BRICKS

Prioritizing innovation and agility for
modern, native, server-driven mobile apps.

christopher.ladd@nytimes.com
April 2015

BRICKS is a new paradigm in mobile app development, which will cut our time to market for
new apps from months to weeks, and cut time for feature updates to existing apps from weeks
to days, setting a new standard in speed, quality, and innovation for fully native, mobile apps.

To execute our shift in focus to mobile, we need to do more—faster, better, and cheaper. And
yet, for any amount of money, we are unable to keep pace with our ambitions, to maintain and
release new features in our core apps quickly enough, even to find enough qualified personnel
to staff those core and new products.

BRICKS will enable us to move from our current state of spending the vast majority of our
time and resources on maintenance and technical development, to a future where the bulk of
our time is spent on product design and editorial development. In other words, BRICKS will
allow us to focus on what we’re building and why, not on how we’re building it.

We'll do this by creating a reusable set of components, or “BRICKS”, which can be recombined
in any number of ways to create any number of apps, on any number of platforms.

Thinking about our flagship newsreader: at its core, it is an application to present different
kinds of views to the user, mainly text and multimedia, and to allow that user, by tapping on
different pieces, to navigate to screens filled with more of these views.

BRICKS is predicated on identifying the atomic elements of our apps, perfecting those, and
moving control of recombining them from our apps, which are fragile, rigid, and unforgiving,
to our servers, which are cheap, plastic, and completely within our control.

Because every app is nothing more than a combination of bricks, and because the composition
of those bricks is controlled entirely from our servers, we can fundamentally innovate and
change our existing apps easily, for all users, immediately. And, better, each of those changes

2

can be uncoupled from others in flight, avoiding the domino effect of a bug in one shipping
feature holding countless other features hostage.

Creating new features and apps that are different combinations of text, images, and
multimedia then becomes a simple design exercise, not a technical one, since every app, using
BRICKS, knows how to natively display any combination of any bricks it understands.

And, because BRICKS will be built as an open standard, anyone can create new bricks.

Expanding that vocabulary to experiences we haven’t yet imagined becomes an investment in
all our digital futures: every investment we continue to make in our mobile apps adds even
more flexibility, broadening our pallette, as we continue to build a repertoire of reusable lego
pieces, available to any of our current and future applications.

As part of our work on the mobile imperative, we’ve begun this work, and built a working
prototype that consumes NYT’s daily feeds, and presents a completely personalized
newsreader. This is not a fantasy ideal too good to be true, but rather a very achievable future
that could yield better products, lower costs, and true leadership in mobile.

Background: Mobile development today

Despite our best efforts to innovate our existing products and create new ones, our biggest
obstacles have been technical ones. The costs, both in personnel and in time, to create and
modify experiences are too great.

In our core newsreader app, for example, a change as simple as modifying a font, or changing
the order of stories can take months, even in the best of scenarios.

Let's assume for this example that we want to change all Opinion headlines from the regular
Cheltenham typeface to a Cheltenham Wide Italic, something that should take a native app
developer, let's say, between a few minutes and a few hours. An afternoon's work, at best.

1. Once our font change makes it out of the backlog and onto a developer's todo list, the
native app developer implements the change.

2. The code is then peer-reviewed.

3. The changes are merged into a development alpha release, and reviewed by the
designer, who may or may not kick the ticket back to the developer to make further
changes.

4. Once both are satisfied, those changes must be folded into a native app release, which
happens, at best, every month.

5. The inclusion in the very next release of a completed feature, no matter how trivial, is
far from assured: because there is such high risk of instability, features are often
excluded to limit the amount of change going out at any one time, or releases cancelled
or postponed due to high-priority production issues that must be "patched", diverting
developer, QA, and product attention.

6. In practice, patch releases can push our simple font change another month or more
away from user's hands, as it waits for the next batch of features to be compiled into a
new release.

7. Once our feature does make the cut to be included, our QA team spends between
several days and a week testing all features of a release, most of which will be unrelated
to our change. Any bugs are triaged, and either deprioritized or fixed, which can push
the release out still further. If, at this point, problems with our feature are found, it is
extremely likely for that feature to be scrapped, or held for yet another release, yet
another month away, at best.

8. Assuming, however, that we do make it through QA, the release then goes, in the case
of 108, to Apple for review. This process takes between a handful of days, or, more
likely, one to two more weeks, until the app is ready to be released. Again, at this stage,
Apple can, and does, reject the version of the app for any reason, likely reasons
unrelated to our font change and, sometimes, unrelated to changes made in this
release at all. At this point, we go back to the “patch” phase (step 5).

9. Assuming Apple approves, the app is released to the App Store, and it takes several
days for the bulk of our users to upgrade their software, one download at a time.

10. If all goes well, our font change was successful. However, if there are any issues with
our changes at this point, they are stuck in the compiled bedrock of our apps, stuck on
millions of smartphones all over the world, unchangeable. Suppose the developer
accidentally forgot to make the font change on Krugman’s blog posts, as they
technically stem from a different parent section: fixing that error requires going all the
way back to step one, and could take several more weeks (at best) or (more likely)
months.

The above scenario is far from uncommon: in fact, it would be considered uneventful. This is
how, for a feature as trivial as changing a font, it takes one to six months to go from a product
priority to a product reality.

This is why, when we talk about events like elections, the World Cup or the Olympics, we must
begin planning many, many months ahead of time, and, ultimately, have favored HTML,

web-based solutions: native development has been, at least until now, too inflexible, too slow,
too expensive, and, with the difficulty of attracting and managing top native talent, too

difficult to truly innovate with or react quickly to breaking news.

Our experiments with HTML5-based development still show that experience to be sub-par.
Ask any experienced Javascript engineer, and they will tell you that, while it is possible to get
the web to do interesting things, and to feel something like a native app, turning that last
corner to a first-class user experience is still, even today in 2015, extremely difficult and
elusive.

As our own Alastair Coote, formerly of NYT’s Mobile Web team, and now writing best-in-class
interactive news experiences downstairs in the newsroom, recently wrote on his blog on the
launch of new web technologies in iOS 8:

TI've been playing around with embedding WebViews in native apps for some time
now, but I've never managed to get to them to a point where I'd be happy to use them
in an app people would actually use. The bad reputation is justified — aside from
anything else, they’re just slow . . . I hope that in time WKWebView will be the

saviour we’ve all been waiting for. But it isn’t yet.

http://blogging.alastair.is/the-disappointing-reality-of-wkwebview/

A new way

BRICKS is a new way of thinking about native
mobile development that prioritizes quality,
speed, and agility.

By rethinking the way we write mobile
software, we'll be able to deliver fully-native
apps that are flexible enough to launch brand
new features to users in days, not weeks or
months, freeing up our multi-million-dollar
investment in mobile infrastructure to
innovate, not simply maintain.

We don’t write a web browser when we deliver our news to our website. We instead format
our content in an agreed upon way, so that web browsers can present our articles with the
reusable pieces that they have committed to support

In the same way, BRICKS is a cross-platform standard to format our content with reusable
pieces, so we can focus less on reinventing the wheel, and more on refining the products and
journalism that define this company in the eyes of the world.

Proof of Concept

Our early proof of concept created native section front and article pages from just two
components: an image component, which could take any shape or size, and a text component,
which could be flexibly styled to create headlines, bylines, and article paragraphs.

Both components could be stacked, reused, and recombined to create the sections and screens
that make up an app. All of this is dictated by a single feed. In essence: the app is the feed.

Carrier 5:07 PM -
Carrier & 3:01 PM -—
Ehe New Jork Times \ " [s
Man Known as Jihadi John Is ‘1 Am My Own Man,’ Jeb Bush

I4. FJasllL

Tells Foreign Policy Group

By JONATHAN MARTIN

British security services identified the man, who
has seemed to have beheaded several foreign
hostages in Islamic State videos, as Mohammed
Emwazi from London.

T | s Brooklyn Men, Plans to Aid ISIS 1'
PDV:re ’;\’)zcoﬁed 3:;!"":2':;1-" 'Ph'vate CHICAGO — Jeb Bush pointedly sought to
=== distance himself from his brother’s presidency
/ on Wednesday, even as he used his first major

foreign affairs speech to call for an assertive
American presence abroad that recalled George
W. Bush’s own national security strategy.

For Brooklyn Men, Plans to Aid ISIS
Were Recorded Online and in Private

The three men arrested in New York on charges of

supporting the Islamic State led quiet public lives, 5
hu?iriv:nily they raged at whal‘:hey an a8 wicked It was no coincidence that Jeb Bush, the former

behavior around them. Florida governor, who early polls suggest has
challenges with both Republicans and voters in
general because of his last name, made his first

lhelon(al bre ak with lhe last Repubiu an
-l P ISR S b

Building off of that early success, we’ve developed a library of components that drive a fast
and flexible prototype that has been delivering the news to roughly 60 beta testers worldwide
since late March 2015.

The following section describes the basics of some of those components, as well as how we’ve
combined them to realize our product and design ambitions faster than we ever have before.

BUILDING BLOCKS
Text

Text is at the heart of everything we do, and BRICKS has first-class support to place and style
text with granularity and ease.

Take the example of displaying this watching post’s card, with the visual results on iOS
displayed on the left, and the JSON object that produced it on the right:

{
"treatment": "text",
"textItems": [
The Secret Service took more than a year to fix an " "o "
alarm system at the Houston home of the elder text": "The
George Bush, according to a government report. {'
"text": "Secret Service",

"style": "watching_bold"

?

"text": " took more than a year to fi

1,
"style": "watching_post_body"

A few things to notice:

e the JSON specifies that this item will represent text via it’s treatment field

e the item specifies an array of textItems, with one more objects inside. This
represents the actual characters that will be rendered to the screen.

o Each entry in the array can specify a different style, which allows us to mix
styles and provide rich-text support, as displayed above.
o If no style is specified, the default style of the text object is used.

e every text object specifies a style field (in fact, as we’ll learn, most objects specify a
style field, even if they contain no text). This controls, as you’ll read in the following
page, everything from the font that should be used, to line height, to insets and
background color.

BUILDING BLOCKS

Styles
BRICKS uses styles, similar to CSS, to configure and place text and other elements. Because
this formatting is part of the feed itself, it’s possible to completely change the look and feel of

every element, at any time, without any other code changes.

Let’s examine the style entries for that watching post:

{
"watching_post_body": {
"font—nqme": "NYTFranklin-Light",
The Secret Service took more than a year to fix an font-size®: 15,
alarm system at the Houston home of the elder "aylgnmer'lt 2r left",
i line-height": 1.2,
George Bush, according to a government report. "top": 10,
"left": 10,
"right": 10,
"bottom": 10
}
"watching_bold": {
"parent": "watching_post_body",
"font-name": "NYTFranklin-Bold"
S

These should look familiar: they specify the font we’re using, the size, alignment, and line
height. Note that styles can inherit from one another: watching_bold has all the same
formatting as watching_post_body, but it changes the font-name field to
NYTFranklin-Bold.

Typographic style options

You'll find these options particularly useful when styling text:

font-name The font that should be used
font-size The size for that font
line-height The line height, in ems. e.g. 1.2
alignment left, right, or center
paragraph-spacing The space after each paragraph.

paragraph-spacing-before =~ The space before each paragraph.

BUILDING BLOCKS

Styles (cont.)

General style options:

The following options apply to text elements, but are equally useful when placing and styling
other kinds of bricks:

parent The name of a parent style that this style should inherit from.
top The inset of this element from its top edge. Like padding-top in css.
left The inset of this element from its left edge.
bottom The inset of this element from its bottom edge.
right The inset of this element from its right edge.
color Can be hex or rgba. #f3f3f3 / rgba(0,0,0,0.2)
bg The background color for this element. Hex or rgba.
rules Rules that should be applied to this element. If defined, this entry
should contain keyed objects for “top”, “bottom”, or both. For
example:
"top_rule": {
"rules": {
n top 11} : {
"color": "#cccccc",
"left": o,
"right": 0,
"height": 0.5
}
¥
}

As you'll see, styles are an integral part of every other element.

BUILDING BLOCKS
Images

Fast and performant images are essential, for everything from interface elements like logos
and buttons, to news photographs, to, as in the case below, advertisements.

#nikefue

g) "treatment": "image",
Arian burned 498 calories today. "image'l': { o —
. h g n II: n : = < /
Find out how she did it. e e
yarr) "width": 720

WATCH THE FILM }

As with the text item example, this item declares itself an image via its treatment field.
Beyond that, the only requirement is the image field, which itself contains the url where the
image can be loaded from, a height, and a width. This sizing information is essential, because
it lets us size the views where these images are going to go in advance of loading the actual
image.

Although this image doesn’t specify any, images can use the style field to inset their images,
or set their background color (clear, by default) while the image loads.

10

BUILDING BLOCKS
Stacked Items

Many of your components will be combinations of existing ones. Stacked items are built up of
other elements, vertically stacked on top of one another to build a cohesive whole.

For example, our article cards in the prototype are actually built from three separate elements:
an image item and two text items.

"treatment": "stacked",
"style": "topRule",
/ "items": [
/ "treatment": "image",
i "image": {

"url": "http://static@l.nyt.com/image
"height": 507,
"width": 768
}
H
{

"treatment": "text",
"style": "fullBleedHead",
"textItems": [

"text": "James Spader Prepares for
James Spader Prepares for !
Avengers: Age of Ultron’ %
The actor, who is starring in the NBC series “The "treatment": "text",
Blacklist,” prepares for box-office stardom. "style": "fullBleedSummary",

"textItems": [

"text": "The actor, who is starrinc

Note that, again, the item specifies what kind it is through its treatment field, specifies
optional styling, and then includes an array of items, each of which is, itself, its own
complete brick.

This will be a common pattern: by reusing some components to build others, we're able to
move incredibly quickly and efficiently.

11

BUILDING BLOCKS
Screens

An app is made up many screens of content. Those screens, in turn, are built up of the items

we've already learned about: images, text, and more.

Put another way: apps are built from screens, screens are built from items. And, as we’ll soon
learn, any item can perform any number of events, one of which is linking to any other screen.
It is the links between all of these items that make up the complete app experience.

Let’s take a look at an example screen:

Carrier 4:10 PM L3

€he New ork Times

Drone Strikes on Al Qaeda Said to
Take Toll on Leadership

Strikes like the one that killed two American
hostages have forced militant leaders to regroup
and seek shelter, analysts say.

Paleo Diet In and Pizza Out, a
Slimmer Jeb Bush Seems Intent on
Staying That Way

Mr. Bush, who has long struggled to lose weight,
has adopted a drastic program that is melting
away pounds at a staggering rate.

"home" : {

"treatment": "front",
"style": "tan_sectionfront",
"header_view": {

"image": {
"url": "https://s3.amazonaws.com/nytm2/
"width": 750,
"height": 108

"{reatment": "full_bleed_photo"

"refresh": {
"url": "http://m2feed-dev.elasticbeanstal
"method": "POST",
"preferences": [
"favorite",
"queue" .
"onboarding"
1
by
"left_button_item": {
"treatment": "image",
"image": {
"height": 18,
"width": 15,
"url": "https://s3.amazonaws.com/nytm2/

";tyle": "barButton",

"events": [
"id": "sectionList",
"action": "present_screen",

"event_type'": "tap"

"items": [

12

BUILDING BLOCKS
Screens (cont.)

Let’s take each element in turn:

Note that every screen has a unique
identifier, and is keyed by that
identifier in a node of each app
configuration called “screens”. In this
case, this screen’s identifier is “home”.
Other screens and items can use this
identifier to link to, present, or embed
content from this screen.

The treatment element. Possible
values include front, for screens
representing section fronts / index
pages, or detail, for screens
representing articles.

The style element, which applies
styling information to your screen. The
background color, for example.

The header_view field allows you to
place any item type in the navigation
bar. Here, we’ve placed The Times’
nameplate there, taking advantage of
the image brick.

If your screen is refreshable, you may
include instructions for how that
happens within the refresh element.
On iOS, for example, this would allow
your user to pull to refresh the page
and, upon success, would replace the
contents of your screen with the home

"home" : {

"treatment": "front",
"style": "tan_sectionfront",
"header_view": {

"image": {
"url": "https://s3.amazonaws.com/nytm2/
"width": 7580,
"height": 108

"%reatment": "full_bleed_photo"

r

"refresh": {
"url": "http://m2feed-dev.elasticbeanstal
"method": "POST",
"preferences": [
"favorite",
"queue" .
"onboarding"
1

1,
"left_button_item": {

"treatment": "image",
"image": {
"height": 18,
"width": 15,
"url": "https://s3.amazonaws.com/nytm2/
"style": "barButton",
"events": [
"id": "sectionList",
"action": "present_screen",

"event_type": "tap"

"items": [

screen of the app configuration fetched

from the server.

You can assign any type of item to be the left or right buttons on the navigation bar, via
the left_button_item and right_button_item fields. Here, we’ve chosen an image.
Note that this example introduces a new field to that object: events. More to come on
that in the next section.

Lastly, every screen has a field called items, which is an array with zero or more items
to display on that screen. These items are stacked on top of each other to make up the
visible content displayed to the user. Note that to save space, items are omitted from
this diagram.

13

BUILDING BLOCKS
Events

Events, usually triggered by some kind of user interaction with an item, have two key
elements:

e anevent_type, which defines the event’s trigger (e.g. tap, long-press)
e an action, which describes what should happen when the event fires.

Returning to the stacked item example, here it is with the events node added:

=

"treatment": "stacked",
"style": "topRule",
"items": [... 1,
"events": [

"event_type": "tap",
"action": "push_screen",
"id": "100000003641062"
}
]

James Spader Prepares for
‘Avengers: Age of Ultron’

The actor, who is starring in the NBC series “The
Blacklist,” prepares for box-office stardom.

Here, we can see that, on tapping the view created for this item, a new screen should be
pushed. Events also may contain arbitrary fields with specific information to help perform
their action. In this case, the node includes an id field, which is the id of the screen* to push.

Multiple events can be added to any item, even events with the same event_type. Pushing a
screen, for example, could be combined with toggling a setting, or presenting an alert.

* One ancillary benefit to this approach: while the same screen can be pushed by multiple
events on multiple other items, only one copy of that screen actually exists. That is in
contrast to our content-feed based approach, wherein when an article belongs to more than
one section—Top Stories, and Most Emailed, and Opinion, for example—multiple copies of
that article are downloaded with each update.

14

BUILDING BLOCKS
Events (cont.)

A few of the events that we have come to rely on:

The push_screen event pushes a screen onto the existing navigation stack.

The present_screen event presents a screen modally. Note that the screen that was

presented is then free to push or present its own screens which, incidentally, is how we

built our section navigation.
e The append_value and remove_value actions allow the app to store arbitrary

information in arbitrary categories on demand. It’s how we built the favoriting

functionality in our prototype.

The open_url action opens a URL*.

The alert action presents an alert to the user.

The share action shares a piece of text or URL via the app’s native sharing capabilities,

—email, SMS, Facebook or Twitter, for example.

{
"event_type": "tap",
"action": "present_screen",
"id"*: “"sectionlist"

%

Carrier ¥ 8:07 PM -

= The New Jork Times

DUIVEY UL DU, ANULYSES DUy
Europe is struggling with how to save lives on the

sea, prosecute human
the causes of the mi;
source.

ge closer to their

us.

World

New York

Opinion

Magazine

Food

"event_type": "tap",
"action": "push_screen",
"id": "100000003641062"

Carrier 8:07 PM
Top Stori
.

Carrier &

= The N €

Dutveu ut oed,

Europe is struggling §
sea, prosecute huma
the causes of the mig}
source.

Paleo Diet In and Pi
Slimmer Jeb Bush ¢
Staying That Way

By MICHAEL BARBARO

Jstic Then the dish underwent th
away pounds at a sta treatment. The garlic bread
banished to the plate of a ne

was conspicuously pushed :

A svmnathetic suest af the

{

"event_type": "tap",
"action": "open_url",
"url": "https://www.youtube.c

Carrier

Thye,

beat Mayweather:
format was unust
of a best-of-three

* Interesting to note: when we were building the native ad stacks into the prototype, we
wanted the YouTube videos to play immediately on open, so we built that capability into the
the open_url action. That capability now exists for any URL, including URLSs for our own
content. That is the power of BRICKS: everything we do makes it easier to do more things.

15

Conclusion

If we're going to compete in mobile innovation, and if mobile is strategically important to The
Times’ future, we’re going to need to be able to try more things, fail more, and learn more
quickly from those failures. A server-driven UI like BRICKS is the only feasible way forward.

We are not in a position to experiment and take risks in the ways we need to to succeed in
mobile today. While increasing staffing is an option if we can find the people, adding those
people won’t necessarily make us move more quickly, and it certainly won’t be cheap. If we
could conceive of ten sound new editorial products this year, we couldn’t afford to launch
them the way we have in the past. We’d have to place a bet on one or two. With BRICKS, we
could place many, many more bets.

Developing BRICKS SDKs across the platforms that are important to us—iOS, Android, the
web and mobile web—will not only allow us to move more quickly in our existing products. It
will allow us to pursue products on those platforms that we might not otherwise have thought
economically or logistically feasible. It will allow us to share the design DNA of our products
across those platforms, as we cross pollinate capabilities between them.

Everything we do in technology—from carefully considered product design, to hand-coded
custom interactives, to breaking news, to dramatic personalization and A/B testing, becomes
easier by orders of magnitude when developing with BRICKS. Because the entire app
experience is plastic and delivered server-side, different users can have vastly different apps.
The same native codebase can drive many different products. With a single developer and a
few weeks, it’s possible to make highly detailed live-data prototypes with BRICKS, especially if
we invest in complementary reusable server architecture to power these apps. Static, tappable,
readable prototypes can be assembled, by hand, in a matter of hours.

In the near term, BRICKS can make our news presentation more flexible. In the long term,
committing to a technology like BRICKS could be as important as the move from the
hand-coded, HTML web pages of the 1990s, to CMS driven frameworks that have enabled so
much of our success in the desktop world. BRICKS will do the same on mobile, not only as a
means to flexibly publish our report, but as a means to flexibly publish our products
themselves.

16

