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Abstract 
This paper brings together work in modeling episodic 
memory and reinforcement learning. We demonstrate that is 
possible to learn to use episodic memory retrievals while 
simultaneously learning to act in an external environment. In 
a series of three experiments we investigate learning what to 
retrieve from episodic memory and when to retrieve it, 
learning how to use temporal episodic memory retrievals, and 
learning how to build cues that are the conjunctions of 
multiple features. Our empirical results demonstrate that it is 
computationally feasible to learn to use episodic memory in 
all three experiments, and furthermore, that learning to use 
internal episodic memory accomplishes tasks that 
reinforcement learning alone does not. These experiments 
also expose some important interactions that arise between 
reinforcement learning and episodic memory.  

Keywords: Artificial Intelligence; Cognitive Architecture; 
Episodic Memory; Intelligent Agents; Reinforcement 
Learning. 

Introduction 
In this paper, we study possible mechanisms for learning to 
use the retrieval of knowledge from episodic memory. This 
unifies two important related areas of research in cognitive 
modeling. First, it extends prior work on the use of 
declarative memories in cognitive architecture where 
knowledge is accessed from declarative memories via 
deliberate and fixed cued retrievals (Wang & Laird, 2006; 
Anderson, 2007; Nuxoll & Laird, 2007) by exploring 
mechanisms for learning to use both simple and conjunctive 
cues. Second, it extends work on using reinforcement 
learning (RL) (Sutton & Barto, 1998) to learn not just 
control knowledge for external actions, but also to learn to 
control access to internal memories.  

 Earlier work has investigated increasing the space of 
problems applicable to RL algorithms by including internal 
memory mechanisms that can be deliberately controlled: 
Littman (1994) developed an RL agent that learned to 
toggle internal memory bits; Pearson et al. (2007) showed 
that an RL agent could learn to use a simple symbolic long-
term memory; and Zilli & Hasselmo (2008) developed a 
system that learned to use both an internal short-term 
memory and an internal spatial episodic memory, which 
could store and retrieve symbols corresponding to locations 
in the environment. All three cases demonstrated a 
functional advantage from learning to use memory. 

Our work significantly extends these previous studies in 
four ways: first, our representation is fully relational, which 
complicates both the structure of episodic memory and RL; 
second, our episodic memory system automatically captures 

all aspects of experience; third, our system learns not only 
when to access episodic memory, but also learns 
conjunctive cues and when to use them; and fourth, it takes 
advantage of the temporal structure of episodic memory by 
learning to advance through episodic memory when it is 
useful (this property is also shared by the Zilli & Hasselmo 
system, but for simpler task and episodic memory 
representations).  

Our studies are pursued within a specific cognitive 
architecture, namely Soar (Laird, 2008), which incorporates 
all of the required components: perceptual and motor 
systems for interacting with external environments, an 
internal short-term memory, a long-term episodic memory, 
an RL mechanism, and a decision procedure that selects 
both internal and external actions. In comparison, ACT-R 
(Anderson, 2007) has many similar components but does 
not have an episodic memory. Its long-term declarative 
memory stores only individual chunks, and it does not store 
episodes that include the complete current state of the 
system. To do so would require storing the contents of all 
ACT-R’s buffers as a unitary structure, as well as the ability 
to retrieve and access them, without having the retrieved 
values being confused with the current values of those 
buffers. Moreover, ACT-R’s declarative memory does not 
inherently encode the temporal structure of episodic 
memory, where temporally consecutive memories can be 
recalled (Tulving, 1983). While the work presented in this 
paper is specific to learning to use an episodic memory, 
similar work could be pursued in the context of ACT-R by 
learning to use its declarative memory mechanism. 
However, we are unaware of existing work in that area, and 
even if there were, it would fail to engage the same issues 
that arise with episodic memory.  

Background 
Soar includes an episodic memory that maintains a complete 
history of experience (Nuxoll & Laird, 2007), implemented 
so as to support efficient memory storage and retrieval 
(Derbinsky & Laird, 2009). “Snapshots” of Soar’s working 
memory, which is a relational graph structure, are 
automatically stored in episodic memory so that learning is 
not required to control how and when information is stored.  

To retrieve an episode, a cue is created in working 
memory by Soar’s procedural knowledge, which is encoded 
as rules. A cue is a relational structure that describes a 
subset of working memory elements that may exist in an 
episode. The cue is compared to the stored episodes, and the 
episode that best matches the cue is retrieved to working 
memory. If there are multiple episodes with the same degree 



of match, the most recent of those episodes is retrieved. 
Once an episode is retrieved to working memory, other 
knowledge (such as procedural knowledge) can access it.  

After performing a cue-based retrieval, the agent can use 
the unique temporal structure of episodic memory and 
retrieve the next episode, providing a mechanism for the 
agent to move forward through its memories, recalling 
sequences of experiences, in addition to specific instances.  

Although it is straightforward to create agents that use 
episodic memory for a variety of purposes (Nuxoll, 2007), 
this requires endowing the agent with knowledge as to when 
to access episodic memory and what structures should be 
used for cueing retrievals. In this research, we study the 
possibility of learning when to use episodic memory as well 
as learning which cues to use from experience using Soar’s 
RL mechanism. Soar uses a type of RL called Q-Learning 
(Nason & Laird, 2005). Q-Learning learns the value for 
potential actions using temporal-difference updates of 
reward (Sutton & Barto, 1998) and in Soar this can be used 
to learn to control external actions as well as internal actions 
that retrieve information from episodic memory. 

Well World 
In order to explore how an agent might learn to use an 
internal episodic memory, we constructed several tasks 
within a domain we call “Well World.” The domain is 
simple enough to be tractable for an RL agent, but rich 
enough such that episodic memory can potentially improve 
performance. The goal in Well World is to be safe when not 
thirsty, and to quench thirst as soon as possible when thirsty.  

In Well World, the agent moves between objects and can 
consume resources, such as water or shelter if they are 
present. The agent perceives the object that is present at its 
current location, features of the object (including resources 
that are present), and adjacent objects that it can move to.  

Figure 1 shows the base Well World environment. There 
are two wells which can provide the water resource (“r: 
water” in the Figure). Well 1 is currently empty, while well 
2 has water available. There is also a shelter, which allows 
the agent to feel safe when the agent is not thirsty.  

 

 
Figure 1: Objects, resources, and adjacency in Well World. 

 
An agent in Well World possesses two internal drives: 

thirst and safety. When its thirst is quenched, an agent’s 
thirst drive is 0; on every time step after it has been 
quenched, the thirst drive is incremented by a small amount. 
After passing a threshold, the agent is thirsty until it 
quenches its thirst, which requires that the agent move to a 
well object that contains water and consume water from it.  

Only one well contains water at any given time; once 
water is consumed from a well, it is empty and water 

becomes available in the other well. In Figure 1, well 2 has 
water available while well 1 does not. Once the water at 
well 2 is consumed, well 2 will be empty while well 1 will 
have water available, and so on. 

The agent’s other internal drive is to feel safe. The agent 
satisfies this drive when not  thirsty or when it consumes the 
safety resource from the shelter (which is always available). 

Two of Well World’s characteristics make it challenging 
for RL: the agent can only perceive the status of the object 
in its current location, and wells alternate in containing 
water and being empty. To perform optimally, an agent 
must maintain a memory of the environment (the status of 
the wells) – something a conventional RL agent lacks. 

Reinforcement in Well World 
The reward signal used by an RL agent in Well World is 
determined by the state of the agent’s internal drives, as 
well as changes in the states of those drives. Reinforcement 
in Well World is internally calculated by the agent based on 
its internal drives, rather than determined by the 
environment as in a conventional RL setting.  

The most important aspects of the agent’s reward 
structure are that: there is a cost for taking external actions 
and it is greater than the cost of internal actions; there is a 
reward for not staying at the wells when the agent is not 
thirsty; there is a significant reward for performing the 
action (consuming water when thirsty) that is made possible 
by the episodic retrieval; and there is no explicit reward for 
using episodic memory, rather such control knowledge must 
be learned while seeking to satisfy thirst. The reward values 
are as follows. External actions result in -1 reward, while 
internal actions result in -0.1 reward. On every time step 
that the agent is thirsty, it receives -2. On every time step 
that the agent is not thirsty and consumes the safety 
resource, it receives +2. Finally, the agent receives +8 for 
satisfying its thirst. Concurrent rewards (e.g. the agent is 
thirsty and takes an external action) are summed together. 

Experiments in Well World 
Within the Well World domain, we developed a suite of 
three experiments to evaluate various strategies for using 
episodic memory. In the first experiment, we tested an 
agent’s ability to learn to select a single cue for episodic 
memory retrieval. The second experiment tested an agent’s 
ability to learn to use the temporal aspects of episodic 
memory retrievals. The third experiment investigated the 
agent’s ability to create a conjunctive cue (i.e. a cue that 
contains more than one feature). This set of experiments 
investigated all of the ways retrievals can be used to access 
Soar’s episodic memory. Before discussing the experiments 
and results, we present the details of our agent. 

Agent Design and Implementation 
To explore learning to use episodic memory, we created a 
Soar agent. In our agent, procedural knowledge determines 
what actions can be taken in the external environment as 
well as what actions can be taken to access the internal 
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episodic memory. On each time step of the environment, the 
procedural knowledge proposes applicable actions based on 
the agent’s current perception of the environment and its 
internal state. It proposes consuming resources that are 
present, and it proposes moving to any adjacent objects. 
There are two internal actions that it can propose for 
controlling episodic memory (depending on the experiment, 
as described below): create a cue to initiate a retrieval, or if 
there has been a retrieval, advance episodic memory 
forward in time. In experiments where the agent must learn 
which retrieval cue to use, multiple retrieval actions are 
proposed, one for each cue. 

The decision procedure selects actions probabilistically, 
based on what has been learned by Q-learning. A central 
problem in RL is the exploitation vs. exploration trade-off 
(Sutton & Barto, 1998) - an agent must balance between 
choosing actions based on what it has already learned 
(exploitation), with choosing other actions to gain more 
knowledge about the effects of those actions (exploration). 
Our agent uses a linearly decaying exploration rate; initially, 
the agent selects a random action half of the time and the 
other half selects actions according to their learned values. 
As time goes on, the agent takes random actions less often. 

Although the Well World is presented in terms of 
“water,” “thirst,” “empty,” and “wells,” the agent does not 
know the semantics of these terms. To the agent, consuming 
water is simply a possible action that it can take; it must 
learn that it is good to consume water when thirsty, that 
water is available at a particular well, and so on. 

In contrast to many learning systems that are “reset” after 
a performance or learning trial, our agent has a continual 
existence and once it begins acting in the environment, it 
continues to move about Well World, performing actions, 
until the end of the experiment. 

Instead of using episodic memory, the agent could have 
maintained task-specific events in working memory (such as 
which well the agent last consumed). This memory would 
provide the agent with sufficient knowledge to learn to act 
in the domain. However, this approach requires task-specific 
background knowledge while our approach is completely 
general and applies to any task without additional task-
specific knowledge.  

Results presented in this paper are the average of 250 
trials, were smoothed with 4253 Hanning, and normalized 
so that an average reward of 0 per action is optimal.  

Learning to Retrieve Episodic Memories 
The first experiment tests the basic behavior of using RL to 
learn to use an internal episodic memory, and its purpose is 
to determine whether an RL agent can learn what to retrieve 
and when retrieval is appropriate. In this experiment, an 
agent must learn to retrieve information from memory using 
a single cue, where the retrieved episode provides sufficient 
information to perform the task. In one condition, there is 
only one cue available to the agent to use for retrieval; in 
another, the agent selects from six possible cues, only one of 
which is useful. 

In Well World (Fig. 1), the optimal policy (where a policy 
is a mapping of every state, or situation, to an action) is for 
the agent to move to the shelter and consume the safety 
resource when it is not thirsty, and to move to the well that 
contains water and consume water there when it is thirsty. 
As agents are unable to perceive which well contains water, 
an agent that does not possess an internal memory does not 
know which well it must move to and wastes time while 
trying to find available water. An agent that possesses an 
internal memory, however, can retrieve the episode for the 
last visited well. 

Figure 2 shows the results under the following conditions: 
only the correct cue is available to be learned (labeled “No 
distracters”); the correct cue and five distracters are 
available to be learned (“5 distracters”); and a baseline 
condition in which episodic memory is lesioned and all 
retrievals fail (“Lesioned ep. mem.”). 

 

 
Figure 2: Performances of agents learning to retrieve 

episodic memories. 
 

When only a single cue is available for retrieval, the agent 
quickly learns both to act in the environment and to use its 
internal memory so as to receive the maximum amount of 
possible reward (it follows the optimal policy). When 
distracter cues are present, the agent learns more slowly but 
also converges to the optimal policy. These results indicate 
that the agent can learn to use its internal memory while 
simultaneously interacting with its environment.  

Learning to Retrieve What Happened Next 
A unique aspect of episodic memory is that events are 
linked and ordered temporally. In Soar’s episodic memory, 
memory retrievals can be controlled temporally by 
advancing to the next (or previous) memory after 
performing a cue-based retrieval, providing a primitive 
envisioning or planning capability where the agent can use 
its prior history to predict potential future situations. 
Through RL, the system has the potential of learning when 
and how to perform such primitive planning.  

In the previous experiment, agents retrieved episodic 
memories of the last time that they had perceived the water 
resource, which was sufficient information to determine 
which well to move to in order to find water. An alternative 
strategy, explored in this experiment, is to retrieve a 
situation that closely resembles the agent’s current situation 



and then advance to the next memory to remember what the 
agent did the last time that it was in a similar situation.  

In this experiment, the agent has available the normal 
actions in the environment (moving and consuming 
resources). It also has two internal actions available to it: a 
cue-based episodic memory retrieval, which uses structures 
from its current perceptual state to retrieve the most recent 
situation that most closely resembled its current situation; 
and an action (called advance) that retrieves the next 
episode (the episode that was stored after the episode most 
recently retrieved). Thus, the agent must learn when to do a 
cue-based retrieval and when to advance its retrieval, and 
these actions are always competing with the other actions.  

For this task, the optimal policy for the agent when it is 
not thirsty is to move to the shelter and consume the safety 
resource. When it becomes thirsty, the optimal policy is to 
perform a retrieval cued by its current state, which results in 
the agent remembering the last time it was thirsty at the 
shelter. The next step is to perform an advance retrieval, 
which results in the agent remembering where it moved to 
after it was last thirsty at the shelter. This is followed by 
moving to the other well, where the agent will find water, as 
the well that it previously visited will be empty. 

An important characteristic of this task is that the agent 
must learn to use its memory while simultaneously learning 
to act in the world. The best policy for memory usage 
depends on the agent’s prior actions in the environment; if 
the agent does not visit and consume resources in the 
appropriate order (i.e. follow the optimal policy for external 
actions), then the agent is not guaranteed to gain useful 
information from internal memory retrievals. 

The performances of the agent under three conditions are 
plotted in Figure 3: using a fixed policy to automatically 
advance episodic memory after a cue-based retrieval, 
making only the initial cue-based retrieval open to learning; 
learning when to select both retrieval and advance actions; 
and a baseline comparison where episodic memory is 
lesioned.  

There are several features of the results in Figure 3 worth 
further discussion. First, the performances of both agents 
that use episodic memory are very similar. This was 
unexpected. The agent that learns to use the temporal action 
has a larger action space, which implies that it would 
initially perform worse than the agent that had a fixed policy 
to advance to the next memory after retrieving. Second, the 
agents reach asymptotic performance after about 4,500 
actions, but do not reach the optimal level of performance. 
Third, while the agents are exploring while selecting actions 
(until the 4,000th action), the agent that deliberately selects 
actions outperforms the agent that has a fixed policy to 
advance after retrieving. Fourth, there is a dramatic 
improvement in performance just after exploration ends. 
The agent retrieves episodes from memory that are similar 
to its current situation, and uses its past actions to determine 
how to act in the present situation. If the agent takes an 
exploratory action when it is thirsty or is not at the shelter 
when it becomes thirsty because of an exploratory action, 

then the behavior that results is no longer correct. In effect, 
although exploration of the problem space is necessary for 
the agent to learn, it hinders the agent’s performance in the 
task and once there is no exploration the agent can perform 
significantly better. 
 

 
Figure 3: Performances of agents using temporal control 

of episodic memory after retrieval. 
 
All four of these phenomena are explained by the 

difficulty of the learning problem that was identified above - 
for the agent to learn the optimal policy for using its internal 
memory, it must also learn a near optimal policy for acting 
in the environment. The learning problem is partially 
observable, in that the effects of the agent’s memory actions 
depend on the history of the agent’s actions in the 
environment, but the agent cannot perceive that history. The 
agent is faced with a conundrum: it must learn how to use 
its memory while settling on a good policy in the 
environment, but it must also settle on a good policy in the 
environment without knowing how to use its memory. Often 
the agent is successful in learning to simultaneously control 
both memory and external action, but occasionally the agent 
is unable to converge to the best policy. 

The asymptotic behavior of the agent is very near to 
optimal, which demonstrates that the agent still learns to 
perform relatively well in the environment. In fact, in all 
trials the agent converged to one of two policies: the optimal 
policy, or a policy in which the agent uses episodic memory 
retrievals to toggle a conceptual bit, as in the agents in 
Littman (1994) and Pearson et al. (2007). In this second 
policy, when the agent becomes thirsty, it immediately 
moves to one of the wells (the same well every time). If the 
well contains water, it consumes it; if not, it performs a 
retrieval and moves back to the shelter. At the shelter, the 
agent now knows that it has performed a retrieval and 
instead of moving to the same well again (the one that it just 
visited and knows is empty), it moves to the other well and 
consumes water there. Essentially, the agent learns which 
well to move to when it is thirsty based on whether a 
retrieval has been performed, and not based on the contents 
of what was retrieved. 

From Figure 3 it is also clear that the agent requires many 
more actions before converging to near-optimal behavior in 
comparison with the agents from the previous experiment. 
For the agent to converge to the optimal control policy, it 



must explore significantly longer than in the previous 
experiment; however, as noted above, this exploration can 
hinder the agent’s performance in the task as well. We 
investigated how different exploration policies affected the 
agent’s convergence to the optimal policy and the results are 
presented in Table 1. In all three cases, the rate of random 
action selection decays linearly over time. Table 1 presents 
data gathered when random action selection decayed over 
500 steps, 5,000, and 50,000. These results suggest that 
there are important interactions between the exploration rate 
decay and learning that need to be pursued in future work. 

 
Table 1: Percentage of trials that converged to optimal 

memory control policy when using temporal control for 
different periods of exploration. 

 
Condition 500 5,000 50,000 
Fixed 26% 60% 25% 
Deliberate 36%  71% 38% 

Learning To Construct a Retrieval Cue 
In the first experiment, one condition involved the agent 
learning to select between multiple cues when retrieving 
from memory. In the second experiment, the agent used 
cues with more than one feature (multiple features of its 
current state) in order to retrieve from memory. The purpose 
of this third experiment is to investigate whether an agent 
can learn to select multiple features to use as cue, 
combining aspects of both previous experiments. 

In order to test this capability, it was necessary to extend 
the base Well World configuration so that there were more 
wells and more features that could be used for retrieval. A 
third well was added to the environment, and a color feature 
was added to all objects; the modified environment is shown 
in Figure 4. As in the base environment, only wells 1 and 2 
ever contain water, and they continue to alternate between 
full and empty as before. Well 3 is always empty and never 
contains water; it was added to the environment to serve as 
a distracter to the agent when it performs a cue-based 
retrieval with features not present on the other two wells. 

 

 
Figure 4: Well World modified with an additional well 

and an additional feature, color. 
 

In this task, the optimal policy when the agent is not 
thirsty is still to navigate to the shelter and consume safety. 
When thirsty, the agent must construct a cue containing 

features corresponding to the two wells that can contain 
water in order to determine which well it visited last; these 
features are “resource: water” and “color: blue”. After 
retrieving the memory of the last blue well that it visited, the 
agent must then navigate to the other blue well and consume 
water there to satisfy its thirst. 

If the agent constructs a cue with some other combination 
of features, the result of its retrieval depends on its previous 
behavior – but the retrieved episode will not provide 
sufficient information for the agent to determine which well  
to visit next, because the agent must always visit the red 
well before visiting the shelter. As Soar’s episodic memory 
mechanism is biased towards more recent episodes when 
multiple memories are perfect matches to the cue, building a 
cue that contains only “resource: water” or “color: blue” 
will not result in the agent remembering the last well that it 
visited (assuming that it has moved back to the shelter). 
Color: blue will lead to the retrieval of the shelter, while 
retrieval of resource: water will lead to retrieval of well 3.  

The performances of the agent that constructs retrieval 
cues in the modified Well World are shown in Figure 5 for 
three conditions: learning to construct a cue from the two 
correct possibilities (“No distracters”), learning to construct 
a cue when two distracters are present, and a baseline where 
episodic memory is lesioned. In the two conditions, there 
are different sets of features with which an agent may 
construct the cue: the first has only the two correct features 
available (resource: water, and color: blue), while the other 
also has their complements (resource: water/shelter, and 
color: blue/red). Cues can contain any combination of 
features so the agent must learn to construct the cue from 
the correct combination in both cases. 

 

 
Figure 5: Constructing cues with more than one feature in 

order to retrieve from episodic memory. 
 
The agent converges to the optimal policy under both 

conditions, more slowly when two distracter features are 
present, as expected. These results indicate that an agent can 
learn to build conjunctive cues from raw features, and use 
them in a task to retrieve from episodic memory. 

Discussion and Conclusions 
Although in all three experiments the agent is faced with 
learning to use its memory while acting in the environment 
(and thus affecting what information will be retrieved from 
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memory in the future), the interaction of memory and action 
in the environment is significantly more intertwined in the 
second experiment. There, the agent’s past actions directly 
impact the usefulness of information retrieved from episodic 
memory. In all experiments, the agent learns very early on 
to consume safety when it is not thirsty, and to immediately 
move to the shelter as soon as it is not thirsty. In the first 
and third experiments, this means that when the agent 
retrieves an episode from memory using features of a well 
as a cue, it will typically be the well that it last consumed 
water from. However, in the second experiment, the agent is 
retrieving memories of the first action that it took to quench 
its thirst, and not the memory of when it finally managed to 
quench it. It not only takes  longer to learn how to best act in 
this setting, but the eventual result is that sometimes instead 
of converging to the optimal policy it instead converges to a 
local maximum in the policy space. One issue for future 
research that we identified in the second experiment is that 
our approach lacks task-independent strategies for 
controlling exploration. 

In all experiments, the cost of an internal action is less 
than the cost of external action in the environment. The 
rationale behind this decision is that it takes significantly 
more time to act in the world than it does to perform an 
internal action. Although internal rewards are structured in 
this way, we have gathered results (not presented here in the 
interest of space) that demonstrate that this feature of our 
reward structure does not affect the eventual learned 
behaviors, but does serve to speed up the learning process 
by encouraging the selection of internal actions initially. 

These three experiments demonstrate that RL can be 
applied successfully to learn to use internal actions over an 
episodic memory mechanism while simultaneously learning 
to act in its environment. Additionally, RL alone cannot be 
successfully applied to those same tasks, demonstrating that 
there is a functional advantage to combining RL with an 
episodic memory in some settings. We also demonstrated 
that RL can be used to learn when to retrieve, learn which 
cue to use for retrieval, learn when to use temporal control, 
and learn to build a cue from a set of possible features. 

More broadly, this research opens up the possibility of 
extending the range of tasks and behaviors modeled by 
cognitive architectures. To date, scant attention has been 
paid to many of the more complex properties and richness 
of episodic memory, such as its temporal structure or the 
fact that it does not capture just isolated structures and 
buffers but instead captures working memory has a whole. 
Similarly, although RL has made significant contributions to 
cognitive modeling, it has been predominantly used for 
learning to control only external actions. This research 
demonstrates that cognitive architectures by incorporate 
both episodic memory and RL, they can learn behavior that 
is possible only when they are combined. 

Although our research demonstrates that it is possible to 
learn to use episodic memory, it also raises some important 
issues. Learning is relatively fast when the possible cues 
lead to the retrieval of an episode that contains all of the 

information that an agent requires in order to determine how 
to act in the world. When retrieving episodes that most 
closely match the current state and then using temporal 
control of memory to remember what happened next, 
however, learning is slower and does not always converge 
to the best possible behavior. Learning to use episodic 
memory to project forward is difficult – requiring many 
trials to converge and without a guarantee that optimal 
behavior will be achieved. Do these same issues arise in 
humans or do they have other mechanisms that avoid these 
issues? One obvious approach to avoid the issues 
encountered in our experiment is to use one method, such as 
instruction or imitation, to initially direct behavior so that 
correct behavior is experienced and captured by episodic 
memory, and then learning to use those experiences would 
probably be much faster.  
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