Sustainable Concrete

March 18th, 2021

Agenda

- Introduction to the CNCA
- Sustainability & Climate Change
- Cement Production & CO2
- GHG Mitigation Strategies Now & in the Future
- Quantifying Impacts & Performance

California Nevada Cement Association WHO WE ARE

- A non-profit trade association
- Funded by the 7 producers and distributors of portland cement
- Advocates for infrastructure funding
- In partnership with agencies/owners, consultants, and contractors to provide:
 - Technical expertise
 - Research
 - Educational opportunities
 - Design assistance
 - Construction feasibility

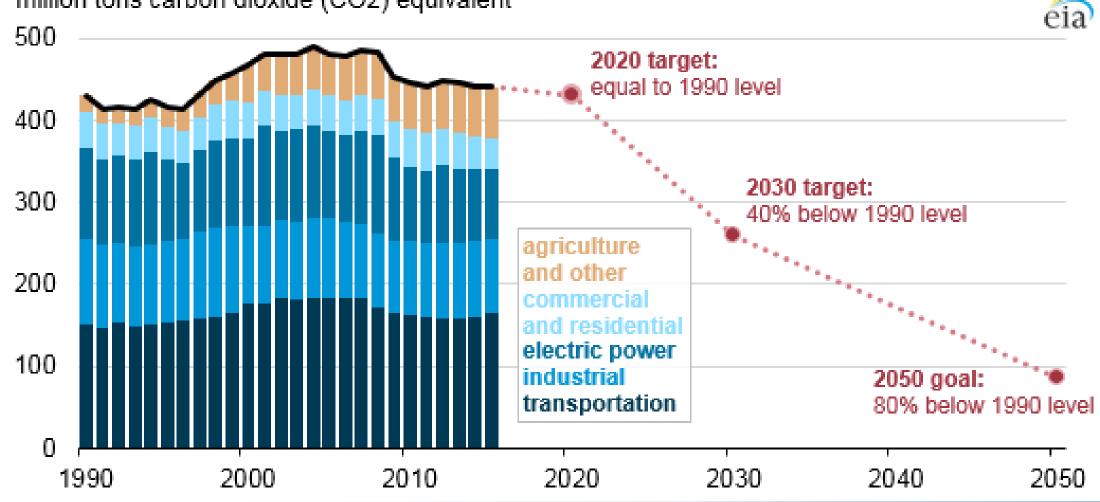
What is Sustainability?

ASCE Definition:

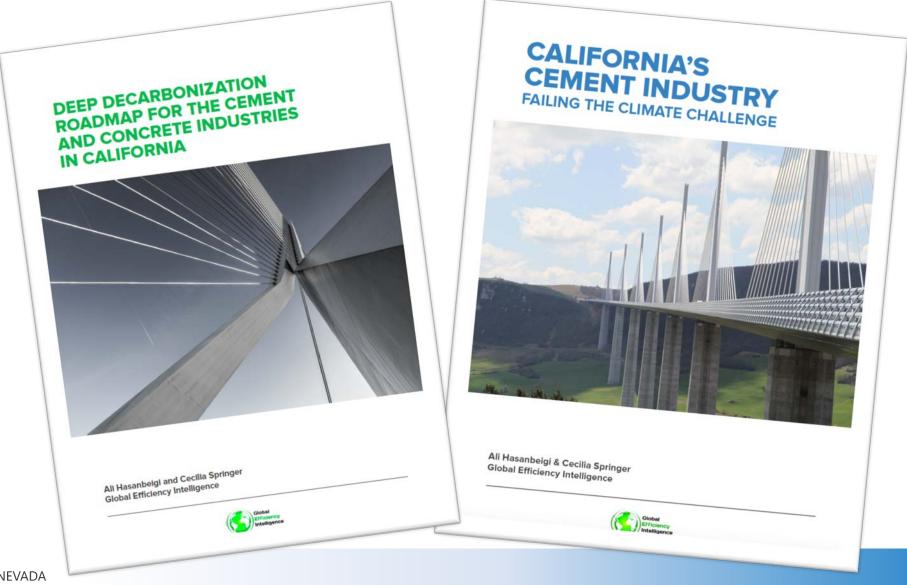
ASCE defines sustainability as a set of environmental, economic, and social conditions – the "Triple Bottom Line" – in which all of society has the capacity and opportunity to maintain and improve its quality of life indefinitely, without degrading the quantity, quality, or the availability of natural, economic, and social resources.

The Triple Bottom Line

Perceptions on Climate Change



After water, concrete is the most widely used substance on the planet. But its benefits mask enormous dangers to the planet, to human health - and to culture itself


California-Specific Climate Change Goals

California greenhouse gas emissions by sector (1990-2015) and targets through 2050 million tons carbon dioxide (CO2) equivalent

Perceptions on Climate Change

Proposals/Actions on Climate Change

LA County Sustainability Plan A GREEN NEW DEAL

A PROGRESSIVE VISION for ENVIRONMENTAL SUSTAINABILITY and ECONOMIC STABILITY

CALIFORNIA GREEN BUSINESS NETWORK MARIN COUNTY

Bay Area Low-Carbon Concrete Building Code

TRANSFORMING LOS ANGELES ENVIRONMENT I ECONOMY I EQUITY City of LA's sustainability pLAn, the "Green New Deal"

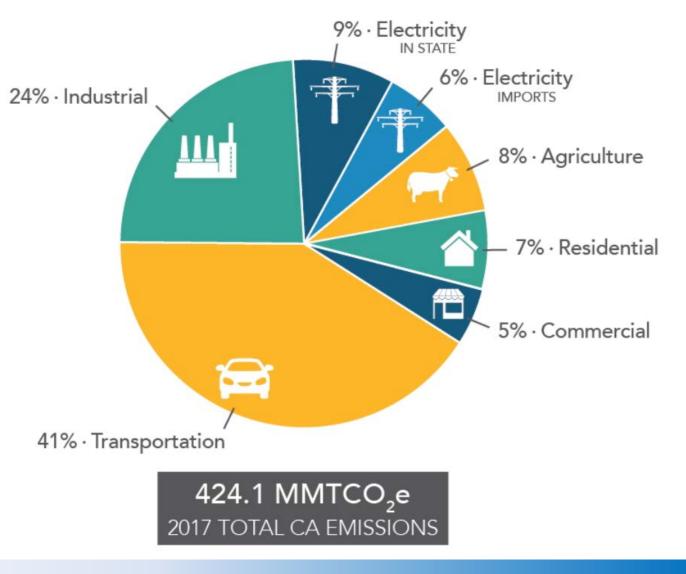
Going

by 2050

Current Status of Portland Cement Production in California

- 8 Plants Operating
- 10.3 MMT production
- 10.7 MMT demand
- 12.4 MMT capacity
 - +/- 11.5% of US capacity
 - * 2018 numbers courtesy PCA

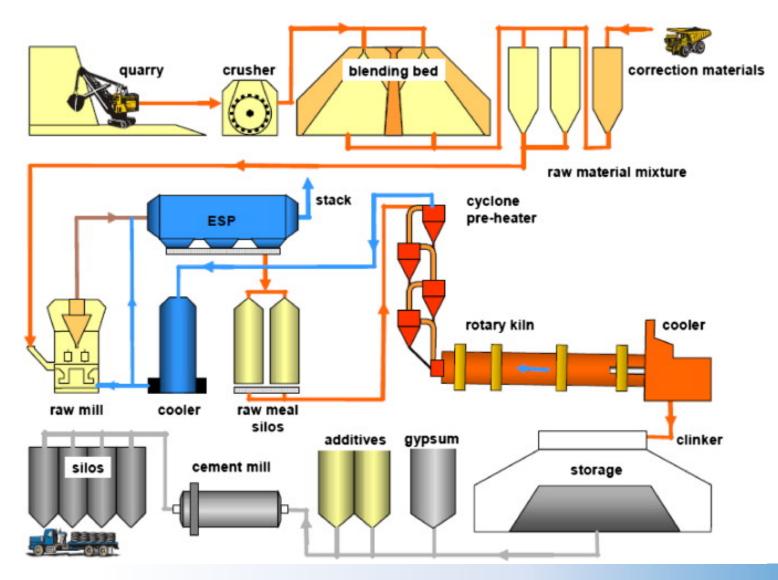
Current Status of energy use and emissions in California


- 1,340 GWh of electricity used
- 900,000 tons of coal and coke burned
- 7.9 MMt of CO2 emitted
 - 61% from process
 - 39% from combustion
 - * 2015 numbers courtesy CARB

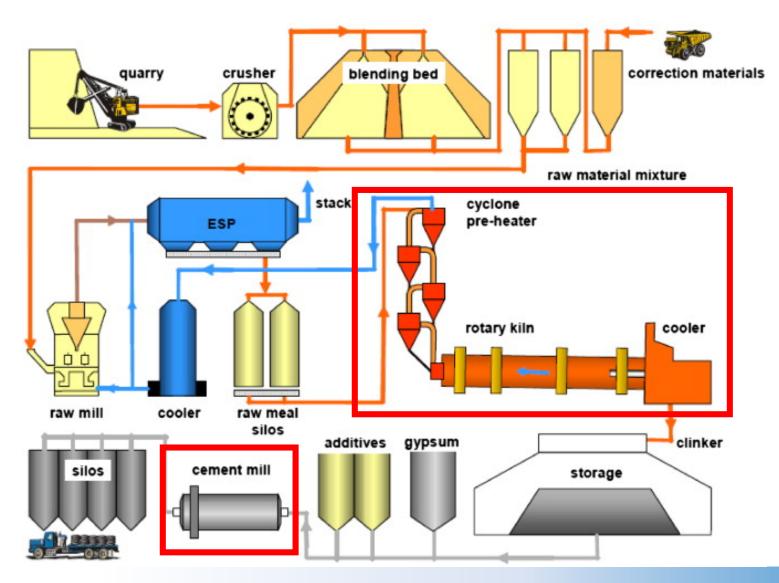
Let's keep things in perspective

• The CA cement industry's 7.9 MMT of CO2 is less than 2% of CO2 emissions in California

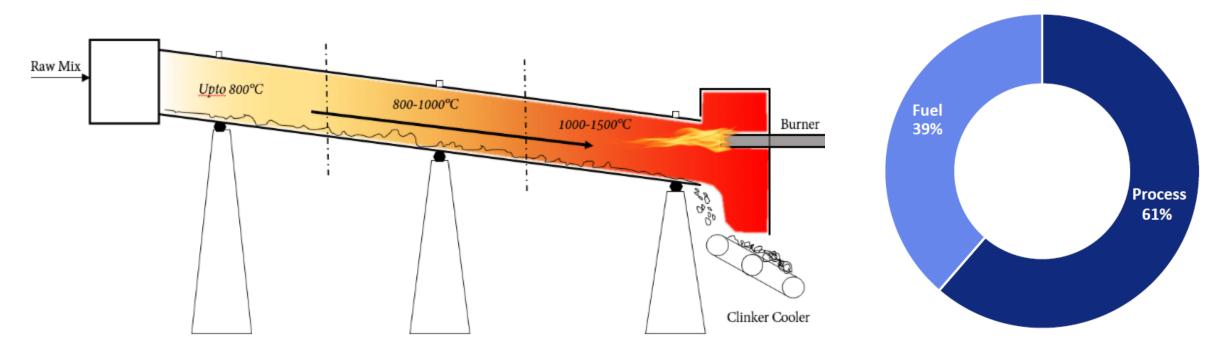
* 2017 numbers courtesy CARB


What can be done?

- At the cement plant
- At the ready-mix plant
- With design & specification
- In the future



Cement Manufacturing:



Cement Manufacturing:

Cement Manufacturing – 2 Main CO₂ Sources:


Fuel: California plants use advanced and energy efficient production technology Process: PLC helps reduce these emissions

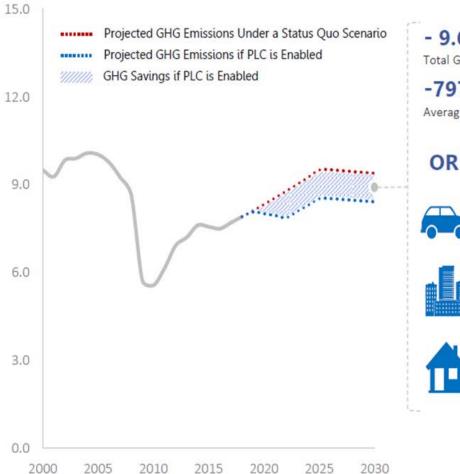
- Thermal energy related: peak temperatures of 1400–1450 °C (2550 2650 °F) are required for calcining reaction: +/- 39% of CO₂ emissions
- 2. Material related (process) emissions: $(CaCO_3 \rightarrow CaO + CO_2)$: +/- 61% of CO₂ emissions

Cement Plant Efficiencies

Improvements in Carbon Efficiency Over Time Percent Change in CO₂ per Metric Ton of Clinker Produced, 2000 to 2015

Portland Limestone Cement

- PLC (ASTM C595 Type IL) contains up to 15% interground limestone in finished cement product (ASTM C 150 Portland cements contains up to 5%)
- Limestone addition happens during cement grinding at the cement plant



PLC's Impact

When adopted in the California market, PLC has the potential to generate almost 10 million metric tons in GHG savings by 2030

- PLC allows an additional 10% of limestone to be added to the final product at cement facilities
- PLC reduces the cement industry's GHG emissions by as much as 10%

California Cement Industry GHG Emissions Million Tons GHG Emissions

- 9.6 Million Tons Total GHG emissions avoided through 2030¹

-797,000 Tons

Average annual GHG emissions avoided¹

Removing 168,353 cars from the road for one year²

2+ Months

Eliminating more than two months of all emissions from the entire city of San Francisco³

117,690 Homes

Switching more than 117,000 homes to zero-emissions electricity for one year²

Sources: (1) analysis by CNCA using historical production data from USGS and emissions data from CARB; (2) EPA GHG Equivalencies Calculator (Last Updated May 2016); (3) San Francisco Department of the Environment

Notes: Projections assume that increased limestone blending displaces cement clinker on a one-for-one basis; increased limestone blending is enabled in 2018 and adopted gradually by the market in subsequent years, with the average industry blending rate increasing by three percentage points each year until reaching 12% in 2022.

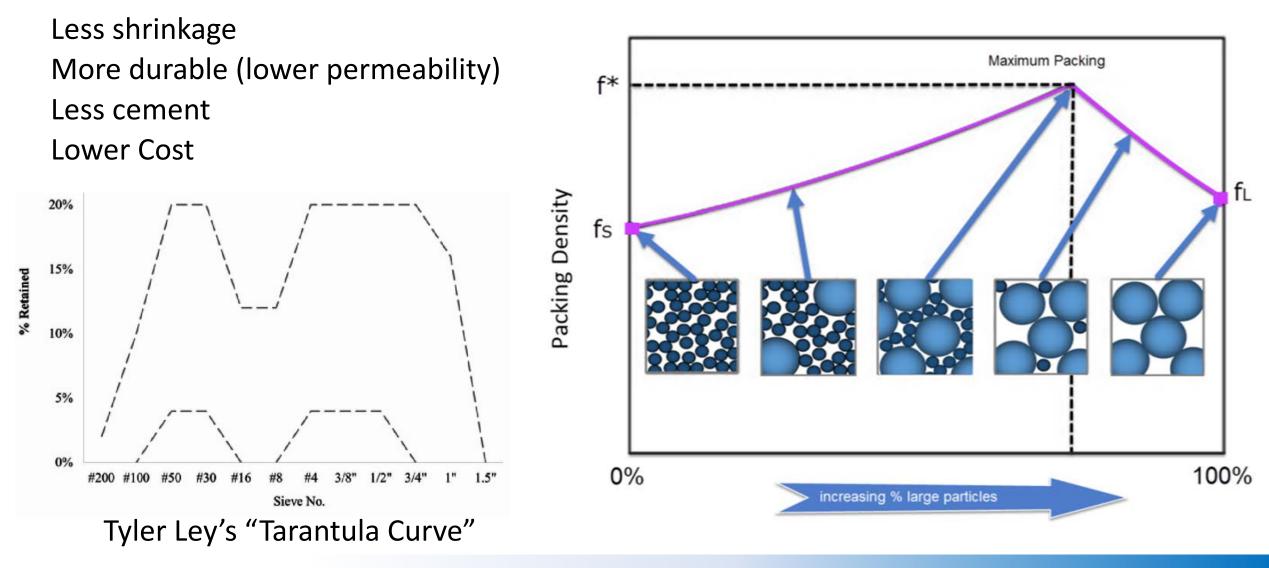
Low-Carbon Fuels

Waste fuels:

- Shredded tires
- Waste oils
- Plastics
- Textiles
- Paper residues
- Municipal Solid Waste

Biogenic fuels:

- Agricultural waste
- Biomass crops

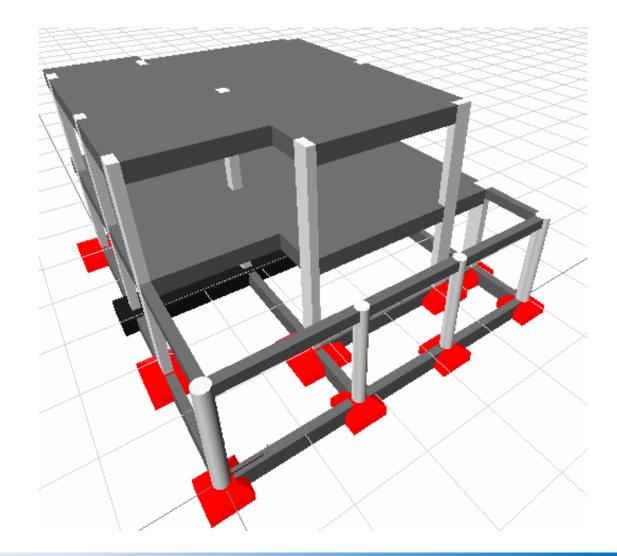

Supplementary Cementitious Materials (SCMs)

- Fly Ash
 - Class C
 - Class F
- Ground Granulated Blast Furnace Slag
- Silica Fume
- Natural Pozzolans
- Limestone
- Calcined clays
- Calcined Shale
- Metakaolin

Optimized Aggregate Gradation

Carbon Capture and reuse with CarbonCure

- Liquid CO2 is injected in fresh concrete during batching process
- C02 turns into solid calcium carbonate
- Results in stronger concrete
- Typical dosage of CO_2 is $1/2 1 \text{ lb/yd}^3$



CarbonCure Equipment

Design Keys for Reducing Carbon

- Consider project schedule
- Engineer member size vs concrete volume needed
 - Potential floor-space benefits
- Consider precasting
- Consider lightweight members
- Use high-strength reinforcing steel

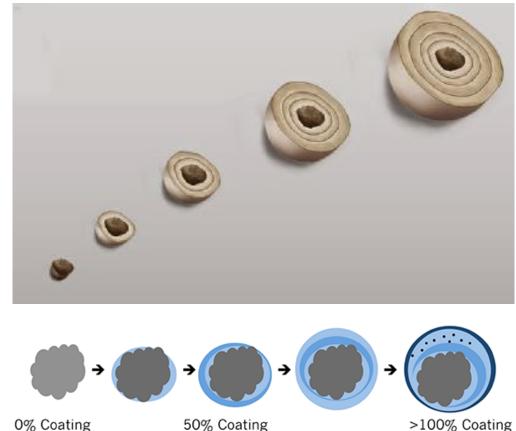


Specification Do's and Don'ts

• Don't:

- Require minimum cement contents
- Restrict SCM usage (min or max)
- Require specific aggregate gradations
- Limit compressive strength to 28 days
- Require specific w/cm ratios
- Keep thinking that cement = strength

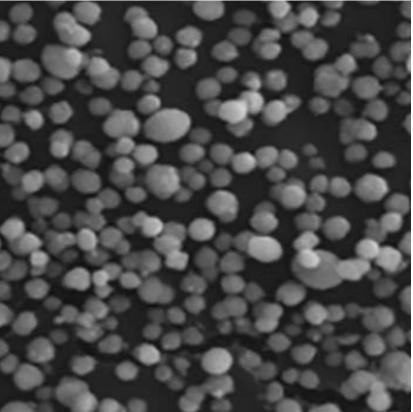
www.cncement.org


• Do:

- Determine required performance
- Specify metrics and require testing to ensure that performance

Further Horizon Solutions – Process Carbon Capture in aggregate with Blue Planet

- Uses CO2 as a raw material for making carbonate aggregate,
- Forming a carbon-sequestering coating that is 44% by mass CO2
- Potential for carbon-negative concrete by capturing and sequestering up to 1,920 lbs of CO2/CY:
 - 1,320 lbs in aggregate and 600 lbs removed from flue gas



Blue Planet CO2 Aggregate

Further Horizon Solutions – Fortera Reactive Calcium Carbonate

- Recarbonated Calcium Oxide (CaO)
- Reacted in a kiln exhaust CO2-rich environment
- Finished product is 43% CO2 by weight and is an SCM

Fortera Reactice CaCO3

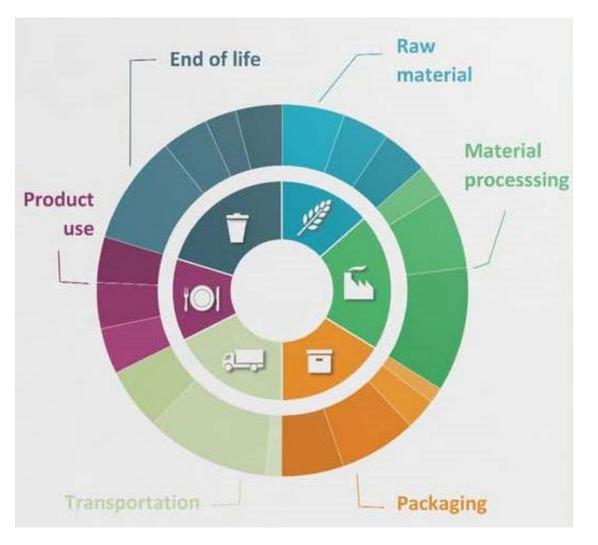
Further Horizon Solutions– Solar heated kilns and calciners - Heliogen

- Uses concentrated solar energy to heat the kiln or calciner
- Current technology allows for calcination of limestone (+/- 1,000°C)
- Future technology may allow for full cement production (+/- 1,500°C)
- Potential for elimination of fossil fuels from cement production process

Heliogen Mirror Array in Lancaster

Further Horizon Solutions– Direct Air Capture

- Capture and sequester CO2 from the air (not at a plant)
- Current technology is estimated to cost \$600/ton to capture
- IRS Section 45Q:
 - Current tax credit of \$35 per ton of captured and sequestered CO2 (\$50 in 2026)
 - (Geological sequestration)



Carbon Engineering facility in British Columbia captures 1 ton/day

Quantifying Environmental Performance

Environmental Product Declarations Rating Systems Lifecycle Assessments

Environmental Product Declarations

EPDs

Environmental Product Declarations

The 3 Types of EPDs

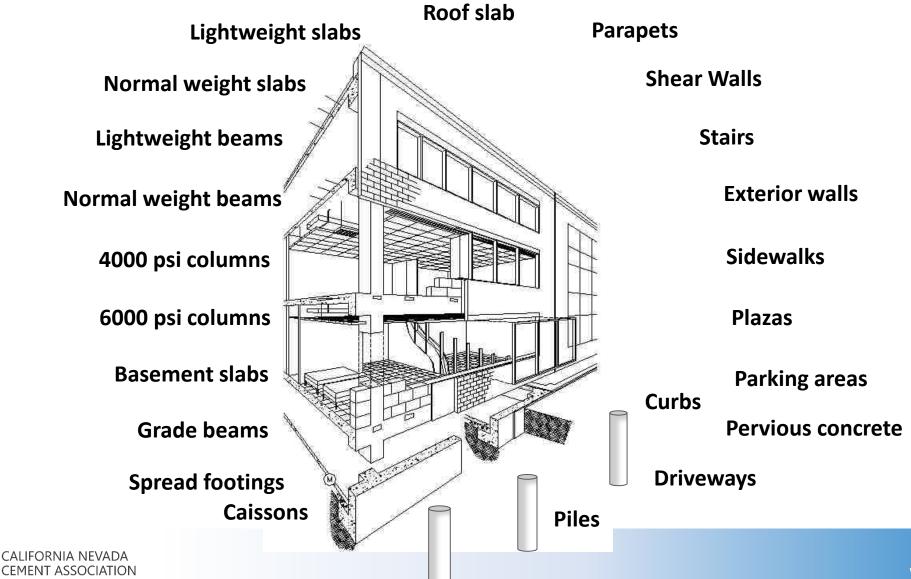
Hydraulic Cements – each type is a product

- Portland cement (ASTM C150 / AASHTO M 85)
 - Type I general use
 - <u>Type II moderate sulfate resistance</u>
 - Type III high early strength
 - <u>Type V sulfate resistance</u>
- Blended cements (ASTM C595 / AASHTO M 240)
 - IS Portland blast-furnace slag cement (e.g., Type IS(35))
 - IP Portland-pozzolan cement
 - IL Portland-limestone cement
 - IT Ternary blended cement (3 cementitious materials)

- Performance specification for hydraulic cements (ASTM C1157)
 - Type GU General Use
 - Type HE High Early-Strength
 - Type MS Moderate Sulfate Resistance
 - Type HS High Sulfate Resistance
 - Type MH Moderate Heat of Hydration
 - Type LH Low Heat of Hydration
- Rapid hardening hydraulic cement (ASTM C1600)
 - Type URH ultra rapid hardening
 - Type VRH very rapid hardening
 - Type MRH medium rapid hardening
 - Type GRH general rapid hardening

Cement EPDs – Standard Cement: Avg. & Specific

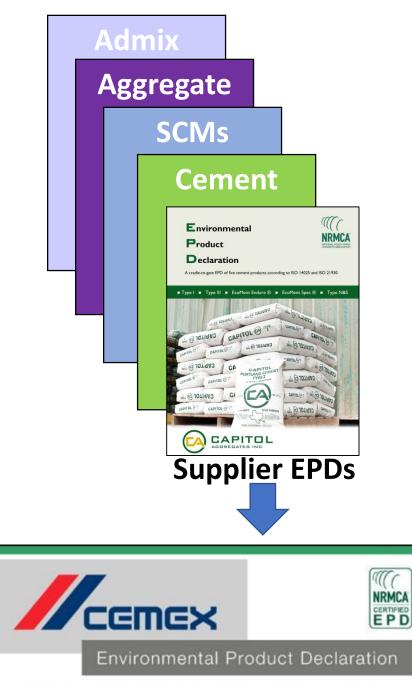
Metric	Cradle-to-gate total per metric tonne of production	Unit	Environmental Indicator	Unit	Riverside Type	Riverside Type III	Riverside Plastic
Environmental impact		_			I/II/V	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Global warming potential (100 years)	1040	kg CO2-eq.	TRACI 2.1 impact categories				
Acidification potential	2.45	kg SO2-eq.	Global warming potential (GWP)	kg CO₂eq.	969	962	823
Eutrophication potential	1.22	kg N-eq.	Acidification potential	kg SO ₂ eq.	1.70	1.71	1.48
Formation potential of tropospheric ozone	48.8	kg O3-eq	Eutrophication potential	kg N eq.	0.0874	0.0910	0.0742
Ozone depletion potential	2.61E-05	kg CFC 11-eq.	Smog creation potential	kg O₃ eq.	38.6	38.6	32.8
Total primary energy consumption			Ozone depletion potential	kg CFC-11 eq.	9.82E-07	1.27E-06	7.70E-07
Non-renewable primary energy: Fossil	5250	MJ	Total primary energy consumption				
Non-renewable primary energy: Nuclear	345	MJ	Non-renewable fossil	MJ (HHV)	5,502	5,490	4,736
Renewable primary energy: Solar, wind, hydroelectric, geothermal	127	MJ	Non-renewable nuclear Renewable (solar, wind, hydroelectric,	MJ (HHV)	142	143	130
Renewable primary energy: Biomass	165	MJ	and geothermal)	MJ (HHV)	143	143	133
Material resources consumption		Renewable (biomass)	MJ (HHV)	0.92	1.18	0.75	
Non-renewable material resources	1420	kg	Material resources consumption				
Renewable material resources	7.64	kg	Non-renewable material resources	kg	1,599	1,574	1,490
Net fresh water ^a	9700	L	Renewable material resources	kg	0.0291	0.0390	0.0236
Total waste generation ^b			Net fresh water (inputs minus outputs)		666	820	576
Non-hazardous waste generated	8.99	kg	Waste generated	1	1	-	
Hazardous waste generated	0.0518	kg	 Non-hazardous waste generated 	kg	2.75	2.73	2.47
0		0	Hazardous waste generated	kg	0.00709	0.00708	0.00632


Cement EPD – PLC: CalPortland Oro Grande

- CA PLC is 16% 'Greener' than average US Portland cement
 - 871 kg/ton vs 1040 kg/ton
- CA PLC is 10% 'Greener' than CA Portland cement
 - 871 kg/ton vs 969 kg/ton

Category Indicator	Unit	Total A1-A3							
TRACI 2.1 impact categories									
Global warming potential (GWP)	kg CO₂eq.	871							
Acidification potential	kg SO₂ eq.	1.56							
Eutrophication potential	kg N eq.	0.0739							
Smog creation potential	kg O₃ eq.	34.8							
Ozone depletion potential	kg CFC-11 eq.	1.09E-06							
Total primary energy consumption	-								
Non-renewable fossil	MJ (HHV)	5,010							
Non-renewable nuclear	MJ (HHV)	136							
Renewable (solar, wind, hydroelectric, and geothermal)	MJ (HHV)	136							
Renewable (biomass)	MJ (HHV)	0.883							
Material resources consumption	-								
Non-renewable material resources	kg	1,530							
Renewable material resources	kg	0.0282							
Net fresh water (inputs minus outputs)	I	335							
Waste generated	-								
Non-hazardous waste generated	kg	2.59							
Hazardous waste generated	kg	0.00658							

Each unique concrete mix design is a product


Environmental Product Declaration

NRMCA MEMBER INDUSTRY-WIDE EPD FOR READY-MIXED CONCRETE

cncement.org

This Environmental Product Declaration (EPD) covers twelve concrete mixes produced by CEMEX at the Pier 92 plant in San Francisco, California.

Industry Average EPD – 4,001 – 5000 psi

Table 9. Summary Results (A1-A3): 4001-5000 psi (27.59-34.47 MPa) RMC product, per cubic meter

Indicator/LCI Metric	GWP	ODP	AP	EP	POCP	PEC	NRE	RE	NRM	RM	CBW	CWW	TW	CHW	CNHW
Unit (equivalent)	kg CO2	kg CFC-11	kg SO2	kg N	kg 03	MJ	MJ	MJ	kg	kg	m3	m3	m3	kg	kg
Minimum	305.8	8.80E-6	1.15	0.38	23.97	2268	2222	43	1983	2.44	0.13	0.12	0.28	0.43	4.72
Maximum	511.7	1.30E-5	1.55	0.61	31.75	3173	3110	63	2377	3.73	0.13	0.12	0.29	0.49	6.77
5000-00-FA/SL	511.7	1.30E-5	1.55	0.61	31.75	3173	3110	63	2377	3.73	0.13	0.12	0.29	0.44	6.77
5000-20-FA	436.3	1.10E-5	1.36	0.52	28.07	2752	2699	53	2196	3.18	0.13	0.12	0.28	0.43	6.12
5000-30-FA	395.5	9.90E-6	1.26	0.47	26.07	2525	2476	48	2099	2.88	0.13	0.12	0.28	0.43	5.77
5000-40-FA	352.5	8.80E-6	1.15	0.42	23.97	2285	2241	43	1995	2.56	0.13	0.12	0.28	0.43	5.40
5000-30-SL	388.2	1.20E-5	1.47	0.48	28.18	2714	2658	56	2175	3.03	0.13	0.12	0.29	0.47	5.54
5000-40-SL	347.1	1.10E-5	1.45	0.44	27.00	2561	2508	53	2107	2.79	0.13	0.12	0.29	0.48	5.13
5000-50-SL	305.8	1.10E-5	1.42	0.39	25.80	2407	2356	51	2039	2.56	0.13	0.12	0.29	0.49	4.72
5000-50-FA/SL	306.2	9.60E-6	1.28	0.38	24.31	2268	2222	46	1983	2.44	0.13	0.12	0.29	0.47	4.83

Plant Specific EPD – 5000 psi

- Description:
 50% SCM
 (Slag) Gen. Use
 4" Line Perf
 5000
- 28-day
 compressive
 strength:
 5,000 psi

Impact name	Unit	Impact per m ³	Impact per cyd		
Global warming potential	kg CO ₂ -eq	378	289		
Ozone depletion	kg CFC-11-eq	1.78 × 10⁻⁵	1.36 × 10 ⁻⁵		
Acidification	kg SO ₂ -eq	1.92	1.46		
Eutrophication	kg N-eq	0.25	0.19		
Photochemical oxidation	kg O ₃ -eq	12.2	9.3		
Primary energy consumption	MJ	4,173	3,191		
Batch freshwater consumption	gal	17.3	13.2		
Process freshwater consumption	gal	3.69	2.82		

Estimating Impacts – EC3 tool

Comparison of 5000 psi ready mix concretes in a region

Rating System - Buildings Market

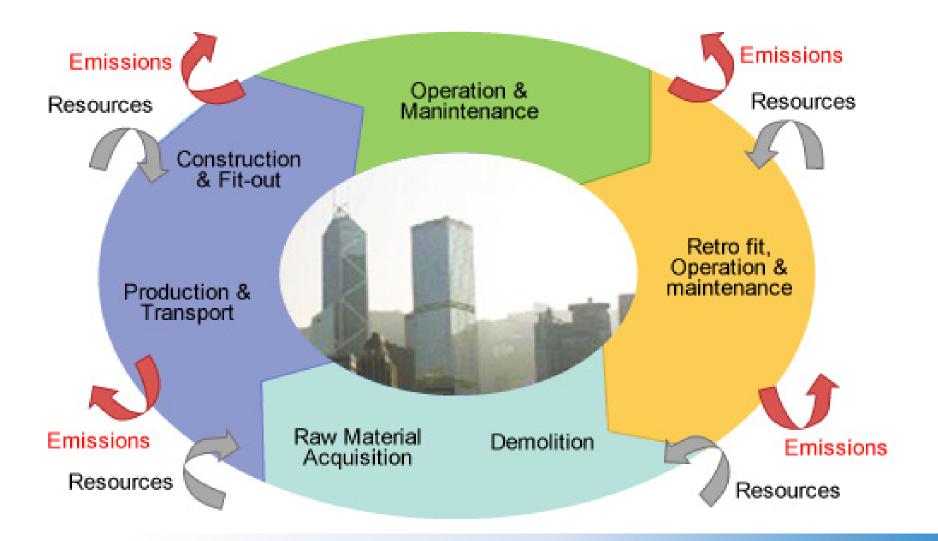
LEED v4

CALIFORNIA NEVADA

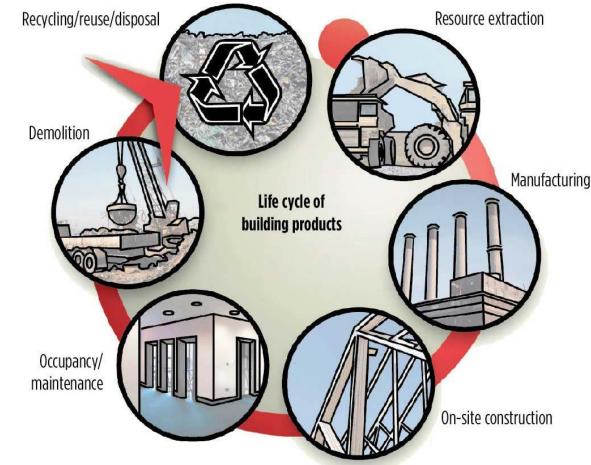
CEMENT ASSOCIATION

Infrastructure Market Rating Systems

- Envision
 - ISI ASCE, APWA,
- Invest
 - Federal Highways Administration (FHWA)
- Greenroads


Rating System Commonalities

- Typically voluntary
- <u>Whole Life</u> Consideration
 - Planning, Design, Construction, Operations, End of Life
- Incentivize improved performance
- Tiered certification levels
- Awards Innovation


Life Cycle Assessment

Take Aways:

- Sustainability is an important topic
 - Becoming more so every day
- CO₂ is inherent Portland cement production
- Many strategies exist to mitigate impacts
- LCAs and Rating Systems allow us to quantify our decisions

Questions?

Contact me: <u>Nathan.Forrest@cncement.org</u> 520-235-0480

