expect. Panelists tend to be too white, male, and educated (as is the Internet population more
generally), but also too old. Young people, especially males, do not sign up for Internet panels
very often. The groups that are hard to reach on the phone are difficult to reach on the Internet
and, while the skews are somewhat larger on the Internet, the difference is not huge. A typical
phone sample might be 7 or 8 percent black, compared to 5 or 6 percent in an opt-in Internet panel
(versus 11 percent in the population).

There are several drawbacks of the quota sampling approach.

• Filling quotas is difficult if the number of cells is large and “sampling” can degenerate into
desperate attempts to find anyone with the desired characteristics.

• There is no guarantee that the persons in each cell are at all typical of the population mem-
bers in the same category. This is the problem of nonignorable selection, but, as discussed
later, it is particularly serious when cells are defined by a small number of variables.

• To make it easier to fill quotas, often “parallel” or marginal quotas are employed (so that
only the marginal distributions, rather than the joint distribution, of the quota variables are
required to match the population distribution). This has both practical problems (the “easy”
cells get filled quickly) and theoretical problems (the conditional distributions can be quite
far off).

Despite these difficulties, the performance of quota samples is quite a bit better than their repu-
tation. A few appropriately chosen quotas can remove a large amount of bias from self-selection
into a panel. No weighting is needed, so the analysis is simplified substantially.5 The most serious
objection, I think, is that it is impossible to rule out hidden biases that will eventually lead to badly
mistaken inferences. Routine use of quotas for age, race, and gender will frequently “work,” but
not always and there is no way to tell which situation you are in.

Of course, the same is true of nonresponse corrections for probability samples. Sometimes they
work and sometimes they don’t. What is remarkable is that fairly crude techniques, such as cell
weighting and quotas, work as well as they do. In view of the evident unrepresentativeness of
panels recruited using probability sampling (with low response rates) or haphazardly, I concluded
that the payoff from better modelling of nonresponse and selection mechanisms would be higher
than raising response rates a few points.

4.2. Theoretical Issues.Little serious has been written about quota sampling and most of that is
quite critical (e.g., Kish (1965) or King (1983)). It is, however, fairly simple to state some simple
conditions that ensure the theoretical validity (even optimality) of quota sampling. Of course, the
fact that such conditions can be stated does not mean that they are applicable or reasonable, but I
would argue that the theoretical argument against quota sampling is not so strong as is commonly
believed by most survey methodologists. Smith (1976) pointed out that ignorability is necessary
for both quota sampling and probability sampling with nonresponse. Jagers (1986) proved some

5Standard errors assuming simple random sampling will be incorrect, but these are easy to fix.
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optimality properties for post-stratification that can be applied to quota sampling. Results on max-
imum likelihood under non-standard conditions (e.g., Huber, 1965) can be used for standard error
calculations.

When the covariates are discrete, the “sample” (however obtained) can be divided into a set of
poststratification cells. Letσ(X) denote the cross-classification of the covariates6 The marginal
distribution ofX is assumed to be known, so for eachA ∈ σ(X),

P (X ∈ A) =

∫
A

fX(x) dx = pA

is given. The corresponding sample frequency,

p̂A = n−1
∑
i∈S

1A(Xi)

whereS denotes a sample of sizen drawn at random from the panel, estimates

P̃ (X ∈ A) =

∫
A

f̃X(x) dx = p̃A.

The post-stratified estimate of the population mean is

θ̂PS = n−1
∑
i∈S

wiyi

where

wi =
pA

p̂A

if Xi ∈ A.

It is shown in Jagers (1986) thatθ̂PS is the nonparametric maximum likelihood estimator ofθ if Yi

is dichotomous and nothing is known about the panel distribution ofX.

Regardless of whether ignorability holds or not, it is feasible to calculate standard errors forθ̂PS.
Since

lim
n→∞

p̂A = p̃A a.s.

we have

θ̂PS = n−1
∑
i∈S

w∗i yi + oP (n−1/2)

wherew∗i = p̃A/pA whenXi ∈ A, so ∑
i∈S w

2
i (yi − θ̂PS)

2

(
∑

i∈S wi)2

is a robust standard error forθ̂PS.

6Technically, the sigma field generated by the covariates. If the covariates are each categorical, the elements ofX
are simple random variables andσ(X) contains a finite set of members.
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5. SAMPLE MATCHING

5.1. Introduction. The existence of a sampling frame that contains extensive data aboutall in-
dividuals can be used to improve survey estimates. Model-assisted survey sampling utilizes the
auxilliary information for ratio or regression estimation in the context of probability sampling.
This type of data can also be used in a similar way for non-response calibration. (Särndal and
Lundstr̈om, 2005)

Sample matching is a purposive method for creating a sample when a large, but possibly un-
representative, pool of respondents is available for interviewing that can be matched to units in
the sampling frame according to some auxiliary variables. The fundamental idea is that one first
selects atarget samplefrom the sampling frame using some form of random sampling. However,
instead of interviewing those in the target sample, one finds the closest match in the pool of avail-
able respondents to each unit in the target sample. Collectively, the matched units are called the
matched sampleand they will resemble the target random sample in terms of the variables used
for matching. The matching need not be exact—matching is usually performed using a distance
function that measures the similarity between a pair of respondents—but if the pool of available
respondents is sufficiently large and diverse, the matched sample is guaranteed to have approxi-
mately the same joint distribution of the matching variables as the target sample.

The idea of sample matching is familiar from observational studies where randomization is too
costly or impossible. Instead of randomizing treatments, one creates a “control group” by selecting
observations out of a reservoir7 of untreated cases. The observations are selected to match those in
the treatment group as closely as possible. The reservoir is not intended to be representative of the
population. So long as selection is ignorable, it is more important that it be sufficiently large and
diverse to find good matches.

The use of matching in survey sampling is somewhat different than in observational studies. If a
random sample is available from the population of interest, a matched sample is created in the same
way a control group is for an observational study. The measurements of interest are then collected
for the matched sample. The purpose is not to estimate differences between the two groups (since
the measurements of interest are not available for the random sample from the population), but to
estimate the population characteristics using the matched sample alone.

The panel acts as the reservoir from which the cases are drawn. However, unlike in observational
studies where data on the entire reservoir has already been collected, the selected panel members
must be surveyed and not all will respond. Consequently, the usual method of computing propen-
sity scores (as described in Section 2.3) is ineffective, since these cannot be calculated until it is
known who will respond.

There are also some precursors in the sampling literature. Hot deck imputation is a form of
matching within a single survey used for item nonresponse. Substitution, where unavailable re-
spondents are replaced by persons with similar characteristics, is another type of matching that
should be employed more frequently. (Any survey with nonresponse implicitly uses substitution.
If no adjustment is made, available respondents have been substituted for unavailable respondents.
If the sample is post-stratified, then responding panelists in the post-stratificaiton cells have been
substituted for non-responding ones.)

7This terminology is due to Cochran (1977), a delightful little volume that is full of sage advice.
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Quota sampling can also be considered a form of matching, where respondents are matched
exactly on whatever characteristics define the quota cells. However, considering quota sampling
from this perspective clearly identifies its primary limitations. For exact matching to be feasible,
the cells must be defined fairly crudely (or else one will encounter empty cells). As a consequence,
it is only possible to match on a limited number of characteristics. Approximate matching on a
larger set of characteristics is much more effective in bias reduction.

What is not generally appreciated is that the development of large scale consumer and voter
databases vastly improve our ability to do effective matching. The combination of voter files
and consumer databases provide detailed information about nearly the entire population and are
particularly relevant for political polling. Almost all registration records contain a name, physical
address, birth date, gender, and vote history (turnout in recent elections). In about half the states,
persons register with a party or choose a party primary to vote in, which is highly predictive of how
they are likely to vote. In a few states covered by Section V of the Voting Rights Act, the registrant’s
race is recorded. From the address, information can be obtained about the registrant’s Census
block and tract, including the average income, education, and racial composition of the registrant’s
neighborhood. From consumer databases, it is possible to obtain additional information, such as
the value of the registrant’s home, types of magazines the household subscribes to, and other types
of information of interest to marketers (but also increasingly of relevance to political campaigns
for “micro-targeting”).

At Polimetrix, we have developed a method (known internally as “turbo sampling”) which dy-
namically matches responding panelists to a set of “target samples.” A target sample is created
for each study and, based upon the set of outstanding invitations and their expected probability of
responding before the end of the field period, invitations are added to the pool of outstanding invi-
tations. When a respondent actually clicks on a link in an email invitation, they are then matched
to the most similar unit in the set of open target samples. This reduces the number of invitations
that must be sent and permits tighter matching.

I will show that under suitable conditions, the matched sample can be usedas if it were a random
sample. That is, the observations in the matched sample are nearly independent and have nearly
the same distribution as a random sample from the target population. However, the needed panel
size grows rapidly as the number of characteristics used for matching increases.

5.2. Regularity Conditions for Sample Matching. Asymptotic results for matching estimators
have been obtained by Abadie and Imbens (2006). Their paper is fairly technical and the setup is for
estimating treatment differences using multiple matches in the control group. Some simplifications
occur in the survey matching application and the ideas emerge clearly (and the proofs are greatly
simplified) for one dimensional matching. The Abadie and Imbens results for higher dimensional
matching are intuitively clear and rely upon the device of transforming to spherical coordinates
that are unnecessary in the one dimensional situation.

We have available a panel of sizeN drawn from the population using an unknown selection
mechanism. Let̃P denote the probability law governing the panel. Any discrete covariates will,
with a sufficiently large panel, eventually be matched exactly or can be stratified upon. To simplify,
we assume that all the covariates have a continuous distribution with bounded support.

Assumption 4(Continuous Covariates with Overlap). The distribution ofX in both the panel and
the population is absolutely continuous with respect to Lebesgue measure with compact and convex
supportSX ⊂ Rk, i.e., P (SX) = P̃ (SX) = 1.
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This assumption of common support is the “overlap” condition in observational studies. It is
necessary for the panel to cover all relevant portions of the population. This condition would fail
if one of the covariates used for matching was, for example, Internet access and the population
included people without Internet access. However, Internet access isn’t necessarily one of the
covariates in the ignorability condition and is only a problem if Internet access is correlated with the
response variableaftercontrolling for the covariatesX. The continuity condition is also convenient
because it means that the closest match is unique with probability one.

The next condition ensures that with a sufficiently large panel, we will always be able to find a
close match.

Assumption 5(Bounded Densities). There existsδ > 0 such that

inf
x∈S(X)

fX(x) ≥ δ and inf
x∈S(X)

f̃X(x) ≥ δ

Next, we need some continuity assumptions on the densities and conditional expectations.

Assumption 6 (Smoothness). There exist versions of the densityf̃X and the conditional expecta-
tion µ(x) = E(Y |X = x) is almost surely Lipschitz continuous onSX .

The condition on the density is technical and can be eliminated. SinceSX is compact, the
conditional expectation will be uniformly continuous. However, we need a stronger smoothness
condition to ensure that close matches on the covariates have, on average, about the same value of
the measurementY . Lipschitz continuity implies the existence of a Lipschitz constantc <∞ such
that

|µ(x)− µ(z)| ≤ c|x− z|
where| · | is a norm onRk. This means that if the covariates are matched closely, the expected
value of the response variable will also be close.

In most cases, the measurementsY will be discrete, so boundedness is not an issue, but we shall
assume that the conditional variance ofY is uniformly bounded.

Assumption 7(Bounded Variance). There existsc <∞ such thatV (Y |X) ≤ c a.s.

This condition is needed for central limit theorems.

5.3. Estimation Using Matched Sampling. With conventional probability sampling, we might
draw a simple random sample of sizen, Y1, . . . , Yn, and estimateθ0 using

θ̂ = n−1

n∑
i=1

Yi.

This estimate has an asymptotic normal distribution,

n1/2(θ̂ − θ0) =⇒ N(0, σ2)

where=⇒ indicates weak convergence and

σ2
0 = V (Y ) = E(Y − θ0)

2.

However, if true probability sampling is infeasible or too costly, but it is easy to draw a sample
of the matching variables̃X, an attractive alternative ismatched sampling. LetX1, . . . , Xn denote
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the target sample, a simple random sample from the populationP . For each element of the target
sample, we find the closest matching element of the panel. IfXi = x, the closest matching
observation in the panel will be denoted by

M(x) = j iff |X̃j − x| ≤ |X̃` − x| for ` = 1, . . . , N

Let
X∗

i = X̃M(Xi)

denote the closest match toXi in the panel. Since the distribution of̃X is continuous, the closest
match is unique with probability one and we may ignore ties. Similarly,

Y ∗
i = ỸM(Xi)

is the corresponding value of the measurement on the matched observation from the panel.Y ∗
i

(unlikeYi) is observable.

We define the matching estimatorθ̃ to be the mean of the matched sample,

θ̃ = n−1

n∑
i=1

Y ∗
i .

We can observe how closelyX∗
i matchesXi. One would hope, if the matching is tight, that the

distribution ofY ∗
i would be close to that ofYi. We do not necessarily expectYi andY ∗

i to be highly
correlated, since the conditional variance ofY givenX may be large, but the distributions should
be similar.

5.4. Theoretical Results for Scalar Matching Variable. For expository purposes, we derive
some simple results whenX is scalar. This case is of some importance (as, for example, when
X is the propensity score for selection into the panel) and is simpler than the case of vectorX
which will be treated subsequently. Then we study the bias and variance of the matched estimator.

First, we derive the conditional distribution ofX∗
i givenXi = x.

Theorem 3. Under Assumptions 1 and 4, the conditional density ofX∗
i givenXi = x is

f ∗X(x̃) = Nf̃X(x̃)[1− F̃X(x+ |x̃− x|) + F̃X(x− |x̃− x|)]N−1

whereF̃X is the distribution function of̃X in the panel,i.e.

F̃X(x̃) = P̃{X ≤ x̃} =

∫ x̃

−∞
f̃X(u) du.

Proof. The density ofX∗
i conditional uponXi = x is the same as the conditional distribution of

X̃j givenM(x) = j. By symmetry,

P̃{M(x) = j} = 1/N.

The marginal density of̃Xj is f̃X(x̃) and the conditional probability thatM(x) = j givenX̃j = x̃
is

P̃{M(x) = j|X̃j = x̃} = P̃{|X̃` − x| > |x̃− x| for j 6= `}
= P̃{|X̃ − x| > |x̃− x|}N−1,
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using the fact that thẽX ’s are i.i.d. in the population and, hence, also in the panel. Combining these
results and applying Bayes’ Theorem shows that the conditional density ofX̃j givenM(x) = j is

f̃X(x̃)P̃{M(x) = j|X̃j = x̃}
P̃{M(x) = j}

= Nf̃X(x̃)[1− F̃X(x+ |x̃− x|) + F̃X(x− |x̃− x|)]N−1

since

P̃{|X̃ − x| > |x̃− x|‖} = P̃{X̃ > x+ |x̃− x|}+ P̃{X < x− |x̃− x|}
= 1− F̃X(x+ |x̃− x|) + F̃X(x− |x̃− x|).

�

The last term in the density tends to zero at an exponential rate. This means that the distribution
of the matched value is collapsing on the value it is matched too as the panel sizeN gets large.
In fact, the distribution of the matched value is approximately a Laplace (two-sided exponential)
distribution with variance proportional to the reciprocal of theN times panel density at the target
value. If the panel is large or the target value is one that is a point of high density in the panel, then
we will tend to get a close match. This is made precise by the following result.

Theorem 4. Under Assumptions 1, 4, and 5, conditional uponXi, the limiting distribution of

UNi = N (X∗
i −Xi)

is Laplace with mean zero and variance1/2f̃X(Xi)
2.

Remark 1. The Lemma shows that the matching discrepancyX̃i − Xi is OP̃ (1/N) for scalar
matching. Thus, if the panel is sufficiently large, then the matched value is distributed approxi-
mately symmetrically around the value it is matched to, regardless of the distribution of the variable
within the panel. In particular, the approximate distribution of the matched valueX̃i conditional
uponXi = x is Laplace with location parameterx and scale parameter1/2Nf̃X(x).

Proof. The preceding theorem gave the conditional distribuiton ofX̃i givenXi. Now consider the
transformationUNi = N(X̃i − x) with Jacobian∂X̃i/∂UNi = 1/N so the conditional density of
UNi givenM(x) = i is

fUNi|M(x)=i(u) = f̃X|M(x)=i(x+ u/N)

∣∣∣∣ 1

N

∣∣∣∣ = f̃X(x+ u/N)P̃{|X − x| > |u|/N}N−1

Since
P̃{|X − x| > |u|/N} = 1− F̃X(x+ |u|/N) + F̃X(x− |u|/N)

we have

fUNi|M(x)=i =
f̃X|M(x)=i(x+ u/N)

1− F̃(x+ |u|/N) + F̃X(x− |u|/N)
[1− F̃X(x+ |u|/N) + F̃X(x− |u|/N)]N .

It follows that

lim
N→∞

fUN |M(x)=i(u) = lim
N→∞

f̃X|M(x)=i(x+ u/N)

1− F̃(x+ |u|/N) + F̃X(x− |u|/N)

× lim
N→∞

[1− F̃X(x+ |u|/N) + F̃X(x− |u|/N)]N

= f̃X(x) lim
N→∞

[1− F̃X(x+ |u|/N) + F̃X(x− |u|/N)]N .
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To complete the proof, we evaluate the last limit on the right. Let

ϕ(N) = log[1− F̃X(x+ |u|/N) + F̃X(x− |u|/N)]N

=
log[1− F̃X(x+ |u|/N) + F̃X(x− |u|/N)]

1/N
.

Since both numerator and denominator converge to zero, by L’Hospital’s rule it is equivalent to
evaluate the limit of

f̃X(x+ |u|/N) + f̃X(x− |u|/N)

1− F̃X(x+ |u|/N) + F̃X(x− |u|/N)

|u|
N2

−1/N2
= − |u|[f̃X(x+ |u|/N) + f̃X(x− |u|/N)]

1− F̃X(x+ |u|/N) + F̃X(x− |u|/N)

so

lim
N→∞

ϕ(N) = − lim
N→∞

|u|[f̃X(x+ |u|/N) + f̃X(x− |u|/N)]

1− F̃X(x+ |u|/N) + F̃X(x− |u|/N)
= −2|u|f̃X(x).

This proves the result. �

With these results, we can now derive the limiting distribution of the matched estimatorθ̃ and a
consistent estimator for its standard error. For the case of scalar matching, this is the same as if we
treat the matched sampleX∗

1 , . . . , X
∗
n as a simple random sample from the population.

Theorem 5. Under Assumptions 1 and 3–7, ifn→∞,N →∞, andn/N → 0, then

n1/2(θ̃ − θ0) =⇒ N(0, σ2
0).

Further, a consistent estimator ofσ2
0 is

σ̃2 = n−1
∑
i∈S

(Y ∗
i − θ̃)2.

Proof. To be added. �

5.5. Vector Matching. The results for vector matching are, from a theoretical standpoint, much
less satisfying. Summary of results:

• Distribution ofXi∗ conditional onXi is the same as in Theorem 3, except that cdfs are
replaced by quadrant probabilities.

• Limiting distribution ofN1/k(X∗
i −x) conditional uponXi = x is proportional to a rv with

densityf̃X(x) exp{−ckN |Xi − x|f̃X(x)} whereck = O(1/k).
• Limiting distribution is radially symmetrix aroundx.
• However, bias tends to zero at ratenk/2/N and variance has an extra term.
• Curse of dimensionality: panel needs to grow at the ratenk.
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6. SIMULATION RESULTS

The theoretical results in the previous section are asymptotic and may be misleading with the
sample and panel sizes that occur in practice. In this section, I describe a set of Monte Carlo simu-
lations which, although limited to some specific cases, provide some guidance about the likely per-
formance of sample matching. The simulations involve very different distributions of the matching
variables, both in terms of their location and covariance structure, between the panel and the target
population, though panel membership is ignorable conditional upon the matching variables for the
measurement of interest. For this example, I show that the conventionally reported standard errors
are quite accurate for all estimators. A simple random sample from the panel exhibits substantial
bias, though about 80 percent of the bias can be removed by post-stratification using a small num-
ber of cells. Sample matching, in contrast, is nearly unbiased if the panel is five times the size of
the target sample and yields a sampling distribution almost identical to that obtained from simple
random sampling from the population. Post-stratification of the matched sample is useful when
the panel size is small and can be helpful in removing the bias due to imperfect matching.

The simulations are based upon draws of the covariates from a bivariate normal distribution
truncated on the rectangle[−1, 1]×[−1, 1]. The support of the covariates overlaps entirely between
the population and the panel, but the locations and covariance structure of the distributions were
chosen to be quite different. The population mean (before truncation) is located at the origin, with
each covariate having unit variance, and correlation−0.6. In the panel, by contrast, the mean
(before truncation) is0.8 for the first covariate (X1) and0.7 for the second covariate (X2), with
standard deviations 0.4 and 0.35, respectively, and covariance0.3. Thus, the covariates have quite
different distributions between the panel and the population and a random sample from the panel
will give quite different results than a random sample from the population.

Panel membership is ignorable with respect to the measurements which have a conditional nor-
mal distribution with meanX1 +X2/2 and variance one in both the panel and the population. This
is the essential link needed to make accurate inferences possible.

In the simulations, the target sample is always a simple random sample of sizen = 1000 from
the population. SinceEX1 = EX2 = 0, θ0 = EY = 0 is the true value of the parameter. A
SRS from the population gives an unbiased estimate ofθ0. We consider draws from panels of size
N = 1, 500, 2, 000, 3, 000, 5, 000 and10, 000, representing between1.5x and10x coverage of the
, respectively. We conducted1000 Monte Carol repetitions. The results are reported in Table 1
below.

A SRS of size1, 000 from the population is unbiased with a standard error of approximately
0.37. Post-stratification has no effect on the mean, but the standard error is reduced slightly (to
0.341). The post-stratification was performed using a four-cell scheme, with each covariate split at
its mean (zero).

As was expected, a SRS from the panel is severely biased. The standard errors of the two
samples are about the same (0.366 and0.364, respectively), the difference in the means is approx-
imately fifteen times the standard error. Post-stratification using cell weights eliminates about 80
percent of the bias, but increases the standard error by about 50 percent. Poststratifying based upon
propensity score quintiles removes 90 percent of the bias and is somewhat more efficient than cell
weighting (though the standard errors is still about one third larger than a simple random sample).
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FIGURE 1. Simulated Bias of Estimators
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FIGURE 2. Simulated RMSE of Estimators
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TABLE 1. Simulations of Sampling Distributions from Matched and Unmatched Samples

Mean SD RMSE
SRS from Population

Unweighted -0.0007 0.0366 0.0366
Post-stratified (cell weights) -0.0003 0.0341 0.0341

SRS from Panel
Unweighted 0.5511 0.0364 0.5523
Post-stratified (cell weights) 0.1114 0.0530 0.1233
Post-stratified (propensity scores) 0.0470 0.0478 0.0670

Matched Sample
Unweighted
N = 1, 500 0.2815 0.0354 0.2837
N = 2, 000 0.1555 0.0354 0.1594
N = 3, 000 0.0644 0.0333 0.0725
N = 5, 000 0.0427 0.0347 0.0550
N = 10, 000 0.0257 0.0358 0.0441

Post-stratified (cell weights)
N = 1, 500 0.0609 0.0441 0.0752
N = 2, 000 0.0466 0.0375 0.0599
N = 3, 000 0.0564 0.0333 0.0655
N = 5, 000 0.0520 0.0325 0.0614
N = 10, 000 0.0366 0.0332 0.0494

Post-stratified (propensity scores)
N = 1, 500 0.0016 0.0403 0.0403
N = 2, 000 -0.0020 0.0376 0.0377
N = 3, 000 -0.0056 0.0372 0.0376
N = 5, 000 -0.0031 0.0376 0.0377
N = 10, 000 -0.0033 0.0376 0.0378

In terms of RMSE, cell-weighting is about four times worse than taking a SRS from the population
and propensity score weighting gives a margin of error roughly twice as large.

The performance of matching depends upon the size of the reservoir or panel. Simple closest
neighbor matching with a panel ten times the desired sample size eliminates 95 percent of the bias
with no increase in the standard error. As shown in Figure 1 below, there is a sharp reduction in
bias as the panel size increases from1.5 times the sample size to three times the sample size and
then the decrease in bias is roughly linear in the log of the ratio of the panel size to the sample size.
Because the matched sample requires smaller weights than a random sample from the population,
cell-weighting does increase the standard error much (at least if the panel is at least twice as large
as the sample). Post-stratifying on propensity scores is more effective and gives both standard
errors and a margin of error indistinguishable from SRS from the population (unless the panel is
very small).

In summary, the simulations show that for the range of parameters considered and under an
assumption of ignorability, sample matching gives results similar to taking a simple random sample
from the population and much better than either cell-weighting or weighting by propensity score
quintiles.
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TABLE 2. CCES Senate Election Preditions

State N Predicted Vote Actual Vote

Arizona 798 47.9% 45.3%
California 1,015 67.8% 63.1%
Connecticut 401 47.8% 44.4%
Florida 1,005 63.8% 61.3%
Massachusetts 799 71.3% 69.5%
Maryland 802 53.1% 55.5%
Michigan 800 57.9% 58.0%
Minnesota 501 59.4% 60.5%
Missouri 802 50.0% 51.1%
New Jersey 500 53.0% 52.8%
Nevada 402 44.2% 42.5%
New York 1,011 72.9% 68.0%
Ohio 1,003 59.2% 55.9%
Pennsylvania 1,005 58.3% 58.6%
Tennessee 502 47.4% 48.6%
Texas 1,004 30.9% 36.9%
Utah 402 34.0% 33.0%
Virginia 802 50.0% 50.1%
Washington 804 57.0% 59.7%
Wisconsin 502 74.2% 69.5%
West Virginia 301 67.0% 65.7%

7. EMPIRICAL EXAMPLE : 2006 COOPERATIVECONGRESSIONALELECTION STUDY

During the 2006 election, Polimetrix conducted the Cooperative Congressional Election Study
(CCES) for a consortium of research universities. Results from the pre-election wave of CCES
were released on November 6, 2006, based upon interviews conducted between October 27 and
November 5, 2006.

Tables 2 and 3 present the percentage of likely voters in each state (with a sample of at least 300
likely voters) intending to vote Democratic for either Senator or Governor, along with the actual
vote outcome (undecideds and minor party voters deleted, except in Connecticut). The samples
were constructed by matching on demographics and party, and then post-stratified on demograph-
ics. Confidence intervals were computed assuming ignorable selection and the approximation
given in Section 5 and are shown in the accompanying figures.

As can be seen from the tables and figures, the estimates appear to be approximately unbiased.
However, the coverage of the 95 percent confidence intervals is somewhat below the nominal level.

In comparison, Blumenthal and Franklin (2007) compared the CCES estimates with the results
of conventional RDD telephone surveys (with live interviewers) and IVR interviews. The results
are shown in Table 4 below. In this election, sample matching out-performed RDD samples (pre-
sumably using conventional weighting by either cells or raking), whether a live interviewer was
used or IVR. Another Web survey (Zogby Interactive) using a different methodology was sub-
stantially worse than either the RDD samples or the matched Web sample. The sample sizes in
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FIGURE 3. CCES Senate Estimates and 95% Confidence Intervals

FIGURE 4. CCES Governor Estimates and 95% Confidence Intervals
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TABLE 3. CCES Gubernatorial Election Preditions

State N Predicted Vote Actual Vote

Alabama 505 42.0% 42.0%
Arizona 798 58.2% 64.0%
California 1015 44.7% 41.2%
Colorado 500 60.0% 58.0%
Connecticut 401 33.3% 35.9%
Florida 1005 43.8% 46.4%
Georgia 804 41.6% 39.9%
Iowa 301 54.0% 54.8%
Illinois 800 61.0% 55.6%
Kansas 501 61.0% 58.8%
Massachusetts 799 65.6% 61.2%
Maryland 802 51.0% 53.8%
Michigan 800 56.1% 57.1%
Minnesota 501 52.1% 49.5%
Nevada 402 46.3% 47.8%
New York 1011 74.2% 70.3%
Ohio 1003 63.9% 62.1%
Oregon 502 54.0% 54.2%
Pennsylvania 1005 62.2% 60.3%
South Carolina 399 44.0% 44.8%
Tennessee 502 67.0% 69.8%
Texas 1004 39.4% 43.3%
Wisconsin 502 55.2% 53.8%

TABLE 4. Comparison of RDD and Matched Samples

Source n Bias RMSE
Phone 255 2.76 8.34
Rasmussen (IVR) 83 3.82 8.47
SurveyUSA (IVR) 63 3.4 7.25
Zogby (Internet) 72 4.86 9.36
Polimetrix (Internet) 40 -0.47 5.21

the phone samples tended to be somewhat larger (typically between600 and1, 000 interviews per
state), so their standard errors before weighting would be smaller than the matched sample from
Polimetrix. It is unclear whether the standard errors are larger or smaller after weighting. However,
all of the other surveys have substantial amounts of bias compared to the matched sample.

What is perhaps most striking from Tables 2 and 3 is that the actual RMSEs are for most of
the samples are roughly three to four times the reported sampling error. This is becauseall of the
methods are subject to some bias which is not taken into account in the calculation of a margin of
error. The reported standard errors appear to give an accurate measure of sampling variability, but
ignoring bias means that reported confidence intervals are much too narrow. Even for the matched
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estimator, which had the lowest level of bias, the nominal 95 percent confidence interval appears
to have coverage closer to 90 percent.

8. CONCLUSIONS

In this paper, I have disccussed sampling issues that arise in Web survey panels. Traditionally,
quota sampling has been used to select a subsamples from opt-in panels. While I have argued
that quota sampling has some theoretical basis and, in practice, performs better than its reputation,
quotas on standard demographics (such as gender, age, race, and education) do not remove all of
the biases in such samples. Better bias adjustments, such as propensity scores, can be helpful, but
if applied to an unbalanced sample, can lead to large sampling variances if applied to samples with
large imbalances.

Sample matching has been proposed as a simple and effective method for assembling samples
balanced on a large number of variables when auxiliary information is available. Asymptotic sam-
pling distributions for matching estimators were derives (in the case of one dimensional matching)
and simulation results were presented comparing matching estimators based on different size pan-
els with ignorable selection. It was shown, both theoretically and empirically, that matching from
a sufficiently large and diverse panel will yield results similar to a simple random sample if the set
of panel membership is conditionally independent of the survey measurements given the matching
variables. The plausibility of this assumption depends largely on the extent and relevance of the
matching variables. In an empirical example, involving the 2006 U.S. Congressional elections, it
was shown that the matching estimator outperformed conventional estimates based on RDD phone
surveys.

The claim that convenience samples can outperform random samples is likely to be controver-
sial. It is, of course, a large step from a sample with a 90 percent (or even a 50 percent) response
rate to a convenience sample. But it is not such a large step from a 10 percent response rate to
a convenience sample. It is right to be skeptical about one is getting from convenience samples
and certainly wrong to ignore the possibilities for bias. However, the same goes for nearly every
telephone survey: they involve non-coverage and non-response which is not missing completely at
random. The problem of reducing bias is an important one that cannot be avoided just because one
starts with random selection of population units.

In calculating a margin of error based upon a survey estimate, there are two sources of error,
reflected in the decomposition of the mean square error as

MSE(θ̂) = V (θ̂) + [E(θ̂)− θ0]
2.

The variance comes from “sampling error” (whether or not the sample is drawn using known
probabilities of selection or not). Calculation of standard errors presents little difficulty for samples
(random, by quota, or matched) from an opt-in panel.8 However, the size of the bias is unknown
and, in the case of telephone and Web surveys, is often larger than the sampling error. For RDD
samples, it is conventional to ignore potential bias.

For Web surveys, especially those from opt-in panels, better methods to reduce or eliminate
bias are essential. Traditional methods, such as quota sampling or balancing on a small number of

8The recent AAPOR statement, “Reporting of Margin of Error or Sampling Error in Online and Other Surveys of
Self-Selected Individuals,” is particularly confused on this issue, among others.



24 DOUGLAS RIVERS STANFORD UNIVERSITY AND POLIMETRIX, INC.

demographics, are frequently inadequate. The combination of large scale consumer and voter data-
bases with sample matching appears to be much more effective at bias reduction than traditional
methods. The advantage of being able to match approximately on a larger set of variables tends
to eliminate imbalances beyond a few demographic categories. The plausibility of the ignorability
assumption is much higher when a larger set of variables has been controlled for.

There are some that argue that non-probability samples are not usable for scientific inference.
However, large portions of statistics are devoted to situations where the data generating process is
unknown and must be modeled. Every observational study is of this type. If we were to decline
to make probability statements about anything but random samples, we could not make weather
forecasts (for example, “the probability of rain tomorrow is 30 percent”). Most medical research,
which involve randomization of treatment, but not random selection of participants, would be re-
stricted to saying that the estimated treatment effect applies only to the small set of persons who
participated in the experiment. In the case of Web surveys, it is unlikely that even in-person re-
cruitment will provide a sample without substantial amounts of self-selection. For many purposes,
especially in the social sciences and marketing research, opt-in panels represent a cost-effective
alternative when one has some confidence that the matching variables are sufficient to eliminate
most of the potential bias.
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