

Effects of Redlining on Residential Energy
Efficiency and Resilience in Extreme
Temperature Events

Haley Clapper

Innovations in Climate Resilience Conference April 23, 2024

1	Background
2	
3	
4	
5	
6	
7	

Research Questions

1	
2	
3	Methods
4	
5	
6	
7	

Results: Durham, North Carolina

Discussion

Challenges & Limitations

7	Future Research & Applications
6	
5	
4	
3	
2	
1	

Background

Redlining was a practice used by the Home

Owners' Loan Corporation where mortgage

lending risk was assessed based on neighborhood

sociodemographic data, including residents'

race/ethnicity and socioeconomic status.

Decades of disinvestment in redlined areas have had long-term effects on home ownership, neighborhood development, and housing quality → energy efficiency.

Mapping Inequality, University of Richmond, 2023

WORLD >

Earth just had its hottest summer on the human body's limit? record, U.N. says, warning "climate breakdown has begun"

Extreme heat harms health — what is

As deadly heatwaves become more common, researchers are studying what people can tolerate.

Phoenix's newest heat record: A gruesome death toll in 2023

BY PAMELA FALK

- a visual timeline

Survey: Over 70 percent of Americans paid The hottest summer in human history higher power bill due to summer's extreme heat

RACE

Extreme Heat Is Worse For Low-Income. Nonwhite Americans, A New Study Shows

July 14, 2021 · 2:43 PM ET

Climate change is exacerbating racial inequities. Boston is trying to change that.

Historically redlined Black and Brown communities can't escape the heat

ice for this summer's scorching temperatures.

O'Connell-Domenech | Oct. 03, 2023

CLIMATE CHANGE

Discrimination Has Trapped People of Color in Unhealthy Urban 'Heat Islands'

of color, more than other groups, live in neighborhoods prone to excess heat and the illnesses that go with it

Research Questions

- 1. Do homes in **historically redlined** neighborhoods perform less efficiently and, therefore, limit households' ability to withstand and adapt to extreme temperature events **compared to those in non-redlined neighborhoods**?
- 2. Do energy efficiency upgrades have the potential to **minimize building envelope gaps** and **reduce disparities** in residential energy efficiency?

Image from the National Archives

MAP OF CREATER

- NREL's ResStock tool was used to model housing stock performance under coincident 3-day power outage and extreme temperature scenarios
- Evaluated home performance under five upgrade scenarios + outage-only control
 - **Light Envelope**: attic insulation + general air sealing
 - Advanced Envelope: LE + robust air sealing + Energy STAR windows + exterior insulation
 - Universal Cooling: addition of HVAC for units without HVAC

- Thermal resilience of homes was determined using Standard Effective
 Temperature (SET) Degree Hours
- This metric tells you to what magnitude and for how long a home is outside a
 "livable temperature" range of 54°F 86°F
- Higher SET Degree Hours = less thermal comfort and resilience

- Residential structure point data were gathered from the **USACE National Structure Inventory**
- Using HOLC map polygons from the University of Richmond, we spatially categorized homes by HOLC grade: A (desirable), B, C, or D (hazardous)

GIS map depicting categorization of residential structures by HOLC grade in Durham, NC. Green = A, Blue = B, Yellow = C, Red = D

Identifying differences in home type distribution and energy performance:

- Clustered homes into "types" based on frame type, occupancy type, foundation type, and vintage (e.g., "wood40res3a" = wood frame, 1940s, multifamily 2-unit)
- Identified home types more and less prevalent in redlined areas
- Compared thermal resilience (SET Degree Hours) by home type

Wood Frame, 1930s, Multi-Family 2-Unit

wood30res3a

Wood Frame, 1920s, Single-Family, 2-Story, With Basement wood20res1-2swb

Results

Durham, NC Summer Outage

Results

Durham, NC Winter Outage

Durham Winter: Comparison of Upgraded Home Types ***** = home type more prevalent in redlined areas wood60res1-1swb Upgrade Package Adv Envelope + Universal Cooling Light Envelope + Universal Cooling **Universal Cooling** Adv Envelope Light Envelope Outage Only, No Upgrades 400 600

Mean SET Degree Hours

Discussion

- Several home types identified that are notably more prevalent in redlined areas and vice versa
- Most home types more prevalent in redlined areas show higher average SET Degree
 Hour measurements compared to less prevalent home types
- Upgrades show promise for reducing SET Degree Hours during a coincident power outage and extreme temperature event
- Further analyses are needed to understand discrepancies in prevalence vs. energy efficiency

Challenges & Limitations

- Data availability and resolution
- ResStock modeling limitations
- Neighborhood and city changes (i.e., gentrification and expansion)

Future Research & Potential Applications

- Expand analyses to additional locations
- Model additional upgrades (e.g., heat pumps)
- Evaluate retrofit costs and benefits to translate findings into investments
- Layer other relevant patterns (e.g., health, energy burden)
- Inform policies, weatherization and energy/technical assistance programs

Acknowledgments

NREL

Eliza Hotchkiss

Dr. Philip White

Jordan Burns

Dr. Dana-Marie Thomas

Dr. Jordan Cox

Duke University

Dr. Brian McAdoo

Dr. Elizabeth Albright

This work was funded by the U.S. Department of Energy's Building Technologies Office.

Thank You

www.nrel.gov

Haley Clapper

NREL Strategic Energy Security Group
haley.clapper@nrel.gov

