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Abstract.  Over their lifetimes, intelligent agents gain 
knowledge that may be pertinent to their decisions about acting 
in the world. One goal of memory system research is to develop 
an optimal set of encoding, storage, and retrieval mechanisms 
that will harness these experiences to facilitate rational decisions. 
In this paper, we propose a direction of empirical, computational 
research that seeks to better understand the behavioural 
dynamics that arise when an agent endowed with long-term 
memory is situated in a task, by determining which properties of 
task and characteristics of memory systems in combination are 
responsible for which aspects of behaviour.1We propose 
preliminary taxonomies for task and memory spaces, and also 
propose metrics for systematic evaluation of memory systems. 

1 INTRODUCTION 
Learning agents gain knowledge that may be pertinent to making 
intelligent decisions. To harness these experiences while 
remaining reactive to dynamic environments, cognitive 
architectures employ one or more memory systems: mechanisms 
that efficiently implement a fixed policy to encode, store, and 
retrieve agent knowledge [6]. Prior work provides significant 
psychological [10][14] and computational [3][8] evidence for 
dissociated memory systems [12][15][16], yet a significant 
challenge lies in understanding, for a particular task, the 
functionally optimal set. 

One approach to this problem is to empirically explore the 
functional benefits of individual classes of memory systems in 
isolation. For instance, Nuxoll [7] has provided theoretical and 
empirical evidence that endowing an intelligent agent with a 
task-independent episodic memory affords it a multitude of 
cognitive capabilities that may be crucial to the efficacy of a 
robustly intelligent agent. While insightful and focussed, this 
approach has its limitations. For instance, implementing a 
memory system may prove to be quite challenging [2], limiting 
the speed with which one can study the space of design decisions 
over multiple tasks. As a compounding factor, a memory 
system’s efficacy may also depend on how well it supports an 
agent’s ability to learn to use it [4]: this encompasses not only 
how an agent might learn to condition behaviour in the 
environment based on knowledge that is retrieved from memory, 
but also how an agent learns to perform encoding, storage and 
retrieval actions to control the memory mechanisms themselves. 

Comprehensive empirical study of a large design space has 
been done before. One example is in reinforcement learning 
(RL) [13], which has achieved broad and successful application 
in cognitive and computer science, partially due to its general 
formulation and dependency only on a scalar reward function. 
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While RL offers insight into adaptive control given this function, 
it does not specify the source or nature of reward. Much work, 
for instance [1], has shown the importance and difficulty of 
specifying an optimal reward signal. Therefore, recent work 
looks to empirical study over reward function space [11]. Similar 
approaches are being applied to studying the large design spaces 
of cognitive architecture [5] and empirical game modeling [9]. 

In this paper, we propose a similar direction of empirical, 
computational research over the space of memory models, such 
as to understand the connection between properties of task, 
characteristics of memory systems, and an agent’s learned 
behaviour. Our hypothesis is that for different classes of problem 
spaces (distinguished along the dimensions of task that we 
propose below), different classes of memory models will result 
in qualitatively different behaviour. By empirically exploring the 
interactions that arise between different memory models and 
tasks, we will improve our understanding of which memory 
models are appropriate in which classes of problem spaces. 
While many of the dimensions of memory that we identify are 
inspired by research into the properties of human memory, we 
are also interested in exploring computational memory models 
that differ from human memory along certain dimensions; this 
may allow us to formulate principled functional arguments for 
why human memory mechanisms might have certain properties. 
The ultimate goals of our research, then, are (1) to understand 
how memory system requirements and efficacy change along 
with parameterized properties of task and (2) to develop 
computational structure and constraints for studies of memory 
system dissociation, ideally resulting in evidenced sets of 
generally useful memory systems.  

To accomplish our goals, we propose a methodological 
framework of empirical study that will enable us to measure the 
behavioural implications of the interaction between properties of 
task and characteristics of architectural memory systems. As 
conceptually depicted in Figure 1, we assume an adaptive agent, 
A, possessing fixed initial procedural knowledge but endowed 
with the ability to learn additional control knowledge (over 
actions both in its environment and its internal memory 
mechanisms [4]). This agent is endowed with a set, M, of one or 
more memory systems selected from architectural memory 
system space (Section 2), and situated within a domain, T, 
selected from task space (Section 3). We posit that quantitative 
and qualitative analysis of the agent’s learned behaviour (Section 
4), while systematically varying M and T, will serve to 
objectively evaluate the efficacy of sets of memory systems 
under different task conditions. After describing these spaces and 
metrics, we propose an approach for exploring the space of 
possible memory models that we believe will yield insights into 
the relationships between memory and task (Section 5).  

We propose that agents in our study use RL to modify their 
control knowledge over time. We are interested in adaptive 
agents, rather than those with fixed procedural knowledge, as it 
is difficult to predict the best strategies for memory usage across 



arbitrary combinations of memory models and problem spaces. 
RL offers a framework for optimizing agent control knowledge, 
without the need for an explicit model of the external constraints 
of the environment, nor the internal constraints of the agent 
architecture. 

2 MEMORY MODEL SPACE 
We have developed the following initial characterization of the 
space of memory systems, borrowing heavily from and 
generalizing Nuxoll’s breakdown of the space of episodic 
memory systems [7]. These dimensions of memory mechanisms 
will be explored in combination with dimensions of task space 
(section 3) in order to better understand the dynamics that relate 
memory usage to task behaviour. 
 
Encoding 
• Initiation – Initiation encompasses the event conditions that 

trigger the encoding and storage processes. These events 
may condition upon fixed architectural characteristics of 
state (such as a temporal frequency) or may be accessible to 
agent control knowledge. 

 
• Determination – Once initiated, the memory mechanism 

selects features of agent state (or derivation thereof) that 
compose the knowledge to be stored, as well as any 
additional context (temporal, spatial, etc) that may also be 
associated with the knowledge. 

 
Storage 
• Granularity – Stored experience varies with the grain size at 

which knowledge can accessed and modified. This may 
range from minute (such as the symbol level), to moderate 
(an episode), to coarse (such as the entire knowledge store). 

  
• Dynamics – Knowledge in the memory system may change 

over time, such as to bias retrieval or forget knowledge.  
The mechanisms that cause this change may be fixed, 
condition upon agent knowledge, or deliberate agent action. 

 
Retrieval 
• Accessibility – Experience encoded within the memory 

system may vary in the degree to which it is exposed to 
other architectural mechanisms, such as to maintain overall 
agent reactivity. For instance, a declarative long-term 
memory may allow for enumeration of all stored memories. 

 
• Initiation – Initiation encompasses the event conditions that 

trigger the retrieval process. As with encoding initiation, 

these events may condition upon fixed characteristics of 
state or may be accessible to agent knowledge/control. 

 
• Cue Determination – Once initiated, the memory system 

composes agent state, knowledge, context, and/or [possibly 
inaccessible] meta-data to select or create a retrieval cue.  

 
• Selection – When supplied a cue, the memory system 

implements a policy for how stored knowledge is matched 
with respect to the cue, which may be restricted by time, 
computation, and/or number of results, as well as include 
bias from agent state, context, and/or meta-data. 

 
• Result – When the memory system selects stored experience 

for retrieval, it may arbitrarily represent the knowledge, 
associated context, and aspects of the retrieval process, such 
as match quality, for agent inspection. 

 
We define a memory system implementation as a 

commitment to features from within the space defined by these 
dimensions, represented as (encoding, storage, retrieval).  

When deliberate agent knowledge can affect architectural 
memory mechanism function, such as to initiate encoding or 
retrieval, the agent has a space of actions that it can execute in 
order to affect this change. These actions are modulated by the 
same action selection process that controls actions in the external 
environment, and may vary from the null set (where all 
encoding, storage and retrieval is architecturally fixed and not 
affected by the agent’s central action selection loop) to where 
any access to memory (encoding, storage, or retrieval) must be 
deliberately selected by the agent’s internal reasoning system. 

3 TASK SPACE 
We have identified a preliminary taxonomy of environmental 
characteristics. These characteristics can be quantitatively 
parameterized and are independent of each other. This allows for 
a principled empirical exploration of task space, where an agent 
with fixed memory models can be situated in a task that varies 
along one or more dimensions. While these characteristics are 
not comprehensive, they do offer a preliminary set with which 
we can begin to explore the circumstances in which particular 
classes of memory models afford advantages over others. 
 
• Temporal Distance to Salient Knowledge – Consider a task in 

which the agent perceives a sign containing a single 
element of knowledge (for example, either the symbol “A” 
or “B”). Later, the agent encounters two doors, and must 
choose which door to open. If it chooses correctly, then it 

Figure 1. A conceptual depiction of the methodological framework that we will use in our investigations. 



receives positive reward; incorrectly, negative. Each door is 
identified by a symbol; the symbol on the correct door also 
appeared on the sign. The temporal distance between the 
salient knowledge is a parameter that can be varied, and 
although in the example only a single element of knowledge 
was considered, it can be varied across all elements of 
salient knowledge in a task. How this characteristic of task 
interacts with a particular memory mechanism will depend 
on the persistence of knowledge in memory, as well as 
whether the temporal distance will affect how easily 
knowledge can be retrieved from memory. 
 

• Categories of Salient Knowledge – We refer to the number of 
distinct elements of knowledge that must be simultaneously 
maintained in memory while an agent acts as the number of 
categories of knowledge. If the example above were to be 
extended, such that there were three signs, each with a 
unique symbol corresponding to three sets of doors through 
which the agent must pass, then there would be three 
categories of salient knowledge vs. one category for the 
original example. In complex domains, there might be large 
amounts of knowledge that can be perceived in the domain, 
but relatively few categories of actual salient knowledge 
that must be brought to bear on reasoning in order to act 
well, requiring only very limited capacity in a memory 
model. Alternatively, there could be a very large number of 
categories, in which case an effective memory model would 
require large capacity. 
 

• Quantity of Salient Knowledge – We refer to the number of 
possible values that each category can take on as the 
quantity of knowledge. This can vary from one to infinity 
for each category. Intuitively, this is the number of distinct 
symbols that could appear on a sign in the example task. 
 

• Quantity of Distracting Observations – The number of 
observations that are irrelevant to acting in the world (i.e. 
are not salient) will have an effect on how easily an agent 
can retrieve salient knowledge from memory. These 
observations are distracters across all tasks in a study, not 
just a single task instance. 
 

• Sparseness of Reward – As rewarding events become more 
sparsely distributed, a learning agent has more difficulty in 
determining which actions were beneficial and which were 
not. This will directly affect how well a learning agent is 
able to adapt to constraints of task and memory. 

 
• Relative Cost of Acting vs. Reasoning – Actions that don’t 

lead to immediately rewarding events may be associated 
with a penalty. The penalty for acting in the world vs. for 
accessing memory can vary. 
 

• Size of Action Space – Particularly pertinent to adaptive 
agents, the size of the action space will determine how 
much exploration the agent must undertake, and will affect 
how easily the agent is able to learn to use memory (if the 
agent has adaptive control over internal memory actions). 
 

• Stochasticity of Actions – As with the size of the action space, 
this characteristic is particularly relevant to adaptive agents 

and will in part determine how much exploration in the 
environment is necessary, and thus how easily an agent can 
learn to control memory. 

4 EVALUATION METRICS 
Once the agent, endowed with its memories, has completed the 
task, we must evaluate its learned behaviour both quantitatively 
and qualitatively. As to the former, we could consider any/all of 
the following learning metrics: 

• Average reward-per-step 
• Maximum reward attained 
• Speed of convergence 

These measures can be tempered by the amount of memory 
system storage. We also introduce the concept of knowledge 
coverage. As depicted in Figure 2, at each decision, there is a 
certain amount of agent experience pertinent to making an 
optimally rational decision. A retrieval from any given memory 
system, such as an episodic or semantic memory, may achieve 
some subset of this knowledge (and multiple retrievals may well 
overlap). The concept of coverage attempts to get at the role of 
memory systems in making rational decisions. From a 
quantitative standpoint, an ideal memory system set on a task 
will learn quickly, converging to a relatively high reward-per-
step, while obtaining maximal pertinent knowledge coverage 
using the least amount of storage. 

Qualitative analysis is also crucial to understanding the role 
of memory systems, and we have two intended directions. First, 
our qualitative analysis will involve categorizing behaviours 
supported by memory in accordance with the cognitive 
capabilities that agents exhibit [7]. For example, in [4], the 
authors identified behaviour that was suboptimal but involved 
using an episodic memory mechanism as a stigmergic memory 
to condition behaviour. If some memory models support a subset 
of the cognitive capabilities afforded by other models, then an 
analysis of how the memories vary along the space of 
characteristics will improve our understanding of memory. 
Clustering algorithms applied to agent trajectories can assist in 
detecting classes of behaviour, which can then be examined by 
hand and categorized as to how memory was used by the agent.  

Second, our qualitative analysis will also take the form of 
comparing agent actions in a single task across different points 
in memory space. By doing so, we can gain a conceptual 
understanding of the functional benefits and drawbacks of a 

Figure 2. Knowledge coverage 



particular memory system. We do not yet have a definitive 
understanding of how to do this systematically, especially since 
many points in memory system space may have no direct or even 
intuitive parallel in humans, but we are confident that a 
programmatic approach will yield satisfactory results. 

5 PROPOSED EXPLORATION 
Having discussed characteristics of memory, properties of task, 
and evaluation metrics, we now discuss our proposed direction 
for systematically exploring the space of computational memory 
models in order to understand the functional capabilities that 
they afford intelligent agents. As the possible spaces of memory 
models and tasks is infinitely large, our approach is to identify 
several specific points in the space and initially begin expanding 
the space of models that we consider starting from those specific 
points. The initial points in this space will be selected based on 
biological inspiration, as biological memories are existence 
proofs of significance, and similarity to existing computational 
memory models (for relevance). 

We plan on pursuing two initial directions. The first, inspired 
by work performed by Gorski and Laird [4], is focused on 
exploring the functional characteristics of memory mechanisms 
situated in tasks but in the absence of adaptive control. In this 
direction, we will begin with one type of memory mechanism 
and vary it along several dimensions to better understand how 
architectural commitments impact the functional capabilities of a 
memory model. 

For example, we have considered systematically sampling the 
space of episodic memory systems. Given Tulving’s functional 
requirements for an episodic memory implementation, we could 
fix encoding initiation as automatic (at some architectural 
frequency), architectural (meaning deliberate agent knowledge 
cannot modify stored knowledge), and implement a deliberate, 
bit-vector retrieval policy, using nearest-neighbor (NN) symbolic 
match and recency as a tie-breaking bias. While holding task 
properties constant, we could systematically and efficiently vary 
encoding determination as a function of perception, activation, 
and other architectural state. Furthermore, we could introduce 
forgetting dynamics (meaning, architectural decay of stored bits) 
while sampling across a range of temporal distance to salient 
knowledge. All of these modifications are trivial to implement in 
a bit memory, and performance is not an issue. In a learning task, 
we would hypothesize that an agent whose forgetting mechanism 
decayed faster than the temporal distance would perform 
quantitatively no better than an agent without a long-term 
memory, and probably learn not to make use of deliberate 
memory retrievals. 

The second direction focuses primarily on the interaction of 
learning to control memory. Here, we will begin with several 
initial memory models: Soar’s episodic memory mechanism [2], 
Soar’s semantic memory [3][6], and a simple computational bit 
memory. We will explore agents that learn to control these 
memories in several different tasks that vary along the 
dimensions described above so as to understand their initial 
functional limitations. When we identify differences in the tasks 
that agents can learn to use each memory model, we will begin 
modifying the memory models along dimensions that are most 
relevant to the functional differences that we have observed in 
order to determine which characteristics of memory have the 
biggest functional effects on which types of tasks. 

From a computational standpoint, there are many unresolved 
issues with our approach. For instance, the memory and task 
taxonomies we have proposed are far from comprehensive and, 
even if they were, it is unclear how to computationally 
instantiate an element within these spaces. Given these 
instantiations, we are also far from realizing an intelligent agent 
in which we have confidence to optimally learn control over any 
set of memory systems. Finally, once we overcome these 
hurdles, the space of memory systems is truly vast, and any 
comprehensive search therein will be a significant computational 
and analytical challenge. 

6 CONCLUSION 
In this paper, we have proposed a principled approach to 
evaluating memory systems. While there is much analytical and 
computational work left to implement, we believe this direction 
of investigation will lead to a better understanding of the role of 
memory in intelligent agents situated within interesting tasks. 
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