
Experiments in Transfer Across Multiple Learning Mechanisms

Nicholas A. Gorski NGORSKI@UMICH.EDU
John E. Laird LAIRD@UMICH.EDU
Computer Science and Engineering, University of Michigan, 2260 Hayward Street, Ann Arbor, MI 48109-2121 USA

Abstract

We present three different learning mechanisms
for transferring spatial knowledge from one
problem to another, related problem: memory-
based transfer, search-based transfer, and transfer
using reinforcement learning. We describe the
approaches and present preliminary results dem-
onstrating successful transfer using these ap-
proaches in Soar and testing them in the Urban
Combat Testbed.

1. Introduction

The study of transfer in learning is typically restricted to
variants of a single learning mechanism. When multiple
learning mechanisms are studied, underlying reasons for
any differences in performance can be unclear, obscured
by differences in task knowledge and the underlying per-
formance system. In this work, we study three different
learning mechanisms, all within the same general cogni-
tive architecture (Soar) and all performing the same tasks,
minimizing differences outside of the learning systems.
The three learning mechanisms that we investigated are:
storing map knowledge in short-term working memory;
using chunking to learn operator selection rules; and using
reinforcement learning to tune operator selection rules.

We developed agents that use these learning mechanisms
to solve simple navigation tasks within the Urban Combat
Testbed (UT Arlington, 2006). The transfer tasks vary the
position of the destination and introduce barricades that
require finding new paths.

2. Soar Cognitive Architecture

Soar is designed to be a general cognitive architecture,
capable of using a wide range of methods and knowledge
to solve problems requiring the integration of many cog-
nitive capabilities underlying general intelligence (Leh-
man, Laird & Rosenbloom, 2006). Soar encodes long-
term procedural knowledge as production rules and uses
working memory to store short-term declarative knowl-
edge in a hierarchical graph structure. Rules in Soar pro-

pose, select, and apply operators, which in turn perform
external actions or modify internal data structures. Im-
passes from inconsistent or incomplete knowledge lead to
subgoals in which additional operators can be proposed,
selected and applied. These subgoals can involve plan-
ning, hierarchical task decomposition or any other type of
reasoning.

—————
 Appearing in the ICML-06 Workshop on Structural

Knowledge Transfer for Machine Learning, Pittsburgh, PA.

Traditionally, Soar has relied on two “learning” mecha-
nisms: modifying elements in working memory; and cre-
ating new rules through chunking (Laird, Rosenbloom &
Newell, 1986). Recently, Soar has been enhanced with the
ability to adjust operator selection rules using reinforce-
ment learning (Nason & Laird, 2005).

Adding and removing elements in working memory via
rules is a fundamental feature of Soar. Elements in work-
ing memory are not forgotten unless explicitly removed;
thus, working memory can be abused by using it to main-
tain long-term declarative knowledge.

Chunking creates new procedural knowledge encoded as
rules when a result is created in a subgoal. The newly
created rule summarizes the processing that led up to the
creation of the result. When similar situations arise in the
future, rules learned during the subgoal will fire before
the subgoal even arises, eliminating the need for it en-
tirely. Over time chunking eliminates internal problem
solving and moves the system from reflective problem
solving to more reactive decision making.

Reinforcement learning (RL) in Soar adjusts the expected
reward for proposed operators. Rules that test features of
the current state and operator generate numeric prefer-
ences for operators when they are proposed. These nu-
meric preferences encode expected reward, and their
values are summed during the decision making process to
provide a composite prediction of the utility of each op-
erator. Numeric preferences are updated using a variant of
Sarsa(0) (Rummery & Niranjan, 1994) and are based on
immediate observed reward as well as the discounted ex-
pected future reward of the next selected operator.

Previous experimentation has demonstrated Soar’s capa-
bility to perform in many complex domains (Jones, Laird,
Nielsen et al., 1999); including using many forms of
learning (Steier, Laird, Newell et al., 1987). Although
transfer within and across problems has been explored in
Soar, previous work has concentrated exclusively on
transfer using Soar’s chunking mechanism.

Experiments in Transfer Across Multiple Learning Mechanisms

3. Transfer Learning in Urban Combat

The Urban Combat Testbed (UCT) is a multi-player first-
person shooter video game where the main activity (in the
available preliminary scenarios) is moving through a map.
Through the exposed interface, the agent perceives space
as being partitioned into non-overlapping convex polyhe-
drons, of which there are on the order of 100 in a typical
scenario. The agent senses the area (convex polyhedron)
containing its current location as well as information such
as the vertices of the area, objects contained within the
area, and gateways to adjacent areas. Visibility is limited
so that only objects in the current area can be perceived.

There are two conceptual levels of navigation for the
agent: moving within areas and moving between them.
Since areas are convex and completely sensed by the
agent, the agent can move within areas directly without
any problem solving. For inter-area navigation, the agent
must either randomly explore (when it has no prior
knowledge of the topology of the areas) or use transferred
spatial knowledge to direct its behavior.

UCT contains scenarios specifically designed to test
transfer learning. In UCT, a scenario consists of a pair of
problems, the source and the target. The goal in all of the
preliminary UCT scenarios is to move from a starting
location to a second location in the map, containing a flag.
In the source problems (and target problems solved with-
out transferred knowledge from the source), the flag loca-
tion and topology is unknown.

3.1 Approaches

There are three types of knowledge that can transfer from
the source to the target problem: the topology of the map,
shortest path information for navigating from area to area,
and the location of the flag. As we shall see, different
learning mechanisms acquire different subsets of these
types of knowledge, leading to different levels of transfer.

3.1.1 MEMORY-BASED TRANSFER
Our first approach explicitly stores all spatial knowledge
in working memory, including map topology, complete
path information from each area to every other area, and
the flag location. This requires extensive exploration and
computation in the source problem to compute the path
information, but eliminates all search in the transfer prob-
lem. Complete paths are not stored; rather, a “path ele-
ment” from a given area consists of a destination area and
the gateway in the given area that is on the shortest path
to the destination area. To move to a destination area, the
agent repeatedly traverses gateways leading to the desti-
nation; at no point does it store the complete path in
memory. If the path information is absent, the agent uses
a strategy of directed exploration in the environment.

The memory-based approach exploits Soar’s unlimited
working memory. As there are approximately 102 areas in
the UCT maps used in these experiments, working mem-

ory contains on the order of 104 elements when the map is
fully explored. Having such a large number of working
memory elements impacts the efficiency of the Rete
matcher used in Soar, but the matcher is still sufficiently
fast so as to provide real-time control in UCT.

3.1.2 SEARCH-BASED TRANSFER
Rather than pre-computing paths in the source problem,
another approach is to store the topology and flag location
but not paths. To find the shortest path in the target prob-
lem, an agent can search through the transferred map. In
Soar, this search arises from a series of impasses that oc-
cur because the agent doesn’t know which area to move to
next. A side effect of this search is that chunking learns
rules for each decision, effectively encoding a procedural
memory of the path. When knowledge of the flag is avail-
able, the agent biases its internal search to first consider
the gateway nearest to the assumed location of the flag.
For this domain, this heuristic is extremely effective.

3.1.3 REINFORCEMENT LEARNING TRANSFER
RL learns the expected value of moving into adjacent
areas. This is encoded in Soar by having operator selec-
tion rules that test for the destination area of each opera-
tor. These rules are generated dynamically as the agent
explores the world. Through repeated trials, the agent
learns the value of moving to every area. The agent re-
ceives negative reward for every action not leading to the
area containing the flag, and no reward when it reaches
the flag; as operator preferences are initialized to 0, this
biases the agent to search initially. In contrast to the other
approaches, this approach does not involve explicitly stor-
ing the map topology or the location of the flag, both of
which are implicit in the operator selection rules.

In the transfer tasks, the learning parameter for the agent
is set to 1. A high learning rate serves to inform the agent
that the domain may have changed and it should update
its numeric preferences quickly so as to adapt. In a do-
main with stochastic actions, it would still be appropriate
to initialize the learning rate to be high and then decay it
over time; no such decay is necessary with the determinis-
tic actions of our domain. Additionally a negligibly small
exploration parameter is used in order to focus the agent
on exploiting learned knowledge that it had transferred.

3.2 Scenario Descriptions

We tested our transfer learning approaches on three tasks
in UCT. In each, the goal is to reach the flag – the agent is
only competing against the clock and there are no adver-
saries. These tasks are designed to test the first three lev-
els of transfer as defined by DARPA (2005).

The level 0 task tests transfer performance involving
memorization; the source and target are identical. The
level 1 task tests transfer across problems that are
reparameterized; maps are identical across problems but
the flag location changes. The level 2 task tests transfer

Experiments in Transfer Across Multiple Learning Mechanisms

requiring extrapolation; an obstacle is introduced in the
target that qualitatively changes the optimal solution.

3.2.1 IMPLEMENTATION DETAILS
At levels 0 and 1, the topology is identical in source and
target problems so that route information transfers per-
fectly. In the original level 1 UCT scenario, the flag
changes location within an area which is equivalent to
level 0 for our agent. We created a more difficult sce-
nario: the flag is moved three areas away from its original
location. When the memory- and search-based agents
reach the original flag location in the target, they initiate a
breadth-first search of surrounding areas to find the flag.

At level 2, the flag location is unchanged but a gateway
on the previously shortest path to the flag is blocked,
which can be detected only from an adjacent area. The
memory-based approach uses its stored path information
to navigate up to the blocked gateway. Similarly, the
search-based approach generates a path based on its
stored map topology and follows it up to a blockage. Both
approaches then initiate a model-based search to find and
then follow a new path to the flag. The RL approach uses
a high learning rate to quickly update the expected values
of areas and force exploration to find a new path.

4. Evaluation

We evaluated our three approaches on the previously
mentioned scenarios testing transfer at levels 0, 1, and 2
using two metrics. Given that TT is time spent in the prob-
lem with transfer and that TN is time spent with no trans-
fer, a ratio of times indicating improvement is:

Time ratio = TN TT /
By measuring the best time in which a human expert
could complete each task from a repeated set of trials, we
allow for another ratio which uses this optimal time (O):

Transfer ratio =)/()(OTOT TN −−

4.1 Level 0 (Memorization)

As shown in figure 1, transferred knowledge improves
performance using all three approaches as expected. A
human expert can complete this problem in 7 seconds.

4.2 Level 1 (Reparameterization)

Although level 1 is slightly more difficult than level 0, the
agents perform similarly (figure 2). The implicit search
performed by the RL agent serves the same role as the
other agents’ breadth-first search to find the new flag lo-
cation. The breadth-first search should scale better as the
distance between flags from source to target increases. A
human expert can complete this problem in 17.4 seconds.

4.3 Level 2 (Extrapolation)

As seen in figure 3, the memory- and search-based ap-
proaches continue to show significant transfer at level 2.
While the RL agent shows a slight performance gain from
transfer, the qualitatively different path required in this
scenario demonstrates that RL is weak when drastically
different paths are required but the flag location is known.
A human expert can complete this problem in 24.5s.

However, figure 4 shows that the RL agent does demon-
strate transfer when measured over repeated episodes of
the same task. These results were collected by simulating
movement through the UCT map and thus measure the
number of areas visited by the agent rather than elapsed
time. With transfer, the agent performs near-optimally
after approximately 10 episodes; without transfer, the
same performance is not reached until the 40th episode.

The search-based approach also improves on a successive
episode. In the first target episode, the agent performs a

Figure 1, results for original level 0 sce-
nario 2 in UCT (median of 40 trials).

Figure 2, results for a modified level 1
scenario in UCT (median of 40 trials).

Figure 3, results for original level 2 sce-
nario 1 in UCT (median of 40 trials).

0

20

40

60

80

100

120

140

1 11 21 31 41

Episode

A
re

as
 v

is
ite

d

No transfer Transfer

Figure 4, results of the RL agent on successive episodes in a
simulated level 2 target problem. Results are averaged over 20
trials, each consisting of 50 episodes. Optimal is 19 areas.

0

5

10

15

20

25

30

35

40

Target, no transfer Target, with transfer

Ti
m

e
(s

ec
on

ds
)

Memory-based Search-based RL

0

50

100

150

200

250

Target, no transfer Target, with transfer

Ti
m

e
(s

ec
on

ds
)

Memory-based Search-based RL

0

20

40

60

80

100

120

140

Target, no transfer Target, with transfer

Ti
m

e
(s

ec
on

ds
)

Memory-based Search-based RL

Experiments in Transfer Across Multiple Learning Mechanisms

model-based search and chunks the results. These chunks
eliminate all search in the second episode, improving per-
formance. As time spent internally reasoning is dominated
by time spent moving in UCT, this improvement isn’t
significant; in other problem-solving domains it could be.

Table 1, Summary of time and transfer ratios at all levels.

METRIC LEVEL MEMORY SEARCH RL

TIME RATIO 0 3.1 3.2 4.2
TIME RATIO 1 2.4 2.4 2.7
TIME RATIO 2 3.4 3.8 1.2
TRANSFER RATIO 0 10.5 10.8 15.5
TRANSFER RATIO 1 3.3 3.3 4.0
TRANSFER RATIO 2 5.5 6.2 1.2

4.4 Further Discussion

There are a few questions that arise from these results.
Why don’t the agents ever achieve optimal performance?
The emphasis in our agent design is on learning, and the
agents’ low-level movement is not optimized.

Why present median times? We present medians due to
the long-tailed (and multi-modal) nature of the underlying
distributions. While the results for agents not transferring
in the target have high variance (with standard deviations
as much as 100s or more), the medians are robust against
high-valued outliers and present a fair and accurate depic-
tion of the agents’ observed behaviors. Results for agents
using transferred knowledge have low variance.

Are there any differences between the memory- and
search-based approaches? Even though the results for the
search- and memory-based approaches are equivalent,
they are so similar because the time to move through the
environment dominates the time to reason internally. The
results would be very different, and favor the memory-
based approach, on pure reasoning tasks.

Why didn’t RL do better on level 2? It transfers only what
is required to perform well on a particular task. The other
methods transfer the topology, paths, and flag location;
the RL approach transfers only the expected value of
moving to an area. Therefore, the former two should scale
better on more complex tasks. However, the RL agent
would natively handle domains with stochastic actions,
while the others would need similar statistical knowledge
to be competitive. The RL agent has the best time and
transfer ratios for level 0, so isn’t it the best? One oddity
with these metrics is that they can reward inefficiency. In
this case, it has the best scores because its performance is
worst when not transferring.

What is the best method? While time and transfer ratios
are informative, they are only part of the story for decid-
ing which approach to use. Another consideration is the
training required in source scenarios. The search-based
approach requires several hundred seconds to exhaus-
tively explore the map; the memory-based approach re-

quires twice that time as it must enumerate all paths. The
RL agent requires significantly more time: hundreds of
repeated episodes of the source problem.

5. Future Work
Our first step will be to store all map information in
Soar’s newly created semantic memory system instead of
working memory. The semantic memory is optimized for
storing large bodies of declarative facts, while working
memory is optimized for maintaining the current state of
the agent and matching that against the system’s rules.
Beyond that we plan to explore additional learning
mechanisms (episodic memory and hierarchical cluster-
ing) on the remaining DARPA transfer levels.

Acknowledgments
This research is sponsored by the Defense Advanced Re-
search Projects Agency (DARPA) and managed by the
Air Force Research Laboratory (AFRL) under contract
FA8750-05-2-0283. The views and conclusions contained
in this document are those of the authors and should not
be interpreted as necessarily representing the official poli-
cies, either expressed or implied of DARPA, AFRL, or
the United States Government.

References
DARPA (2005). Transfer Learning (BAA 05-29).

Laird, J.E., Rosenbloom, P.S., Newell, A. (1986). Chunk-
ing in Soar: The Anatomy of a General Learning
Mechanism. Machine Learning, 1, 11-46.

Lehman, J.F., Laird, J., Rosenbloom, P. (2006). A Gentle
Introduction to Soar, an Architecture for Human Cogni-
tion: 2006 Update. Retrieved May 2, 2006, from
http://ai.eecs.umich.edu/soar/sitemaker/docs/misc/Gentl
eIntroduction-2006.pdf

Jones, R.M., Laird, J.E., Nielsen, P.E., Coulter, K.J.,
Kenny, P.G., Koss, F.V. (1999). Automated Intelligent
Pilots for Combat Flight Simulation. AI Magazine, 20,
27-41.

Nason, S., Laird, J.E. (2005). Soar-RL: Integrating Rein-
forcement Learning with Soar. Cognitive Systems Re-
search, 6, 51-59.

Rummery, G.A., Niranjan, M. (1994). On-line Q-learning
using connectionist systems. Technical Report
CUED/F-INFENG/TR 166. Engineering Department,
Cambridge University.

Steier, D.S., Laird, J.E., Newell, A., Rosenbloom, P.S.,
Flynn, R., Golding, A., Polk, T.A., Shivers, O., Unruh,
A., Yost, G.R. (1987). Varieties of Learning in Soar.
Proceedings of the Fourth International Machine
Learning Workshop (pp. 300-311). Irvine, CA.

UT Arlington CSE AI Research Group (2006) Retrieved
March 23, 2006, from http://gameairesearch.uta.edu/

