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Abstract 

One of the challenges in comparing learning performance across multiple conditions is to 

develop an appropriate evaluation. We identify four candidate metrics and apply them in an 

empirical example, providing contrast to differences between the metrics. We propose a set of 

criteria that learning comparison metrics should satisfy, evaluate the four metrics using the 

identified criteria, and conclude with a discussion of our findings. 
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1. Introduction 

In empirical studies of learning systems, performance is most commonly evaluated using 

domain-specific performance metrics measured quantitatively over time. However, when 

attempting to evaluate more general characteristics of the learning system, such as how well it 

transfers what it has learned in one situation to another, domain-specific metrics are insufficient. 

The focus of this paper is to study quantitative metrics that measure the differences between the 

performances of learning agents under different experimental conditions, with the aim of 

developing a set of general criteria for such metrics.  

This paper covers four related topics. We begin by reviewing and briefly discussing four metrics 

that have been applied to analyze differences in learning performances across different 

conditions. We apply the metrics in an empirical example to demonstrate their characteristics and 

motivate our evaluation. We propose a set of criteria for evaluating these metrics. We proceed to 

evaluate the learning comparison metrics using our identified criteria, and conclude with a 

discussion of the results. 

All of the four learning comparison metrics that we evaluate share some common traits, but most 

notably all four were developed specifically to quantitatively measure transfer learning 

performance. In transfer learning, an agent applies knowledge learned from one set of problems 

(the source problems) to a new set of problems (the target problems) sampled from a different 

distribution. In the control condition, the target problems are solved without the preceding source 

problems, while in the transfer condition (also called the experimental condition below) the 

target is preceded by the source, which presumably leads to improved performance on the target 

through the transfer of knowledge learned in the source. The metrics we are studying were 

developed to measure the improvement from the control to the transfer conditions so that 

alternative approaches can be compared. Although all these metrics were specifically developed 

to measure transfer learning, they can be applied to measure differences in learning performance 

between learning agents with any a priori relationship. 

Throughout this paper we refer to two classes of metrics. Performance metrics measure 

performance in the domain, for example observed reward per time step. Learning comparison 

metrics (LC metrics) measure differences in performance metrics across conditions, and this is 

the class of metrics that we evaluate in this work. 
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2. Learning Comparison Metrics 

The four LC metrics we consider were developed specifically to measure differences in transfer 

learning performance, including measuring progress in the DARPA Transfer Learning program 

(DARPA 2005). In section 2.6, we also briefly discuss domain-specific metrics and examine why 

they result in poorer evaluations than the four metrics that we examine in more detail.  

Of these four LC metrics: the first three are similar in that they all compare areas over or under 

learning curves and involve integrating over time; they are presented in (roughly) increasing 

order of complexity. The fourth differs from the others in that it integrates over the performance 

dimension instead of time. 

2.1. Transfer Ratio 

The transfer ratio is a simple method of comparing the relative change in performance from one 

learning curve to another (Asadi, Papudesi & Huber, 2006; Morrison et al., 2006). Given two 

learning curves defined by the functions  (the control condition) and Ef  (the transfer 

condition), the transfer ratio is defined as 
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which is the ratio of the areas under each respective curve integrated from time 0t  until the end 

of the comparison. 

Note that the transfer ratio additionally assumes that both learning curves consist of uniformly 

positive values. If any observed data is less than 0, then the data must be transformed by a 

constant additive value before comparing learning performances with the transfer ratio. 

The transfer ratio can be interpreted as the ratio of performance under the control condition to the 

ratio of the performance under the experimental condition. Transfer ratios are greater than 1 

when the experimental condition outperforms the control, are 1 when there are no differences in 

learning performances between conditions, and less than 1 when the experimental condition 

hinders performance. If the task is not learnable for the control condition, the transfer ratio may 

be undefined depending on details of the performance metric. 

2.2. Transfer Regret 

Transfer regret was introduced in the DARPA transfer learning program as an LC metric to 

improve upon the transfer ratio. Transfer regret is not regret as commonly used in the general 

machine learning community (the difference between rewards or errors made by a learner and 

how well it could have performed), but instead transfer regret is defined as 

Cf
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where maxp  and minp  are the best and worst observed performances, respectively. 

Transfer regret measures the ratio of difference in areas between the experimental and control 

conditions to the area defined by maximum and minimal performances over the same time 

period, and it can be interpreted as the percentage of the area contained within a bounding box 

that is between the two learning curves. As transfer regret increases it indicates that the 

experimental condition is increasingly outperforming the control condition (somewhat counter-

intuitively, given its name). By the nature of the ratio that it calculates, transfer regret is 

bounded: it can be at most 1 (when the experimental condition is optimal and the control 

condition never improves), is 0 when performances are identical, and at the least -1 (in the 

opposite situation). Transfer regret is always defined. 

2.3. Calibrated Transfer Ratio (CTR) 

The calibrated transfer ratio attempts to improve on the transfer ratio by calibrating performances 

with the optimal performance (Gorski & Laird, 2007). The CTR builds upon alternate 

formulations of the transfer ratio in which the area above the learning curves are compared, as in 

Mehta et al. (2005). The CTR is defined as 
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where optp  is the optimal performance possible in the domain. 

The CTR can be interpreted as the percentage of possible improvement that was achieved under 

the experimental condition. As the performance under the experimental condition approaches 

optimality, the CTR approaches 1; when both conditions have identical performances, the CTR 

is 0; when the control condition outperforms the experimental condition, the CTR is negative. 

When the control condition is identical to the optimal performance, then the CTR is undefined. 

2.4. Average Relative Reduction (ARR) 

Average relative reduction is unique in that it is the only metric that does not compare areas 

above or under learning curves; rather, it averages the relative reduction integrated across 

performances (Dietterich, 2007). The average relative reduction is defined as 
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where )(pxE  is the trial on which performance level p was first achieved, and the relative 

reduction is integrated from the level of initial performance for the control condition to the level 

of asymptotic performance for the experimental condition. 

ARR can be interpreted as the reduction in time needed to achieve a particular performance 

under the experimental condition as compared to the control condition, averaged across 

performances. As the experimental condition approaches optimal performance, ARR approaches 

1; when both conditions perform identically, it is 0; when the experimental condition 

outperforms the control, it is negative. It is undefined when the asymptotic performance of the 

experimental condition is the same as the initial performance of the control condition. 

2.5. Assumptions 

The four LC metrics that we evaluate in this work share several assumptions.  

Central to our study is the assumption that there exists a single quantitative performance metric 

for the performance tasks. This metric can be almost any measure of performance. Examples 

include quality of solution, time to solution, accumulated reward, and average reward. 

Another common assumption is that the performance metric is increasing (i.e. that higher 

performances are better); the LC metrics can either be trivially reformulated or performance can 

be subtracted from 0 to accommodate decreasing performance metrics. 

The LC metrics that we evaluate further assume that the researcher will identify the domain of 

performances being examined. Typical usage involves comparing performances from time 0 to 

the time that both learning curves reach asymptotic performance; in practice it may be difficult to 

consistently determine the trial on which performance is near enough to the asymptote in order to 

end the comparison.  

Finally, the performances of machine learners are measured on discrete time steps (e.g. per 

domain step or trial). Thus, our statements suggesting that integration is performed over these 

curves are imprecise; rather, the practical application of these metrics approximates the integrals 

through summation. 

2.6. Other metrics 

There are additional LC metrics that have been applied to measure differences in transfer 

learning performance. Jump-start is the difference in performance on the very first time step and 

asymptotic advantage is the difference in performance after both learners have reached 

asymptotic performance (DARPA, 2005; Lee-Urban et al., 2007; Sharma et al., 2007). Both of 

these LC metrics evaluate learning only at one point of performance in domain-specific units, 

limiting their utility for comparison across tasks.  

Instead of comparing areas under learning curves using ratios, one might compare the differences 

in areas by subtracting the area under the control learning curve from that of the transfer 

condition. The result would be in domain-specific units, but it is otherwise similar to the transfer 

ratio; thus it has an additional drawback but gains no advantages. Average overall gain is similar: 
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it averages the differences in performance measured at each time step (Sharma et al., 2007). 

Again, measurements are made in domain-specific units and it has no benefit over the standard 

transfer ratio.  
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3. Empirical Example 

In order to illustrate how the LC metrics compare performances we present a simple empirical 

example. We begin by comparing the performances of two learners in a straightforward example 

of transfer learning, where the transfer condition involves bootstrapping from Q-values that have 

been learned in a related task. This is inspired by transfer work such as Taylor, Stone & Liu 

(2005), although our simple example does not involve any transformation of the value function.  

The domain is a simple MDP: a 4x4 episodic grid world where all actions are deterministic, there 

are four deterministic actions available in each cell of the grid which move the agent in each of 

the cardinal directions, every action results in a reward of -1 except for an action taken in the 

goal cell which results in a reward of +6 (which also ends the episode). The agent always starts 

in the upper-left corner of the grid and the reward cell is adjacent to the lower-right corner of the 

grid. 

In the control condition, the agent begins learning with Q-values initialized to 0. In the transfer 

condition, the agent is trained on a similar MDP: identical except that the reward cell is in the 

lower-right corner of the grid. Both learners update Q-values on-policy following a pure greedy 

policy with a learning rate of 0.5. 

Figure 1 plots the mean accumulated reward per episode for both the control and transfer 

conditions. As expected, the transfer condition performs very well relative to the control 

condition, as the task that it was trained on prior to the observed task was extremely similar.  

 

Figure 1: Mean learning curves for control and transfer conditions in the 4x4 grid world task, 
averaged over 20,000 trials. 

Table 1 contains the values of the four LC metrics comparing the performances of the transfer 

condition to the control. We can interpret these values as follows. The transfer ratio indicates that 

the area under the learning curve corresponding to the transfer condition is 1.2172 times as large 

as the area under the control condition learning curve. Transfer regret indicates that the 

difference in the areas between the two curves was 17.39% of the total area bounding the range 

and domain of the comparison. CTR indicates that the transfer condition improved performance 

-30

-25

-20

-15

-10

-5

0

1 6 11 16 21

Episode

R
e
w
a
rd
 P
e
r 
E
p
is
o
d
e

Control Transferred Value Fxn



 

9 

 

by 82.78% of the possible improvement from the control condition to optimal. ARR indicates 

that the experimental condition required on average 63.39% less training time than the control 

condition to achieve the same performances. 

Table 1: LC metric values comparing performances between the transfer and control conditions 
in two simple grid-world tasks. 

Task Transfer Ratio Transfer Regret  CTR  ARR 

4x4 G.W. 1.2172 0.1739  0.8278  0.6339 

3x3 G.W. 1.4205 0.2739  0.7856  0.6236 

 

In order to better understand these values, we modified the domain by decreasing the size of the 

grid world to be 3x3, identical to the previous domain in other respects except that the terminal 

reward was changed to +4. The learning agents were identical to those used in the previous task 

and the methodology remained the same. 

While the new task should require less training for the agents to achieve asymptotic optimal 

performance, we would expect transfer performance to be slightly worse than in the first task: 

since there are fewer states and the location of the goal cell changes more relative to the size of 

the grid, it should be slightly more difficult for the agent in the transfer condition to adapt to the 

new task. 

Figure 2 plots the mean learning curves for the control and transfer conditions in the modified 

task. Although the general shape of the curves is what we would expect, we require a 

quantitative comparison of the performances in order to draw any sort of comparison to the 

change in performances on the first task. 

 

Figure 2: Mean learning curves for control and transfer conditions in the 3x3 grid world task, 

averaged over 20,000 trials. 
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As seen in Table 1, the values of the CTR and ARR decrease from the first task to the second, 

indicating that the transfer condition achieved less improvement in performance on the second 

task. Note that it is fair to compare the CTR and ARR values across tasks, as they respectively 

measure the percentage of possible improvement that was achieved and the percentage of 

average reduction in training time required to achieve the same level of performance.  

The transfer ratio and transfer regret, however, cannot be fairly compared across tasks, and 

indeed their values increase on the second task relative to the first. This does not indicate that the 

change in performance between conditions was greater on the second task. Rather, they both 

measure ratios that are affected by characteristics of the domain and reward structure, 

invalidating such cross-task comparisons, as we will further discuss in the context of our 

proposed criteria. 
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4. LC Metric Evaluation Criteria 

In developing these criteria, our goal is to identify characteristics of a general LC metric for the 

evaluation of learning performance across conditions, such that the metric is independent of 

learning technique, domain, and performance metric. In doing so, we wish to eliminate custom-

made evaluation metrics and also to identify an LC metric that supports cross-comparisons of 

learning performance for learners using different learning techniques, performing in different 

domains, and being evaluated with different performance metrics. 

4.1. Criteria 

Below we list the criteria that we have identified to evaluate LC learning metrics. We group 

them into three categories, as described below. We have named the criteria so as to be succinct, 

memorable, and accurate.  

4.1.1. Value of the Metric 

These criteria describe characteristics of the value that is returned by an LC metric. 

Defined. An LC metric should return a value for all valid inputs. 

Consistent. An LC metric should return a value that is consistent with other returned values. If 

0.1 indicates a small amount of positive improvement for the experimental condition and -0.1 

indicates a small loss of performance then 0 should indicate no change of performance, and be 

unambiguous. 

Meaningful. An LC metric’s value should have a meaningful interpretation. For the LC metrics, 

meaning is derived from comparison with respect to a standard that is available across tasks and 

domains. 

Unitless. An LC metric’s value should not be measured in domain-specific units. Unitless values 

permit comparisons to be made across tasks and domains.  

4.1.2. Characteristics of the Metric 

These criteria describe characteristics of how the metric evaluates differences in learning 

performances. 

Distinguishing. An LC metric should distinguish quantitatively between performances of 

different relative qualities. 

Independent. An LC metric should not require domain-specific knowledge in order to measure 

the differences between observed performances. 

Parameter-free. An LC metric should not require parameters that must be set during an 

experiment and that could influence the calculation of the LC metric. 

Similar. An LC metric should not have quantitatively different values when all performances 

differ only by a scaling factor. If the values of the metric are not similar, then the metric can be 
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affected by task-dependent ceiling effects; if it is similar, then qualitatively similar performances 

result in the same quantitative values.  

4.1.3. Application of the Metric 

These criteria describe characteristics of how the metric may be used. 

Degenerate. An LC metric should have a degenerate form that can be applied to measure 

differences in performance over a single trial (one- or single-shot performance). 

Testable. An LC metric should be statistically testable and permit the construction of confidence 

intervals. 
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5. Evaluation 

We present here the results of our evaluation of the four selected LC metrics using the proposed 

criteria. We have grouped the results by criterion to provide maximal contrast between the 

metrics. 

5.1. Defined  

Transfer regret is the only LC metric that is always defined. The transfer ratio is undefined when 

integration of the experimental condition is 0 (a rare occurrence); CTR, when the integrated 

difference between optimal performance and the control condition is 0 (rare); ARR, when the 

asymptotic performance of the experimental condition is the same as the initial performance of 

the control condition (rare). In all of these instances, the metrics are undefined because of 

division by 0. 

5.2. Consistent  

Both the CTR and transfer regret are consistent: their values are interpretable without expert 

knowledge of special cases and are consistent with the intended meaning of the metric. ARR is 

not consistent in one situation identified in Dietterich (2007). When all performances of the 

experimental condition are higher than all of the performances of the control condition; then the 

value of the ARR is 1. A more consistent measure in this case would be positive infinity. 

The transfer ratio is not consistent when the integration over the experimental condition is 0 but 

the integration over the control condition is non-zero: it results in a transfer ratio of 0. In this 

case, the experimental condition is performing worse than the control condition and therefore a 

negative value would be more consistent. 

5.3. Meaningful  

Both the CTR and ARR are meaningful. The CTR is explicitly calibrated in relation to the 

optimal performance on a task. The notion of optimal performance has meaning across tasks, 

domains and performance metrics, and by performing this comparison it endows values of the 

CTR with meaning.  

Similarly, ARR is computed by implicitly comparing values to the optimal trial on which a 

performance could have been achieved. These values are trials on which a performance was 

achieved, rather than the value of the performance itself. This concept of the optimal trial also 

has meaning across tasks and domains, which imbues the values of ARR with meaning.  

Neither transfer regret nor transfer ratio compare task performances with any standard value. 

Instead, they compare the integrated performances of the two conditions with each other directly, 

which certainly has a meaning, but not one that is grounded in terms that apply across tasks, 

domains or performance metrics. While the two metrics themselves are meaningful comparisons 

(i.e. one can certainly describe the comparisons that they perform), their values lack 

standardization 
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5.4. Unitless 

All four LC metrics are unitless. Although this does not distinguish between them, it is an 

important characteristic of other LC metrics that could potentially be applied to compare 

performances across performance metrics. 

5.5. Distinguishing  

Transfer regret is the only LC metric that fails to satisfy the distinguishing criterion. Consider the 

two sets of hypothetical learning curves in Figure 3. In both cases, the optimal performance is 1 

and the worst possible performance is 0. Given these two sets of learning curves, the 

experimental condition in figure 3b performs better relative to the control condition than the 

experimental condition in figure 3a. In 3b, the experimental condition approaches the optimal 

performance almost immediately, and much more quickly than in figure 3a. Whereas the transfer 

ratio, CTR and ARR would quantitatively differentiate between these two sets of curves, the 

transfer regret values would be identical in both cases. This failure to distinguish identical 

between qualitatively different performances creates a confounding effect and creates potential 

ambiguity in the metrics’ values. 

 

Figure 3: Two sets of hypothetical learning curves illustrating that transfer regret does not satisfy 
the distinguishing criterion. 

5.6. Independent  

The CTR fails to satisfy the independent criterion. The CTR requires domain-specific knowledge 

in the form of the measure of optimal performance. There are two implications of the CTR’s 

failure to be unambiguous. First, it requires additional effort in order to successfully apply it. 

Second, if the optimal performance is estimated inaccurately, then its measure is inaccurate and 

cannot be fairly compared across tasks and domains. 

As discussed in Gorski & Laird (2007), the CTR requires a measure of optimal performance in 

the domain. For simple domains (e.g. many hand-coded Markov Decision Processes, or MDPs), 

and some complex domains (e.g. some single player General Game Player games as in 

Genesereth, Love & Pell, 2005), it is trivial to analytically determine the optimal performance 

that is possible; however, in many complex domains it is more difficult. 
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For tasks where it is non-trivial to determine the optimal performance, there are several options. 

First, convergence to the optimal policy can be guaranteed in some domains for particular 

learning agents (e.g. Q-learners in MDPs); in such situations, a trained agent’s performance can 

be measured and used as optimal. Second, if the domain is too complex for convergence to be 

guaranteed human experts can achieve mastery in it (e.g. the Urban Combat Testbed in Cook, 

Holder & Youngblood, 2007), then a human expert’s performances can be measured and used as 

an estimate of optimal performance. Third, it may be possible to derive a theoretical upper limit 

on performance, which can serve as optimal even though it may be an overestimate. 

When the optimal performance cannot be determined for a particular task, then the CTR can still 

be applied, but would no longer satisfy the meaningful criterion. Instead of a measure of optimal 

performance, the best performance observed under either condition can be used for calibration. 

While a domain-specific value is certainly a parameter, we differentiate between independent 

and parameter-free. A metric is independent when it does not require a particular domain-

specific value which is used as a standard for comparison. Although parameters used for 

measuring performance (discussed below) are grounded in the domain, they are not used as 

standards for the purpose of comparison. 

5.7. Parameter-free  

ARR satisfies the parameter-free criterion, while the CTR, transfer regret and the transfer ratio 

do not. These three metrics integrate over time, usually from the initial trial until learners reach 

asymptotic performance. The determination of asymptotic performance requires a parameter 

whose value is important because under- or over-estimating when asymptotic performance is 

achieved influences the calculation of their values by a small amount. 

The CTR satisfies this criterion in situations where both learners approach the optimal possible 

performance asymptotically. As the CTR is calibrated by optimal performance, misestimating 

the end of the window of comparison has negligible effect on its value. 

5.8. Similar  

The transfer ratio is the only LC metric that fails to satisfy the similar criterion. Figure 4 shows a 

pair of hypothetical learning curves, one pair on a task showing a considerable ceiling effect 

(figure 4a), and the other pair on a task without a considerable ceiling effect (figure 4b). 

Applying one of the other three metrics in each of these cases would result in identical values for 

the comparisons in both figures. However, applying the transfer ratio to these curves will result 

in two quantitatively different values. This is undesirable as the performances are qualitatively 

similar given the ceiling effect in the first task. In this case, the transfer ratio would obscure the 

underlying performances. 
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Figure 4: Two sets of hypothetical learning curves illustrating that the transfer ratio does not 
satisfy the similar criterion. 

5.9. Degenerate  

The CTR, transfer regret and the transfer ratio all have degenerate forms; ARR does not. For the 

metrics that have degenerate forms, one simply substitutes instantaneous performance measures 

in place of integrations within their equations, which then results in a measure of one-shot 

performance improvement (i.e. performance improvement as observed over a single trial).  

Although the ARR can measure instantaneous reduction, it requires two time series from which 

to extract the time steps on which a particular performance was achieved. Thus, it is only 

applicable over multiple trials exhibiting a range of different performances. If a researcher is 

investigating different learning approaches, some which perform over a single trial and others 

which perform over multiple trials, it can be useful to compare performances using both 

methodologies. 

5.10. Testable  

All four metrics are testable. As the LC metrics are complex statistics and the samples are drawn 

from unknown distributions, calculating measures of statistical confidence requires computer-

intensive bootstrap methods to calculate an empirical sampling distribution, which can then be 

used to test the null hypothesis or construct confidence intervals (Cohen, 1995).  
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6. Discussion 

Table 2 summarizes the results of our evaluation. Our evaluation makes clear that no single LC 

metric dominates the others according to our criteria. Each is unique with its own advantages and 

disadvantages, so that different LC metrics are applicable in some situations while others are not. 

Transfer ratio and transfer regret are applicable to all domains, but satisfy fewer criteria than the 

other two metrics. The CTR is applicable in domains for which a measure of optimal 

performance can be analytically determined, accurately measured, or estimated with confidence. 

ARR, due to what it measures, is applicable to experiments measuring performances over a 

significant number of time steps and where there is a significant range of performances observed. 

Note that although a metric is applicable, that does not imply that it is appropriate. 

Table 2: A summarized evaluation of the four LC metrics using the proposed criteria. 

Criterion Transfer Ratio Transfer Regret Calibrated 
Transfer Ratio 

(CTR) 

Average Relative 
Reduction (ARR) 

Defined X ���� X X 

Consistent X ���� ���� X 

Meaningful X X ���� ���� 

Unitless ���� ���� ���� ���� 

Distinguishing ���� X ���� ���� 

Independent ���� ���� X ���� 

Parameter-free X X X ���� 

Similar X ���� ���� ���� 

Degenerate ���� ���� ���� X 

Testable ���� ���� ���� ���� 

 

6.1. Relative Importance of Criteria 

The relative importance of one criterion to another depends on the task at hand and a researcher’s 

goals. In an exploratory investigation involving a single task but multiple learners, the researcher 

is primarily interested in teasing out differences in performances. The criteria of central concern 

are thus consistent, distinguishing, and similar – criteria that describe how accurately a metric 

portrays differences in performance. 

In studies comparing performances across tasks, domains or performance metrics, then the 

meaningful and unitless criteria gain importance – they are criteria that describe necessary 

characteristics of metrics that allow for such cross-comparisons. 

Other criteria may gain relative importance given specific needs. If a study involves measuring 

performances on single trials, then satisfying the degenerate criterion is necessary. In a formal 

study requiring a test of statistical significance, the testable criterion is essential. 
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6.2. LC Metric Comparisons 

When comparing the three ratio metrics to each other, the CTR has significant advantages over 

transfer regret and the transfer ratio. The CTR is meaningful and satisfies both the distinguishing 

and similar criteria, which make the CTR more comprehensively informative than the others. 

The CTR fails to satisfy three of the criteria: defined, independent and parameter-free. The rare 

circumstances where the CTR is undefined can be prevented by avoiding control conditions that 

are identical to optimal performances. Although the CTR can be influenced by the setting of 

parameters, this is only the case when asymptotic performance is significantly different from 

optimal performance and can be controlled by adopting a single convention for determining 

when a curve is near-asymptotic. Failing to satisfy the independent criterion is the most serious 

of the CTR’s faults; thus, the CTR is most appropriate in domains for which the optimal 

performance is easily measured (or estimated with certainty). 

ARR fails to satisfy three criteria: defined, consistent, and degenerate. The defined criterion is 

least significant, as ARR’s value will be undefined only in a rare corner case. It has no 

degenerate form, which precludes its use over very small time series or single trials. It also fails 

to satisfy the consistent criterion, which requires some knowledge of the metric to interpret ARR 

values of 1. 

ARR is the only metric to satisfy both the independent and meaningful criteria. In applications 

involving cross-task comparisons in which the optimal performance cannot be measured or 

estimated, ARR has significant advantages over the other metrics. 

There are interesting similarities between the CTR and ARR. They are the only two of the LC 

metrics to satisfy the meaningful criterion, which is derived from their comparisons with 

standard values. We noted earlier that the CTR compared against the optimal performance as a 

standard, while the ARR compared against the optimal time as a standard. Thus, both metrics 

compare against standards involving optimal, but across different dimensions.  
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7. Conclusions 

The CTR and ARR metrics evaluate most favorably with the identified criteria, while our 

evaluation suggests that the transfer ratio and transfer regret should be avoided. 

 The CTR measures improvement in the performance dimension, while the ARR measures 

reduction in training time. As machine learning evaluations typically measure changes in 

performance, researchers may prefer this convention; if so, the CTR is preferable to ARR. When 

the optimal performance in a task is inaccessible, then ARR should be used. Past transfer 

learning evaluations have involved learning agents applying very different approaches with some 

capable of performing over a single trial; in such cases, the CTR should be used. The CTR and 

ARR are very similar, as they both measure differences in learning performance by comparing to 

a measure of optimal; they are different in that this comparison is across different dimensions.  

Although the primary contribution of this paper is the comparative evaluation of the four LC 

metrics, the criteria themselves are also a contribution. These criteria were constructed to 

evaluate metrics used to measure differences in learning performance. Although created for this 

specific purpose, many of the criteria are not specific to differences in learning performance and 

could apply to evaluations of other types of metrics used within the machine learning 

community. Evaluations of metrics, specifically comparative evaluations, are uncommon but yet 

are critical to an informed choice of metric. 
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