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Abstract

We study the socially optimal level of illiquidity in an economy populated by house-

holds with taste shocks and present bias with naive beliefs. The government chooses

mandatory contributions to accounts, each with a different pre-retirement withdrawal

penalty. Collected penalties are rebated lump sum. When households have homoge-

neous present bias, β, the social optimum is well approximated by a single account with

an early-withdrawal penalty of 1 − β. When households have heterogeneous present

bias, the social optimum is well approximated by a two-account system: (i) an account

that is completely liquid and (ii) an account that is completely illiquid until retirement.
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1 Introduction

What are the liquidity characteristics of a socially optimal savings system? Almost all

developed economies have some form of compulsory savings that is completely illiquid (e.g.,

U.S. Social Security). In many countries, defined-contribution (DC) savings accounts have

mandatory contributions and balances that are completely illiquid during most of working

life (Beshears et al., 2015). In the United States, by contrast, DC contributions are almost

always voluntary (in IRA’s and 401(k)’s), certain types of withdrawals are allowed without

penalty, and, for IRAs, withdrawals may be made for any reason if a 10% penalty is paid.

Liquidity engenders significant pre-retirement “leakage”: for every $1 contributed to the DC

retirement accounts of U.S. households under age 55, $0.40 simultaneously flows out of the

DC system for the same age group, not counting rollovers or loans (Argento, Bryant, and

Sabelhaus, 2015).1 It is not clear whether allowing such leakage is consistent with overall

social welfare maximization, although most media coverage bemoans leakage.2

Our paper evaluates the optimality of an N -account system comprised of liquid, par-

tially illiquid, and completely illiquid accounts. The illiquidity is obtained with compulsory

deposits and linear penalties for pre-retirement withdrawals. We show that simple two- or

three-account systems come extremely close to delivering the welfare obtainable from a fully

general (non-linear) mechanism. We find an upper bound for social welfare and show that

two- and three-account systems nearly attain this bound.

We study preferences that include both normative taste shocks and non-normative self-

control problems due to present bias: i.e., the discount function {1, β δ, β δ2, . . . , β δt}, where

the degree of present bias is 1 − β (Phelps and Pollak, 1968; Laibson, 1997). Our model

builds on the commitment vs. flexibility framework of Amador, Werning, and Angeletos

(2006), hereafter AWA. AWA features households with homogeneous present bias 1− β and

heterogeneous taste shocks θ, with each household’s θ being private information. AWA does

1About half of these withdrawals (dollar-weighted) are made in a category that avoids the 10% penalty.
2See Anne Tergesen, “The Rising Retirement Perils of 401(k) ‘Leakage’”, The Wall Street Journal, April

2, 2017. For a similar industry perspective, see Hewitt Associates (2009).
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not allow for policies that admit inter-household transfers, and finds that minimum savings

is optimal. In other words, the optimal system consists of two accounts, where one account

is fully liquid and the other is completely illiquid until period 2.3

In the current paper, we revisit AWA’s setting and make two changes that reflect con-

siderations faced by a policymaker. First, we allow the government to make inter-household

transfers. Second, we allow for heterogeneous β, with each household’s β being private infor-

mation. We show that, absent heterogeneity of β, a simple Pigouvian tax is approximately

optimal (i.e., a one-account system is approximately optimal). However, with sufficient

heterogeneity of β, the optimal account mechanism is well-approximated by a two-account

system, with one completely liquid account and one completely illiquid account (like AWA,

but arising for different reasons).

The central contribution of the current paper is therefore to show that a simple (e.g., 1-

or 2-account) mechanism that mirrors actual institutions achieves social welfare that is very

close to the welfare that would be achieved by a fully general (non-linear) mechanism. We

now provide a map/summary of the argument that runs through the rest of this paper. Our

analysis is based on three nested classes of mechanisms.

The first class is the class of mechanisms with N accounts in which households are free to

draw down the accounts in whatever order they prefer. The class of N -Account Mechanisms

is restrictive (from the point of view of the planner) in two ways. First, an N -Account

Mechanism has a finite number of accounts, each of which has a linear penalty for early (i.e.,

period 1) withdrawals. Second, an N -Account Mechanism restricts the planner by allowing

households to draw down the accounts in the order that the households prefer. Because this

system is closest to the actual set of institutions/accounts that exist in almost all countries,

this first class of mechanisms is the focus of our numerical analysis. We denote the planner

welfare achieved under an N -Account Mechanism as WN .

3Halac and Yared (2014) study the commitment vs. flexibility tradeoff with persistent shocks and show
that the second-best optimal mechanism features history dependence. Bond and Sigurdsson (2018) study
the commitment vs. flexibility trade-off in three periods, identifying conditions that produce a first-best
allocation. See also Beshears et al. (2020).
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The second class of consists of general non-linear mechanisms satisfying the standard

Global Incentive Compatibility constraint, re-expressed as usual as a Local Incentive Com-

patibility constraint and a Monotonicity constraint. We denote the planner welfare achieved

under this class of General Mechanisms as WG. This is the theoretical (feasible) social op-

timum. This second class of mechanisms allows for arbitrary non-linear budget sets rather

than requiring piecewise linear, convex budget sets (which were assumed in the first class of

mechanisms).4

The third class of mechanisms consists of general non-linear mechanisms satisfying only

the Local Incentive Compatibility Constraint (i.e., omitting the Monotonicity constraint

from the second class). As is standard, we refer to this as the Relaxed Problem. Because

Monotonicity is required for Global Incentive Compatibility, the optimum in this third class

of mechanisms is not necessarily feasible. The third class is used in our paper as the source

for an upper bound on welfare. We denote the planner welfare achieved under this Relaxed

Problem as WR.

Because of the progressive relaxation of constraints, the three classes of mechanism gener-

ate ranked levels of welfare (where welfare is evaluated from the perspective of the planner).

To provide a welfare benchmark, we compare all three mechanisms to an autarkic economy

(with a household storage technology) in which all households are given a single liquid ac-

count and inter-household transfers are not possible. We denote planner welfare under this

autarkic benchmark by WA.5 We then have

WA ≤ WN ≤ WG ≤ WR.

So far we have summarized the autarkic benchmark and three interventionist policy

regimes: N -Account Mechanism, General Mechanism, and Relaxed Problem. Our analysis

4Our first class of mechanisms – N accounts with a flexible draw-down rule – is mathematically equivalent
to assuming a piecewise linear, convex budget set. Piecewise linearity follows from the assumption that each
account has a specific (constant) early withdrawal penalty. Convexity follows from the flexible draw-down
rule, which implies that households will draw down the accounts in order of increasing penalty.

5Because we assume naivete, the autarky case does not generate self-imposed illiquidity.

4



finds the minimum number of accounts under N Accounts such that the welfare improvement

from N Accounts to the Relaxed Problem is de minimis. Under this minimum number of ac-

counts, the welfare improvement from the N -Account Mechanism to the General Mechanism

must also be de minimis (because WG−WN is necessarily weakly smaller than WR−WN).

In other words, the number of accounts that makes welfare under an N -Account Mechanism

close to welfare under the Relaxed Problem, must also make welfare under that N -Account

Mechanism close to welfare under the General Mechanism.

This analytic approach is divided into two fundamental cases: homogeneous β and het-

erogeneous β. When we assume that β is heterogeneous across households, we assume that

the social planner knows the population distribution of β, but does not know the value

of β for each household. The interventionist mechanisms that we study and the bounding

argument that we use, are summarized in the following 3× 2 matrix:

Homogeneous β Heterogeneous β

(Section 3) (Section 4)

N -account Mechanisms (WN) N = 1 N ∈ {2, 3}

General Mechanism (WG) WG −WN ≤ WR −WN WG −WN ≤ WR −WN

Relaxed Problem (WR) Numerical ODE Numerical ODE

The N -account Mechanism (first row) is approximately optimal in the homogeneous-β case

(first column; N = 1) and the heterogeneous-β case (second column; N ∈ {2, 3}). In the

homogeneous-β case, a single account suffices to achieve a close welfare approximation to

the General Mechanism. In the heterogeneous-β case, two accounts suffice to achieve a close

welfare approximation to the General Mechanism, although some further improvement – as

well as greater realism – can be obtained by adding a third account. These results derive

from the simple bound stated in the second row of the table, namely WG−WN ≤ WR−WN .

In the homogeneous-β case, the welfare gap WR −WN between the Relaxed Problem and

an N -account Mechanism is de minimis when N = 1; and, in the heterogeneous-β case, the
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welfare gap WR −WN is de minimis when N = 2 and becomes even smaller when N = 3.

Hence, the welfare gap WG − WN is likewise de minimis in these cases. The final row of

the table refers to our solution method for the Relaxed Problem: we solve the ordinary

differential equation (ODE) that characterizes the planner’s relaxed optimization problem

numerically (see Appendix D).

In the homogeneous-β case, the 1-account system that approximates the theoretically

optimal welfare (achievable using a general mechanism) consists of partially illiquid account

with (Pigouvian) early-withdrawal penalty π ≃ 1− β.

In the heterogeneous-β case, we find that completely illiquid accounts play an important

role in improving welfare. Specifically, the theoretically optimal welfare is well-approximated

by a 3-account system with: (1) a perfectly liquid savings account; (2) a partially illiquid sav-

ings account (with an early-withdrawal penalty of approximately 13%); and (3) a completely

illiquid savings account. More strikingly, the social optimum is also well-approximated by

an even simpler 2-account system with a completely liquid savings account and a completely

illiquid savings account. In both the 2- and 3-account systems the completely illiquid ac-

count receives a substantial mandatory contribution from the household – enough to almost

smooth consumption between working life and retirement even if all other wealth is consumed

during working life.6 The completely illiquid savings account caters to the households with

relatively low β values. Fully illiquid savings generates large welfare gains for these low-β

agents, and these welfare gains swamp the welfare losses of the high-β agents (who are made

only slightly worse off by being forced to shift some of their wealth from completely liquid

accounts to completely illiquid accounts).

To the extent that there is a role for low-balance partially illiquid accounts in the

heterogeneous-β economy, we find that such accounts should have low early-withdrawal

penalties–in most calibrations the penalty is slightly above 10%. Hence, the partially illiq-

6In our model the planner collects all of the resources from households and then deposits funds into
accounts. This is isomorphic to a model in which households are themselves required to deposit funds into
accounts (e.g., an illiquid account functions like a DB pension, Social Security, or a typical (non-US) DC
account that does not allow pre-retirement withdrawals).
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uid accounts look like a 401(k) account in the U.S. Moreover, these partially illiquid accounts

display a high level of leakage in equilibrium: pre-retirement withdrawals are commonplace.

This leakage results in part from normative taste shocks and in part from self-control prob-

lems (i.e., low β). The costs of the partially illiquid account to low-β types (who end up

paying most of the early-withdrawal penalties) and benefits to high-β types (who benefit

from a fiscal externality) are nearly offsetting.

There is a growing literature that studies how present bias effects retirement savings and

how governments should optimally respond.7 Our model is related to the independent and

contemporaneous work of Moser and Olea de Souza e Silva (2019), who study an environment

with unobservable earnings ability, unobservable β, and inter-household transfers. Moser

and Olea de Souza e Silva (2019) find that optimal savings institutions include some forced

savings, a result that also emerges in AWA and in our own paper. Like Moser and Olea de

Souza e Silva (2019), we find that optimal savings mechanisms are characterized by more

mandatory savings than currently exists in the U.S. system. Most importantly, our paper

is the first to show how highly simplified retirement savings systems (e.g., two- and three-

account systems with linear early-withdrawal penalties) come very close to generating welfare

levels that arise under the fully general optimized non-linear mechanism with transfers.8 We

contribute to the literature that identifies settings in which very simple mechanisms provide

good welfare approximations to arbitrarily complex, optimal mechanisms.9

Finally, a large literature studies how firms attempt to exploit agents with present bias.10

7For example, Laibson, Repetto, and Tobacman (1998, 2003) study the design of U.S. 401(k)’s, Galperti
(2015) studies optimal screening among agents with different levels of present bias, Paluszynski and Yu (2019)
study the effects of preference heterogeneity across educational groups, Yu (2021) studies screening between
sophisticates and naives, Pavoni and Yazici (2016) study optimal lifecycle taxation, Maxted (2022) identifies
isomorphisms between optimal policies with time consistent and present-biased agents (in economies in which
agents are always in the interior of their action space). See also O’Donoghue and Rabin (1999b).

8There is a literature on optimal taxation when consumers have present bias, including Laibson, Repetto,
and Tobacman (1998), Gruber and Köszegi (2001, 2004), O’Donoghue and Rabin (2006), Allcott, Lockwood,
and Taubinsky (2019), Lockwood (2020), Farhi and Gabaix (2020). See Bernheim and Taubinsky (2018) for
a review of behavioral public economics.

9For example, see Reichelstein (1992), Bower (1993), Sappington and Weisman (1996), Gasmi, Laffont,
and Sharkey (1999), McAfee (2002), Rogerson (2003), and Chu and Sappington (2007).

10For example, see DellaVigna and Malmendier (2004, 2006), Heidhues and Kőszegi (2010), Sulka (2022),
and several literature reviews: Heidhues and Kőszegi (2018), Ericson and Laibson (2019), and Cohen et al.
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By contrast, our paper studies how a benevolent planner would set up a simple socially

optimal pension scheme.

Our paper proceeds as follows. Section 2 describes the planner’s problem–i.e., account

allocations and early-withdrawal penalties that maximize social welfare subject to informa-

tion asymmetries between the planner and households. Section 2 also analyzes the case of

homogeneous present bias without inter-household transfers (AWA): i.e., resources collected

by the government must be destroyed rather than redistributed.

Sections 3, 4, and 5 all incorporate inter-household transfers, which is a generalization

from AWA. Sections 3 and 4 respectively analyze the economy with homogeneous and het-

erogeneous present bias. Section 5 presents robustness analysis. Section 6 highlights the

many strong assumptions that we make and raises questions of generalizability. Five on-

line appendices contain proofs, including a method for calculating welfare for the Relaxed

Problem (Appendix D).

2 Model

We study a two-period model of consumption for a continuum of households, with idiosyn-

cratic taste shock θ and idiosyncratic present bias β. In period 1, a household consumes

c1(θ, β). In period 2, a household consumes c2(θ, β). One can think of period 1 as working

life and period 2 as retirement. We will sometimes refer only to c1 and c2 for notational

simplicity; dependence on θ and β is implied.

In this model, we give households access to N savings accounts with initial mandatory

balances (xn)
N
n=1 and linear early-withdrawal penalties (πn)

N
n=1 (which will usually turn out

to be positive). In equilibrium, households choose to withdraw from the low-penalty accounts

first. An N -account Mechanism is equivalent to a budget set that is piecewise linear and

convex, whereas the General Non-linear Mechanism imposes neither of these restrictions.

To preview the results to come, we show that the welfare that arises from the N -account

(2020).
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Mechanism with N ≤ 2 is very close to the welfare for the General Non-linear Mechanism.

We focus most of this paper on N -account Mechanisms because of their similarity to the

actual retirement savings systems that are currently in use globally.

2.1 Preferences of households

Preferences in period 1 are given by

θ u1(c1) + β δ u2(c2),

where θ is a stochastic taste shifter,11 ut : (0,∞) → R is the period-t utility function, ct is

period-t consumption, β is the present-bias discount factor, and δ is the standard discount

factor.12 Preferences in period 2 are given by u2(c2).

2.2 Information structure

We assume households are naive: they do not anticipate present bias (see Strotz 1955;

O’Donoghue and Rabin 1999a). The assumption of naivite is broadly supported by the

empirical literature (see reviews in Ericson and Laibson 2019; Cohen et al. 2020), although

there are a range of results (e.g., see Allcott et al. 2022). The assumption of naivite eliminates

the opportunity for screening in a hypothetical ‘pre-period’.13

We assume that taste shifters, θ, and present bias, β, are private information of each

household in the economy. The social planner knows the aggregate distribution of (θ, β)

across households. We denote the distribution function of θ by F (·) and of β by G(·). In

11See Atkeson and Lucas Jr. (1992) for use of such taste shifters. There are also other ways of modeling
taste shifters. For example, consider u(c − θ), where θ is a taste shifter. This case is beyond the scope of
the current paper.

12This framework can be generalized WLOG by including a second independent stochastic taste shifter
(with mean 1, which is realized in period 2) that multiplies period 2’s utility function.

13Galperti (2015) studies screening in a contracting setting where agents are sophisticated, have private
information about their degree of present bias, and contract with a firm. See also Moser and Olea de Souza e
Silva (2019) and Yu (2021).
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our analysis, we assume that θ and β are independent, but we could generalize our analysis

to allow for a joint distribution.

2.3 Preferences of the social planner

The social planner and the household (with taste shifter θ) have nearly identical preferences

over consumption in periods 1 and 2. The only difference is that the social planner does not

normatively endorse present bias, implying that the planner’s objective for a household is

θ u1(c1) + δ u2(c2).

The assumption that the social planner maximizes an objective without present bias, is

a common assumption in the literature (AWA). The social planner chooses policies that

maximize the utilitarian14 social objective:

∫ ∫ (
θ u1(c1(θ, β)) + δ u2(c2(θ, β))

)
dF (θ) dG(β). (1)

The social planner takes account of the (endogenous) equilibrium policy functions of the

households, c1 and c2. The social planner creates incentives that influence these policy

functions, but can’t control them directly because the planner doesn’t directly observe θ and

β for each household. The social planner’s mechanism uses total resources bounded by the

aggregate endowment Y .

Equation (1) implies that the planner has two motives in changing the allocations that

emerge in an autarkic system. First, the planner would like to generate more savings, because

only households, and not the planner, have present bias. Second, the planner would like to

generate inter-personal reallocations from agents with low θ values to agents with high θ

values. The first motive is an inter-temporal reallocation (within a household) and the

second motive is an inter-personal redistribution.

14We can generalize this framework to incorporate Pareto weights, but omit this step to simplify exposition.
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2.4 Timing

Time 0: The planner sets up N accounts, each with gross rate of return R, where N is

a constraint discussed in the next section. Each of the N accounts is characterized by two

variables: an initial allocation xn and a linear withdrawal penalty πn, which applies only to

withdrawals in period 1 (i.e., an early-withdrawal penalty).15 If a consumer withdraws ω

dollars from account n in period 1, the consumer actually receives (1− πn)ω dollars.16 A

completely liquid account has πn = 0, a partially liquid account has 0 < πn < 1, and a com-

pletely illiquid account has πn = 1. For the planner, the choice variables are the allocations

to the N accounts, (xn)
N
n=1, and the respective early withdrawal penalties, (πn)

N
n=1. The

planner chooses the account allocations in a way that respects the economy’s overall budget

balance:
∑N

n=1 xn will equal Y plus the aggregate value of the early withdrawal penalties

collected in equilibrium.

Time 1: Self 1 maximizes welfare from the perspective of time 1 (including present bias).

This generates withdrawals from the accounts established at time 0. Consumption is c1(θ, β).

Time 2: Self 2 spends any remaining funds in their accounts. Consumption is c2(θ, β).

2.5 Summary of the N-account Mechanism

We begin with the consumer’s problem, since consumer behavior is an input to the planner’s

problem. In period 1, the consumer with parameters θ and β maximizes

max
(ωn)Nn=1

θ u1(c1) + β δ u2(c2), (2)

15WLOG, there are no withdrawal penalties in period 2.
16The framework admits negative penalties for period 1 consumption (i.e., subsidies).
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where consumption is given by

c1 =
N∑

n=1

(1− πn)ωn, (3)

c2 = R
N∑

n=1

(xn − ωn) . (4)

Conditional on the policy vectors (xn)
N
n=1 and (πn)

N
n=1, this generates consumption levels

c1(θ, β) and c2(θ, β), where we have suppressed the dependency on (xn)
N
n=1 and (πn)

N
n=1.

We assume a continuum of consumers (with measure one), so integrating over taste-

parameters, θ and β, is the same as integrating over consumers. In period 0, the planner

faces the problem

max
(xn)Nn=1, (πn)Nn=1

∫ ∫ (
θ u1(c1(θ, β)) + δ u2(c2(θ, β))

)
dF (θ) dG(β) (5)

subject to the constraints that (i) c1(θ, β) and c2(θ, β) are given by the consumer’s problem

(equations 2-4) and (ii) economy-wide budget balance is satisfied:

∫ ∫ (
c1(θ, β) +

c2(θ, β)

R

)
dF (θ) dG(β) ≤ Y. (6)

In other words, the planner chooses the account allocation vector, (xn)
N
n=1, and the

penalty vector, (πn)
N
n=1, to maximize social surplus (equation 5) subject to the constraints

that agents will exhibit present bias in their choices (equations 2-4) and that total con-

sumption does not exceed social resources (equation 6). Although we assume the planner

implements the N -account allocation through involuntary contributions, the planner could

implement the same allocation under voluntary contributions through appropriate use of

contribution subsidies (e.g., matching contributions).17 We choose to use an involuntary

17For example, if the planner sets an account-specific match threshold of z (i.e., the maximum voluntary
contribution that can be matched) and an account-specific match rate of m (i.e., the match per dollar
of voluntary contributions), then for all m greater than some match rate m∗, the equilibrium account
contribution will produce a total account balance of x = (1 +m) z.
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framing in our model presentation because it is without loss of generality and notation-

ally simpler (avoiding matching notation) and almost all developed countries have some

involuntary retirement savings (e.g., Social Security in the United States, superannuation

in Australia, the Central Provident Fund in Singapore, and the public pension system in

Sweden, to pick a few examples).18

The N -account Mechanism summarized here is a restricted version of the General Non-

linear Mechanism. We compare our welfare results to bounds on the General Non-linear

Mechanism below.

2.6 Autarky reference case: π = 0

In the analysis that follows, we always compare social welfare to a reference case in which

there are no early-withdrawal penalties–in other words, the agent has access to only one

account (x1 = Y ), and this account has no penalty for early withdrawal (π1 = 0). This is an

autarkic system with a household storage technology, in which the government does nothing

to distort the decisions of each household (implicitly ruling out redistribution).

2.7 Special case of no transfers: AWA (2006)

We consider a first deviation from the autarkic reference case. We allow the government

to intervene by offering households a nonlinear budget set. As in autarky, we continue to

assume that each budget constraint holds at the household level (instead of economy-wide),

c1 +
c2
R

≤ Y for each household. (7)

ruling out inter-household transfers. As in AWA, households have homogeneous β.

In Appendix A, we prove a version of a proposition by AWA (2006). In particular, we

show that under a set of assumptions about u1, u2, and F , an optimal mechanism is a two-

18Some of these systems are funded, some of are unfunded, and some are hybrid. The key unifying feature
(for the purposes of our model) is that they are involuntary.
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account system consisting of a completely liquid account (that can be used in both period

1 and period 2) and a completely illiquid account (that can be used only in period 2). This

system does not feature money burning, so, in equilibrium we have c1(θ) + c2(θ) = Y for all

households.19

We now embed the AWA result in the conceptual framework described in the introduction:

i.e., the three classes of welfare-ranked mechanisms.20 The AWA result implies that the

General Non-linear Mechanism, turns out to be piecewise linear and unconstrained with

respect to the order of account depletion. Accordingly, the N -account Mechanism and the

General Non-linear Mechanism are identical,

WN = WG.

3 Optimal Liquidity with Homogeneous Present Bias

and Inter-Household Transfers

We now study the case in which present bias β is homogeneous across households, but the

government can make inter-household transfers. Specifically, we now replace household-by-

household budget balance (Equation 7) with overall budget balance (Equation 6). With

overall budget balance, we show in Appendix C that a combination of a perfectly liquid

and a perfectly illiquid account is not sufficient to maximize social surplus. Intuitively,

when inter-household transfers are possible (in the interior case, with partial separation),

we can use an incentive compatible mechanism to redistribute c1 away from low-θ types

(i.e., households with low marginal utility, ceteris paribus). To simplify notation, we set

R = δ = Y = 1 for the remainder of the paper.21 We now turn to studying socially optimal

19See Ambrus and Egorov (2013) for cases (that do not satisfy our assumptions) in which money burning
arises.

20Because we directly know the General Non-linear Mechanism, we do not need to discuss the welfare
bound provided by the Relaxed Problem.

21This involves no loss of generality because utility functions can be rescaled.
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mechanisms in this environment.

3.1 Optimal policy with quasi-linear utility

To gain intuition about socially optimal mechanisms, it is helpful to begin by studying the

special case of quasi-linear utility: u2(c2) = c2. To anticipate our results for this case, we

find that the General Non-linear Mechanism is a linear mechanism: i.e., a single account.

Accordingly, the N -account Mechanism and the General Non-linear Mechanism are identi-

cal.22

With quasi-linear utility, we obtain a useful exact result that captures the intuition behind

the general case in which utility is concave in both periods.23

Proposition 1 Suppose that all households have the same value of β. Suppose that inter-

household transfers are possible. Assume that utility is strictly concave in the first period,

linear in the second period, and the solution is interior. Then the socially optimal retirement

system is a 1-account system with a Pigouvian tax on consumption in period 1:

π = 1− β.

This 1-account system is also first-best efficient.

The proof appears in Appendix E.

Quasi-linear utility in period 2 implies that all agents have the same period-2 marginal

utility (regardless of their period-2 consumption). Because marginal transfers to period 2

have the same marginal value for all agents, and because all agents have the same degree of

present bias, a homogeneous Pigouvian correction achieves the first best allocation. Although

22Because we directly know the General Non-linear Mechanism, we do not need to discuss the welfare
bound provided by the Relaxed Problem.

23This result is a version of the well known Pigouvian logic from consumption externalities (Diamond,
1973) and present bias (DellaVigna and Malmendier, 2004; Galperti, 2015). DellaVigna and Malmendier
(2004) and Galperti (2015) study a setting in which a single household contracts with a firm, subject to a
participation constraint. Diamond (1973) studies a population of households with consumption externalities,
subject to an aggregate resource constraint.
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this is not exactly true in the general case in which the utility function is concave in both

periods, the special case of quasi-linear utility turns out to be a good proxy for the case with

strictly concave utility in both periods. We next study that case.

3.2 Optimal policy with strictly concave utility

We now return to the case in which the utility functions in periods 1 and 2, namely u1 and

u2, are both strictly concave (as opposed to the quasi-linear case). We explicitly solve for

welfare in the N -account Mechanism and the Relaxed Problem, thereby bounding welfare in

the General Non-linear Mechanism.

We begin by discussing the General Non-linear Mechanism and the Relaxed Problem. The

General Non-linear Mechanism allows the planner to offer households a non-linear budget

set from which each household can pick a consumption pair, (c1, c2), rather than restricting

to an N -account system. Formally, this problem is transformed into a selection of a utility

pair, (v1, v2), where vt = ut(ct).

In the General Non-linear Mechanism, the planner’s problem can be expressed as that of

choosing v1, v2 : Θ → R to maximize welfare

∫
(θ v1(θ) + v2(θ)) f(θ) dθ (Planner Objective)

subject to the resource constraint

∫ (
Y − C1(v1(θ))−

1

R
C2(v2(θ))

)
f(θ) dθ ≥ 0 (Budget Constraint)

where Ct = u−1
t , that is ct(θ) = Ct(vt(θ)), and the incentive-compatibility constraint, which

now has two parts, namely a linear part,

0 = θ v′1(θ) + β v′2(θ) (Local IC)
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and a monotonic part,

0 ≤ −v′2(θ). (Monotonicity)

This completes our description of the General Non-linear Mechanism.

The Relaxed Problem is obtained from the General Non-linear Mechanism by removing

the Monotonicity constraint. The Relaxed Problem generates an upper bound on welfare

under the General Non-linear Mechanism.24 We characterize the solution to the Relaxed

Problem using a system of differential equations (see Appendix D). For the homogeneous-β

cases that we solve, Monotonicity is actually satisfied, implying that our calculations for the

Relaxed Problem generate the exact solution to the General Non-linear Mechanism.

We also numerically solve for N -account Mechanism with N = 1 account (i.e., the linear

tax case). To preview our results, there is a very small welfare gap between the N -account

Mechanism with N = 1 account and the Relaxed Problem, implying that the N -account

Mechanism with N = 1 account is approximately optimal.

In our benchmark simulations, we make the following functional form assumptions (which

are motivated in the paragraph that follows and evaluated for robustness in Section 5).

S1. The utility functions in periods 1 and 2 are u1(c) = u2(c) = ln(c);

S2. The density of the multiplicative taste shocks is a truncated25 normal distribution.

Specifically: we start with a normal distribution (mean µ = 1 and standard deviation

σ = 0.25); truncate it at the symmetrically placed points 1 − χ and 1 + χ (where

χ = 2/3, resulting in a distribution with support [1− χ, 1 + χ]); and rescale it so that

it integrates to one.

Assumption S1 implies that the coefficient of relative risk aversion is one, a magnitude

that often (approximately) emerges in estimates of lifecycle savings models.26 Assumption

24We are interested in deriving a bound for welfare, not deriving the exact solution. As we explain below,
it turns out that our bound is exact for the homogeneous-β case and close for the heterogeneous-β case.

25We truncate the tails to generate a strictly positive density on a bounded support and to avoid a lifetime
utility function with a negative weight on u1.

26For example, see Gourinchas and Parker (2002) and Laibson et al. (2021).
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S2 implies that a one standard deviation taste shock will induce marginal utility in period 1

to change by ±24.2%.27 We view this as a plausible assumption given the many uninsurable

shocks that buffet households, but we are not aware of formal estimates of this parameter.

In Section 5, we evaluate the robustness of our paper’s findings with respect to variations in

our parametric assumptions.

We begin with Table 1, which reports the improvement in total welfare, relative to the

autarkic benchmark, for different systems of accounts where the planner chooses the optimal

xn and πn. Specifically, each entry tells us how much social welfare improves expressed as

the equivalent percentage improvement in the societal resource endowment; this is typically

referred to as a money metric welfare criterion. We use this welfare reporting framework

throughout the rest of the paper (with the autarky case as our benchmark in all analyses).

The columns of Table 1 represent different cases of homogeneous β, starting with β = 0.1

and progressing to β = 1.0.28

The first two rows of Table 1 report welfare analyses for N -account Mechanisms with,

respectively N = 1 and N = 2 accounts. In N -account Mechanisms, the planner sets the

penalty-level for each account, πn, and the mandatory initial balance for each account, xn.

The third row of Table 1 reports welfare analyses for the Relaxed Problem. Because the

Relaxed Problem drops the Monotonicity restriction in the General Non-linear Mechanism,

welfare for the Relaxed Problem is an upper bound for welfare improvements obtained by

moving from an N -account Mechanism to the General Non-linear Mechansim. The fourth

row of Table 1 returns to an N -account Mechanism with N = 2 accounts. Because we are

interested in real-world analogs, in this row we study the special case where we require the

planner to set up a completely liquid account (i.e., π1 = 0) and a completely illiquid account

(i.e., π2 = 1).

Table 1 reveals that a simple N = 1-account system generates most of the obtainable

27This is slightly less than σ = 0.25 because of the truncation of the deep tails.
28There is a growing literature on estimation of present bias (e.g., DellaVigna and Paserman 2005; Shapiro

2005; DellaVigna and Malmendier 2006; Giné, Karlan, and Zinman 2010; Meier and Sprenger 2010; Augen-
blick, Niederle, and Sprenger 2015; see Cohen et al. 2020 for a review of this literature).
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Value of β
0.1 0.2 0.3 0.4 0.5

N -account Mechanism: N = 1 69.658 31.775 17.124 9.630 5.347
N -account Mechanism: N = 2 71.648 32.698 17.605 9.882 5.478

Relaxed Problem 71.674 32.748 17.659 9.929 5.511
N -account Mechanism: N = 2, π1 = 0, π2 = 1 71.633 32.648 17.482 9.671 5.196

Value of β
0.6 0.7 0.8 0.9 1.0

N -account Mechanism: N = 1 2.794 1.283 0.446 0.067 0.012
N -account Mechanism: N = 2 2.860 1.314 0.458 0.070 0.012

Relaxed Problem 2.881 1.325 0.462 0.071 0.014
N -account Mechanism: N = 2, π1 = 0, π2 = 1 2.542 1.018 0.256 0.015 0.000

Table 1: Welfare gains from four versions of the homogeneous-β model: an N-account
Mechanism with N = 1; an N-account Mechanism with N = 2; the Relaxed Problem, which
is the relaxed version of the General Non-linear Mechanism; an N-account Mechanism with
N = 2 accounts that have exogenously set penalties, specifically π1 = 0 and π2 = 1, thereby
implying that the first account is completely liquid and the second account is completely
illiquid in period 1. In the columns we report welfare gains for 10 different values of β (namely
0.1, 0.2, ..., 1.0). The welfare gain is calculated as the percentage increase in household wealth
that would produce the same average welfare in the autarkic case. Welfare is calculated using
the planner’s welfare criterion (i.e., without present bias in the welfare objective).

welfare gains. For example, for β = 0.6 (a natural value for a homogeneous calibration in

light of current estimates in the empirical literature–see Cohen et al. 2020), this N = 1

system generates a social-welfare gain equal to 2.794% of the endowment (relative to the

autarky reference case). An N = 2-account system generates a social-welfare gain equal to

2.860% of the endowment. The Relaxed Problem generates an upper bound on the welfare

gains for the General Non-linear Mechanism. Because the Relaxed Problem generates a

welfare gain that is 2.881% of the endowment, the welfare gains of extending beyond the

N -account Mechanism with N = 1 accounts are quantitatively modest.

This analysis also reveals another important feature of the homogeneous-β case: the

optimal penalties are essentially Pigouvian corrections to present bias. We can see this in

Figure 1, where we report the optimal penalty for N = 1 accounts, which turns out to be

nearly identical to (1−β), both of which are plotted in Figure 1. This near-Pigouvian result
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Figure 1: The optimal penalty π∗ and the notional Pigouvian tax 1 − β as a function of
β in the case in which: (i) the population has homogeneous β; (ii) the planner is confined
to the N-account Mechanism with N = 1 accounts, with penalty π. Note that π∗ is always
lower than 1 − β. In particular, π∗ is negative at β = 1. This is due to the redistributive
motive of the planner: she wishes to redistribute from types with low θ to types with high θ.

echoes the exact Pigouvian correction that arises in the quasi-linear case (subsection 3.1).29

However, an exact Pigouvian correction (which did arise in the quasi-linear case) is not

generally socially optimal because, with concave utility, the planner would like to reallocate

resources from low-θ types to high-θ types. This redistributive motive is reflected in the

fact that the socially optimal penalties in the 1-account system (for any given value of β)

are all strictly below the corresponding value of (1 − β). Intuitively, the households who

will be paying the penalties are those households with the higher θ values. To transfer

resources to these households, the planner lowers the socially optimal penalty below the

29Similar Pigouvian taxes also arise in the cases with more than one account. For example, with β = 0.6
and two accounts, the penalties on those two accounts are respectively 0.32 and 0.42, straddling the exact
Pigouvian correction of 1− β = 0.4.
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(1 − β) benchmark value. However, as one can see in Figure 1, this downward adjustment

is small in magnitude. Accordingly, the Pigouvian correction is the dominant force in these

simulations.30

4 Optimal Liquidity with Heterogeneous Present Bias

and Inter-Household Transfers

In this section, we continue to allow inter-household transfers. We relax our assumption of

homogeneous β and study a heterogeneous population of β-types. We continue to exploit

the revelation principle and study mechanisms in which agents reveal their intertemporal

preferences (between periods 1 and 2). Household utility θ u1(c1) + β u2(c2) is maximized iff

the following expression is also maximized over consumption:

θ

β
u1(c1) + u2(c2).

Roughly speaking, if we use a continuum of types, the revelation principle can be imple-

mented using variable ϕ = θ/β.31 Accordingly, we study mechanisms in which the agents

each report ϕ and receive a consumption pair (c1, c2) that depends on their report of ϕ. The

social planner’s objective function (1), therefore takes the form

∫
[E [θ|ϕ] u1(c1) + u2(c2)] dH(ϕ).

30In fact, in our numerical simulations taste shocks are sufficiently large that there are economically
significant welfare gains that would be available to a planner with symmetric information. However, in our
framework, taste shocks are private and incentive compatibility limits the scope for efficient redistribution
of resources in the General Non-linear Mechanism. We could extend our model to incorporate observable
variation in resources/needs, and, in that case, the planner would engage in full redistribution in those
categories.

31The primary assumption is that either θ or β or both have non-atomic distributions. It follows that
ϕ has a non-atomic distribution. Given the preferences that we have assumed, individual choices will be
monotonic, so there are only a countable number of values of ϕ where the set of optimal choices is non-unique.
Because ϕ is non-atomic, this set has measure zero. By shifting from truth-telling in (θ, β) to truth-telling
in ϕ, we reduce the feasible set of mechanisms, but we do not change the optimal social welfare.
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Here, E [θ|ϕ] is the conditional expectation of θ, given a household’s value of ϕ. H(.) is the

CDF of ϕ.

This representation highlights the importance of the conditional expectation E [θ|ϕ] ,

which is the weight the planner assigns to period 1 utility of a household with value ϕ. Given

heterogeneity in both θ and β, taste shock θ cannot be directly inferred from ϕ. For a given

impatient choice (i.e., high revealed ϕ), the planner doesn’t know whether the household is

making that choice because of high θ (i.e., real need), or because of low β (more present

bias). The planner wants to give higher period-1 consumption to a high-θ household, but

not to low-β household.

As in the previous section, we begin with the quasi-linear case and then provide quanti-

tative simulations.

4.1 Optimal policy with quasi-linear utility

With homogeneous β, a planner knows β even without observing ϕ. By contrast, in the

heterogeneous-β case that we are now studying, the planner has to try to infer β and θ from

ϕ. Because of this inference problem, exact Pigouvian taxation can not emerge. However,

Proposition 2 shows that conditionally expected Pigouvian taxation emerges as the socially

optimal mechanism in a quasi-linear economy.32

Proposition 2 Suppose that inter-household transfers are possible. Assume that utility is

strictly concave in the first period and linear in the second period, that the solution is interior

and that E[ θ |ϕ ] is non-decreasing in ϕ = θ/β. Then the optimal allocation is characterized

by

E[ θ |ϕ ]u′
1 (c1(ϕ)) = 1,

32This result is connected to Diamond (1973), who shows that a uniform consumption tax on households
that generate heterogeneous externalities targets the average externality. This result is also related to Farhi
and Werning (2010) and to the independent work of Gerster and Kramm (2023).
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and the implied (local) marginal penalty rate for period 1 withdrawals is

π(ϕ) = E[ 1− β |ϕ ].

The proof of Proposition 2 is in Appendix E. This penalty is an ‘average Pigouvian

correction,’ in the sense that the marginal dollar of consumption in period 1 is penalized

with the conditional expected value of 1 − β, where the conditioning is done with respect

to the (truthfully) reported value of ϕ. Heterogeneity in β gives rise to a range of marginal

taxes needed to implement the optimum. It is only at the extreme values of ϕ, ϕ= θ/β,

and ϕ = θ/β, that the planner can exactly infer the values of β, respectively β and β.

Accordingly, at these extreme values for ϕ, the planner chooses the most extreme Pigouvian

tax rates, respectively, π = 1− β and π = 1− β.33

4.1.1 A case in which the support of β is wide relative to the support of θ

We now introduce a corollary that studies the case in which the distribution of β is uniform

and the support of β is wide relative to the support of θ. This gives rise to a mechanism that

features a convexly kinked budget set. In particular, in equilibrium households will pool at

the kink. This budget set, which is not in general piecewise linear, nevertheless has a key

similarity to a simple system of accounts: the opportunity cost of period-one consumption

is discretely higher to the right of the pooling region than to the left.

Suppose that

θ/β < θ/β, (8)

33The assumption that E[θ|ϕ] increases in ϕ implies that c1(ϕ) is increasing and hence Proposition 2, which
is solved as usual by solving the relaxed problem and verifying monoticity ex post, in fact also the optimal
general nonlinear. Intuitively, ϕ represents the household’s relative valuation of date 1 utility while E[θ|ϕ]
represents the planner’s average valuation of date 1 utility across households of type ϕ. The assumption that
E[θ|ϕ] is increasing implies these two valuations are everywhere positively related, or in other words that β
does not fall too quickly as ϕ rises.
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in other words that the support of β is wide relative to the support of θ. We call this the

β-wide case. We emphasize that β-wide is a relative property. We then have the following

corollary of Proposition 2.

Corollary 3 Suppose that the assumptions of Proposition 2 are satisfied and: (i) the support

of (θ, β) is β-wide and (ii) β is uniform. Then, E[θ|ϕ] is constant for all ϕ ∈ [θ/β, θ/β].

Consequently,

1. The optimal allocation pools all types ϕ ∈ [θ/β, θ/β].

2. There is a jump in the marginal penalty from just below the pooling region to just above

the pooling region, that is,

lim
ϕ ↑ θ/β

π(ϕ) < lim
ϕ ↓ θ/β

π(ϕ). (9)

The key driver of Corollary 3 is that the conditional expectation E[θ|ϕ] is constant in ϕ

over an interval, implying the existence of a pooling region. We emphasize that Corollary 3

makes an assumption about the joint support of (θ, β) and an assumption about the density

of β on its support. Corollary 3 places no restriction on the density of θ on its support. The

proof of Corollary 3 is in Appendix E.

Proposition 2 and Corollary 3 are expressed in terms of truth-telling (second-best) optimal

mechanisms. We now address the standard problem of reinterpreting these mechanisms

in terms of a system of accounts – or more generally a budget set – that represents the

institutional analog of the theoretical analysis that has been provided in this subsection.

In practice, the mechanism described in Corollary 3 would be implemented institutionally

as a budget set, which is a set of (c1, c2) consumption bundles; each household picks a point

in this budget set. The opportunity cost of period 1 consumption in terms of period 2

consumption is the slope of the frontier of the budget set. Corollary 3 implies that the

budget set has a kink, at which a mass of agents pool. Moreover, Corollary 3 implies that
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the opportunity cost of period 1 consumption jumps discretely as households move from just

below to just above the pooling point.

Finally, we note that a system of accounts is equivalent to a convex budget set with a

piecewise linear frontier. Each transition between accounts represents a kink in the bud-

get set. Corollary 3 illustrates that such kinks may also arise in special cases of general

mechanisms (i.e., the β-wide case).

4.2 Optimal policy with strictly concave utility

We now switch from the case of quasi-linear utility to the case in which the consumer has

log utility in both periods. In the current and the following subsections, we study optimal

mechanisms using numerical solutions. As before, each simulation has a different assumption

on the the class of mechanisms studied – N -account Mechanism or the Relaxed Problem.

Within the class of N -account Mechanisms, we also vary the number of accounts and the

scope that the planner has to set withdrawal penalties on those accounts. We maintain

simulation assumptions S1 and S2 from the previous section. We assume that β is uniformly

distributed on the interval [0.2, 1], implying a mean value of 0.6.34 We explore the robustness

of these particular cases in Section 5.

Table 2 reports the welfare improvements (again using a money metric) that are obtained

when the planner shifts from the autarky reference system to an N -account Mechanism or

a Relaxed Problem. The first row of Table 2 reports the case of an N = 1 account system.

The second row reports the case of an N = 2 account system. The third row reports the case

of the Relaxed Problem (see the earlier discussion in Subsection 3.2 and the full derivation

in Appendix D). The fourth row reports the case of an N -account Mechanism with N = 2

accounts where we require the planner to set up a completely liquid account (π1 = 0) and

a completely illiquid account (π2 = 1). The fifth row reports the case of an N -account

Mechanism with N = 3 accounts, where the planner has to set a completely liquid account

34See Laibson et al. (2021) and Lockwood (2020) for evidence of substantial variation in β as well as mean
values of β that are close to 0.6.
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N -account Mechanism: N = 1 3.569
N -account Mechanism: N = 2 6.136

Relaxed Problem 6.144
N -account Mechanism: N = 2, π1 = 0, π2 = 1 6.105
N -account Mechanism: N = 3, π1 = 0, π3 = 1 6.137

Table 2: Welfare gains from five versions of the heterogeneous-β model (with β distributed
uniformly between 0.2 and 1): an N-account Mechanism with N = 1 (row 1); an N-account
Mechanism with N = 2 (row 2); the Relaxed Problem (row 3), which is the relaxed version
of the General Non-linear Mechanism; an N-account Mechanism with N = 2 accounts that
have exogenously set penalties, specifically π1 = 0 and π2 = 1 (row 4); and an N-account
Mechanism with N = 3 accounts, where accounts 1 and 3 have exogenously set penalties,
specifically π1 = 0 and π3 = 1, and account 2 has an endogenous penalty (row 5).

(π1 = 0) and a completely illiquid account (π3 = 1), but can choose the penalty for account

2 (π2).

Table 2 reveals that an N -account Mechanism with N = 1 account no longer obtains most

of the feasible welfare gains: one account with a flexible penalty generates a social-welfare

gain of only 3.569% of the endowment, well below the upper bound of 6.144% obtained with

the Relaxed Problem (row 3).

In contrast, an N -account Mechanism with N = 2 accounts gets very close to this upper

bound: two flexible accounts generate a social-welfare gain equal to 6.136% of the endow-

ment. For the N = 2 case, we find that one penalty is close to zero and the other penalty

is close to one. Accordingly, an N = 2 account system with a completely liquid and a com-

pletely illiquid account also gets very close to the upper bound, at a welfare gain of 6.105%

of the endowment. Finally, the N = 3 account system with one completely liquid, one par-

tially liquid and one completely illiquid account generates a welfare gain of 6.137% of the

endowment. The (money-metric) differences among the mechanisms with more than a single

account are small in economic magnitude and a very simple N = 2 account system–one per-

fectly liquid and one perfectly illiquid–generates approximately optimal welfare gains. Such

a two-account system is commonplace in most countries in the developed world (Beshears

et al., 2015).
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The flat conditional expectation, pooling region, and kink in the budget set documented

in Corollary 3 provide one intuition for why a two-account system performs better than a

single account in this case. We next offer a complementary framework to build intuition by

studying comparative statics for the penalty of the partially illiquid account.

4.3 Comparative Statics for the Penalty of the Partially Illiquid

Account

To gain further intuition for this result, we report a related set of analyses in Figure 2. Here,

we study a 2-account system. One account is completely liquid (i.e., π1 = 0) and the other

account has varying illiquidity (i.e., π2 varies). As we vary the penalty π2 from 0 to 1, we

re-optimize the allocations x1 and x2 to the liquid and the partially illiquid accounts. The

horizontal axis shows the penalty π2, and the vertical axis shows the average welfare of the

cross sections of the population obtained by fixing β at one the five values 0.2, 0.4, 0.6, 0.8

and 1.0. It should be emphasized that all households are treated identically ex ante and,

therefore, receive the same allocations and face the same early-withdrawal penalties.

For the most inconsistent households, with β = 0.2, money-metric welfare as perceived

by the planner rises dramatically as the early-withdrawal penalty increases (Figure 2). The

gain to these households from moving from fully liquid, π2 = 0, to fully illiquid, π2 = 1 is

equivalent to an increase of about 30% in their wealth level from the planner’s perspective.

Households with other β values experience increasing and then decreasing welfare as π2

increases from 0 to 1. However, conditional on β, all households experience a rise in expected

welfare as π2 rises from zero. For low-β households, this rise occurs because higher penalties

prevent low-β households from overconsuming in period 1. For high-β households, this rise

occurs because higher penalties generate larger cross-subsidies from low-β households to

high-β households. Specifically, these cross-subsidies occur because higher penalty revenue

relaxes the planner’s budget constraint, thereby enabling the planner to give agents higher

endowments in period 1. High-β households are net recipients of cross-subsidies because
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Figure 2: The welfare of various β cross sections of the population as a function of π2 in
the case in which: (i) the population has heterogeneous β; (ii) the planner is confined to
an N-account Mechanism with N = 2 accounts, with penalties π1 and π2 respectively; (iii)
π1 = 0 (i.e., the first account is completely liquid); (iv) the account allocations are chosen
to maximize the welfare of the population as a whole. Note that the sub-population with
β = 0.82 (not shown) is indifferent between the system with π2 = 0 and the system with
π2 = 1.
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they tend to make smaller early withdrawals and, therefore, pay fewer penalties than low-

β households. These differential penalty payments are shown in Figure 3, which reports

the gross penalties paid by households with different values of β (again integrating over θ).

Penalties are hump-shaped, with lower-β households being willing on average to withdraw

more and pay more at all penalty levels.

Unlike the welfare of low-β households, which rises monotonically as π2 rises, the wel-

fare of high-β households eventually peaks and thereafter falls with π2. This single-peaked

property arises because, while initial rises in π2 simply result in greater revenue from the

early-withdrawal penalties paid by low-β households, later rises tend to eliminate early with-

drawals altogether. Hence the cross-subsidy to high-β households first rises and then falls.

By the time π2 reaches 1, the cross-subsidy has been completely eliminated, and high-β

households are now facing a binding constraint (if they have a sufficiently high θ value) that

limits their ability to adjust consumption in period 1, so high-β households are slightly worse

off on average than they were when π2 was 0. On a money-metric basis, the β = 1 house-

holds experience a welfare loss equivalent to 0.23% of their income as the planner moves

from π2 = 0 to π2 = 1 in Figure 2. However, this welfare loss is swamped by the welfare

gain experienced by the β = 0.2 types (which is two orders of magnitude larger).

Figure 4 shows the welfare of the population as a whole as a function of the early-

withdrawal penalty π2. It confirms that–as one would expect–the enormous welfare gains

for low-β households swamp the modest welfare losses for high-β households, an example of

asymmetric paternalism (Camerer et al., 2003). Although it appears that total social welfare

rises monotonically and asymptotes, social welfare actually reaches a global maximum at

π2 = 0.85 and then falls very slightly. However, the fall in welfare between π2 = 0.85

and π2 = 1 is insignificant: it is 0.00002% of wealth using a money metric. Accordingly, the

social optimum is effectively obtained with one completely liquid account and one completely

illiquid account.
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Figure 3: The total penalties paid by various β cross sections of the population as a function
of π2 in the case in which: (i) the population has heterogeneous β; (ii) the planner is confined
to an N-account Mechanism with N = 2 accounts, with penalties π1 and π2, respectively; (iii)
π1 = 0 (i.e., the first account is completely liquid); (iv) the account allocations are chosen to
maximize the welfare of the population as a whole.

4.4 A three-account system that approximates the U.S. retire-

ment savings system

The fifth row in Table 2 reports the welfare gains for an N -account Mechanism with N = 3

accounts. We will see that this analysis reproduces some of the features of the U.S. system.

We constrain the first account to be completely liquid (π1 = 0) and the third account to

be completely illiquid (π3 = 1). Think of this third account–the illiquid account–as Social

Security or a defined-benefit pension. The planner picks the penalty on the “middle” account

(0 < π2 < 1) and the values of the three endowments (x1, x2 and x3) to optimize social
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Figure 4: The welfare of the population as a whole as a function of π2 in the case in
which: (i) the population has heterogeneous β; (ii) the planner is confined to an N-account
mechanism with N = 2 accounts, with penalties π1 and π2, respectively; (iii) π1 = 0 (i.e., the
first account is completely liquid); (iv) the account allocations are chosen to maximize the
welfare of the population as a whole. Note that: (i) while this is not immediately apparent
from the figure, the function in question is non-monotone; (ii) the optimal penalty π∗

2 is
approximately 85%; (iii) π∗

2 yields a proportional increase of approximately 0.00002% in
money-metric welfare relative to the case in which π2 = 1 (i.e., the case in which the second
account is completely illiquid). In particular, the welfare cost of setting the penalty on the
second account too low far exceeds that of setting it too high.
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welfare (while satisfying the budget constraint). The “middle” account turns out to have an

optimal penalty of π2 = 0.13, which is close to the actual penalty associated with a 401(k)

or IRA account, namely 0.10. Adding the optimized “middle” account to the constrained

two-account system (row 4 in Table 2) slightly raises welfare, by 6.137%− 6.105% = 0.032%

of wealth.

Our simulations reveal that the middle account is characterized by a very high degree of

leakage in equilibrium. Ninety percent of the assets in the middle account are withdrawn to

fund consumption in period 1. Figure 5 disaggregates this result, by plotting the cumulative

distribution function of the ratio c2/c1 = 0.94. Figure 5 shows that 76% of households fully

draw down the partially illiquid account, while another 22% partially withdraw from it. Only

2% of households choose to withdraw nothing from the partially illiquid account.

In summary, our analysis finds that welfare is nearly as high in the two-account system

with a completely liquid account and a completely illiquid account as it is in the three-

account system that adds a partially illiquid account.35 When a third account is added, it

looks and performs somewhat like a U.S. 401(k) plan: the third account has an optimized

penalty of 0.13 and generates a very high rate of leakage in equilibrium. This high leakage

rate is even higher than the empirical leakage rate observed in the U.S. system.

One explanation for the difference between the model-predicted leakage rate (90%) and

the empirically observed leakage rate (40%) is that initial account balances in the model are

generated by government fiat, whereas almost all of the dollars in real-world 401(k)/IRA ac-

counts are voluntarily deposited, implying that they are coming from households with higher

β values and lower θ values in the first place. In this sense, one can’t directly compare the

leakage rate in the model (which is the aftermath of universal forced savings in a DC system)

and the leakage rate in the US economy (which is the aftermath of voluntary savings in a

35The third account offers the welfare benefit of additional separation for high-θ households and low-θ
households. However, the third account has two effects that jointly offset the welfare gains from separation.
First, the third account enables low-β households to increase their period 1 over-consumption. Second,
withdrawals from the third account generate (socially inefficient) transfers of resources from low-β and high-
θ households to high-β and low-θ households because of the penalties that are paid for period 1 withdrawals
from the third account. These tax revenues are redistributed in the mechanism.
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Figure 5: The distribution function of the ratio c2/c1 of period-2 consumption to period-
1 consumption in the population as a whole in the case in which: (i) the population has
heterogeneous β; (ii) the planner is confined to an N-account Mechanism with N = 3 ac-
counts, with penalties π1, π2 and π3, respectively; (iii) π1 = 0 (i.e., the first account is
completely liquid); (iv) π3 = 1 (i.e., the third account is completely illiquid); (v) both π2

and the account allocations are chosen to maximize the welfare of the population as a whole.
There are two atoms in the distribution: a large atom accounting for about 76% of the total
mass near c2/c1 = 0.94; and a small atom accounting for about 1% of the total mass near
c2/c1 = 1.70. Individuals at the second atom have withdrawn the entire balance from the first
(liquid) account, but have not yet touched the second account. Individuals at the first atom
have withdrawn the entire balance from both the first and the second accounts. In particular,
they have paid the penalty π2 on the entire balance of the second account.
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DC system). Accordingly, differential selection makes this an apples to oranges comparison.

Another key factor that explains the high model-predicted leakage rate is the fact that

the planner optimally chooses to put almost half of each household’s resources into the

completely illiquid account (47.4%), with 36.4% going to the completely liquid account and

16.2% going to the partially illiquid account. Accordingly, the completely illiquid account

alone is sufficient to generate nearly equal consumption in periods 1 and 2, even if the

household consumes all of its completely liquid and partially illiquid assets in period 1.

The high level of completely illiquid retirement assets explains the high level of equilibrium

leakage from the partially illiquid account (in period 1). The partially illiquid account is

a source of retirement consumption that can be used to supplement the consumption that

will be generated by the assets in the completely illiquid account. Because the mandatory,

completely illiquid retirement assets is so large (at the social optimum), households are not

strongly motivated to preserve the assets in the partially illiquid account until retirement.

Accordingly, the equilibrium leakage rate from the partially illiquid account is 90.2%.36

Hence, very high rates of equilibrium leakage are consistent with optimized policy in an

economy populated by agents with present-bias.

In the United States, the actual allocation to completely illiquid accounts is far lower

than our optimized policy implies (e.g., mandatory savings is not sufficient to generate

approximate consumption smoothing on its own in the United States). Relatedly, the fully

liquid account plays a far more important role in practice than it does in our model. In

addition, in the United States some withdrawals from retirement accounts are not penalized

(e.g., education expenses, large unreimbursed health expenses, the purchase of a first home).

To account for these factors, we report an illustrative calibration of the model where we

exogenously fix the account balance allocations (rather than endogenously optimizing them)

36The high leakage rate implies that the partially illiquid account has very little impact on almost all
households (relative to a world in which the funds from the partially illiquid account were instead put in
the liquid account). This explains why the partially illiquid account has such a small effect on total social
welfare relative to the two-account benchmark, with a completely liquid account and a completely illiquid
account.
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to reflect the operation of the status quo system in the United States. We exogenously

allocate 60% of lifetime resources to the liquid account, 10% of lifetime resources to the

partially illiquid retirement account with a 0.10 early-withdrawal penalty to match U.S.

system, 10% of lifetime resources to another partially illiquid retirement account with a 0.01

early-withdrawl ‘penalty’ to conceptually capture the fact that some retirement assets are

accessible with only small logistical costs (i.e., non-penalized withdrawals), and 20% of assets

to the completely illiquid account. With this calibration, we obtain an aggregate leakage rate

(total leakage divided by total balances in the two partially illiquid retirement accounts) of

31%, which is within the range of historical leakage rates in the United States (see Argento,

Bryant, and Sabelhaus 2015).

5 Optimal Policy with Transfers and Heterogeneous

Present Bias: Robustness

In the previous section, which studied the case in which inter-household transfers are allowed

and present bias is heterogeneous in the population, three key findings emerged:

1. The constrained-efficient social optimum is approximated by a two-account system,

with one account that is completely liquid and a second account that is completely

illiquid. Little welfare gain is obtained by moving beyond this simple two-account

system.

2. If a third account is added, its optimized early-withdrawal penalty is 13%.

3. The equilibrium leakage rate from this third account is 90%.

In the current section, we document the robustness of these three findings when the

distribution of β is heterogeneous and transfers are allowed. With respect to the first finding,

the largest incremental welfare gain that we generate in our robustness checks by extending
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the system of savings accounts beyond one completely liquid and one completely illiquid

account is 0.081% of income. With respect to the second finding, the optimized penalty on

the partially illiquid account ranges from 11% to 14% across our calibrated economies, similar

to the penalties on 401(k)s and IRAs. With respect to the third finding, the equilibrium

leakage rates remain very high, ranging from 84% to 99%.

The detailed results are reported in the three panels of Table 3, which report the welfare

gain (relative to the autarky benchmark) for (i) the two-account system π1 = 0 and π2 = 1,

(ii) the three-account system with π1 = 0, 0 < π2 < 1, and π3 = 1, and (iii) the Relaxed

Problem described in Appendix D. For case (ii), in addition to the welfare gain, we also

report the penalty π2 and the leakage rate.37

Table 3a varies the value of the coefficient of relative risk aversion (γ). In Table 3a, we

study the cases γ = 1/2, γ = 1 (our benchmark, for comparison), and γ = 2. Table 3b varies

the shape of the density of the taste shock θ, changing the variance of the normal distribution

between σ = 0.30, σ = 0.25 (our benchmark, for comparison), and σ = 0.20. Table 3c varies

the standard deviation of the distribution of β values (holding the mean fixed). In our

benchmark calibration, we studied the case of a uniform distribution of β between 0.2 and

1.0. In Table 3c, we study truncated normal distributions of β, with 0.2 and 1.0 serving

as the truncation points. Our original benchmark is equivalent to the (truncated) normal

case with σβ = ∞ and µβ = 0.6. We now reduce σβ to 1, 1/2 and 0 (holding the truncation

points and µβ fixed). The case σβ = 0 is the degenerate case in which all agents have the

same value of β = 0.6. As shown in Section 4, results do not generalize to the degenerate

case of homogeneous β (the last column of Table 3c). Gathering these results together, we

infer that (at least partially unobservable) heterogeneity in β is necessary for a fully illiquid

account to be optimal.

37Note that the upper bound on the welfare gain–provided by the Relaxed Problem–is economically close
to the N -account Mechanisms that we study.
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Value of γ
0.5 1.0 2.0

N -account Mechanism: N = 2, π1 = 0, π2 = 1 8.851 6.105 3.261
N -account Mechanism: N = 3, π1 = 0, π3 = 1 8.919 6.137 3.274
— — — — Penalty π∗

2 0.13 0.13 0.11
— — — — Leakage Rate 0.89 0.90 0.99

Relaxed Problem 8.932 6.144 3.278

(a) Variation of the coefficient of relative risk aversion γ

Value of σθ

0.30 0.25 0.20

N -account Mechanism: N = 2, π1 = 0, π2 = 1 5.918 6.105 6.323
N -account Mechanism: N = 3, π1 = 0, π3 = 1 5.958 6.137 6.344
— — — — Penalty π∗

2 0.14 0.13 0.12
— — — — Leakage Rate 0.84 0.90 0.89

Relaxed Problem 5.966 6.144 6.349

(b) Variation of the standard deviation σθ of the taste shock

Value of σβ

+∞ 1.0 0.5 0.0

N -account Mechanism: N = 2, π1 = 0, π2 = 1 6.105 6.019 5.772 2.542
N -account Mechanism: N = 3, π1 = 0, π3 = 1 6.137 6.053 5.810 2.841
— — — — Penalty π∗

2 0.13 0.13 0.14 0.36
— — — — Leakage Rate 0.90 0.90 0.90 0.73

Relaxed Problem 6.144 6.060 5.819 2.881

(c) Variation of the standard deviation σβ of the present bias distribution

Table 3: Robustness checks for welfare gains, optimal penalties and leakage rates. In each
sub-table: row 1 contains welfare gains from an N-account Mechanism with N = 2 accounts
that have exogenously set penalties, specifically π1 = 0 and π2 = 1; row 2 contains welfare
gains from an N-account Mechanism with N = 3 accounts, where accounts 1 and 3 have
exogenously set penalties, specifically π1 = 0 and π3 = 1, and account 2 has an endogenous
penalty; rows 3 and 4 contain the optimal penalty and leakage rate from the endogenous-
penalty account associated with the system in row 2; and row 5 contains welfare gains from
the Relaxed Problem. Table 3a varies the value of the coefficient of relative risk aversion γ.
Table 3b varies the parameter σθ of the truncated-normal distribution of θ. Table 3c varies
the parameter σβ of the truncated-normal distribution of β.
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6 Conclusions and Directions for Future Work

We focus our summary on the case in which agents have heterogeneous present bias and the

planner can implement mechanisms with inter-household transfers. Three findings emerge

from our analysis:

1. The constrained-efficient social optimum is well-approximated by a two-account sys-

tem, with one account that is completely liquid and a second account that is completely

illiquid. Little welfare gain is obtained by moving beyond this simple two-account sys-

tem. Accordingly, the two-account system identified in AWA (in a model with homo-

geneous β and no inter-household transfers) turns out to be approximately optimal in

our new setting (with heterogeneous β and inter-household transfers).

2. If a third account is added, its optimized early-withdrawal penalty is only slightly

above 10%.

3. In equilibrium, the leakage rate from this (partially illiquid) third account is high. We

report a range of equilibrium leakage rates, depending on the calibration. With optimal

allocations to all three accounts–completely liquid, partially illiquid, and completely

illiquid–equilibrium leakage rates from the partially illiquid account range from 73% to

99%. By contrast, when we calibrate the model to match actual empirical allocations

to the completely illiquid account (e.g., treating Social Security as the empirical analog

of the model’s completely illiquid account), the implied equilibrium leakage rate from

the partially illiquid account drops to 46%.

These properties have analogs in the U.S. retirement savings system. The United States

has completely liquid accounts (e.g., a standard checking account), completely illiquid ac-

counts (e.g., Social Security), and a partially illiquid defined-contribution system with a 10%

penalty for early withdrawals (e.g., an IRA or a 401(k)). This partially illiquid DC system

has a leakage rate of approximately 40% (see Argento, Bryant, and Sabelhaus 2015).
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Despite these superficial similarities, it is inappropriate to conclude that our findings

demonstrate the social optimality of the U.S. system. Most importantly, our theoretical

model includes key simplifications.38 First, we assume a particular conceptual formulation

of self-defeating behavior (present bias).39 Second, we assume only two periods (e.g., working

life and retirement).40 We anticipate that generalization to many periods without labor in-

come – i.e., decades of retirement – would engender optimal policy characterized by a stream

of illiquid payments (instead of a single illiquid account); such a stream mirrors the annuity

payments that characterize most defined benefit pension plans. Third, we assume a partic-

ular form of multiplicative taste shifter, θ.41 Fourth, we assume that households are naive

with respect to their present bias parameter, β. Fifth, we study a limited set of distributions

of θ and β (and no correlation).42 Sixth, our economy has a fixed endowment, Y, which is not

endogenously responsive to the tax (and redistribution) system. Seventh, our models omits

heterogeneity in income or endowments (e.g., Mirrlees 1971), which weakens the motive for

redistribution. Our framework could be readily generalized to incorporate observable type

heterogeneity, which would require the inclusion of labor income taxation. Incorporating

unobservable heterogeneity would require a substantial change in our framework.

Our simulations imply that retirement consumption should not be allowed to fall far

below working life consumption (recall that the illiquid account has a high funding level

when we calculate the socially optimal system). In the actual data on U.S. households,

consumption proxies appear to decline between working life and retirement,43 raising the

normative possibility that mandatory savings might be underutilized in the U.S.44 However,

38In addition, the U.S. system contains some scope for tax arbitrage, which is not present in our model.
39Other models of self-control include Thaler and Shefrin (1981), Gul and Pesendorfer (2001), Bernheim

and Rangel (2004), Loewenstein and O’Donoghue (2004), Fudenberg and Levine (2006). See Ericson and
Laibson (2019) for a review of this wider class of ‘present-focused’ models.

40Infinite horizon problems introduce technical challenges with respect to multiple equilibria. However,
there has been progress on this issue. For example, see Harris and Laibson (2013) and Cao and Werning
(2018).

41We assume θu(c), but we could have instead assumed u(c− θ).
42Research is only beginning on the distribution of present bias. For analysis of this issue, see Moser and

Olea de Souza e Silva (2019), Lockwood (2020), and Cohen et al. (2020).
43See Stephens Jr. and Toohey (2018).
44In our model, mandatory savings are achieved through a funded system. Our model takes no position
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there is an active debate about both the existence and normative interpretation of the

observed distribution of consumption changes for households transitioning from work life to

retirement.45

Much more robustness work is needed to interrogate the three findings that we summa-

rized above, as well as the additional finding that more mandatory savings would be socially

optimal. It is not clear whether these results will continue to hold as future research enriches

and expands our understanding of household behavior and optimal policy.

on the distinction between funded (e.g., the superannuation scheme in Australia) and unfunded (e.g., U.S.
Social Security) mandatory savings systems.

45See Beshears et al. (2018) for a recent review of the literature on consumption dynamics at and through
retirement.
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Online Appendices

A Optimal Liquidity with Homogeneous Present Bias

and No Inter-household Transfers

In this section, we consider a first deviation from the (autarky) reference case. We allow

the government to intervene by setting up multiple accounts and imposing early-withdrawal

penalties, but we do not allow any inter-household transfers. This is equivalent to saying that

any penalty revenue that is collected must be discarded/burned (instead of being transferred

to other households through the government budget constraint). Such money burning is a

case of theoretical interest and it has been characterized by AWA. This restriction on inter-

household transfers is equivalent to assuming that

N∑
n=1

xn = Y.

In other words, the sum of the resources allocated to households (account by account) will

equal the total sum of resources in society, which is Y = 1. (In the next section, we

eliminate the money-burning restriction and accordingly allow inter-household transfers to

occur through the tax/penalty system.)

In this section, we assume that all agents share a common value of β – i.e., a common

degree of present bias. Hence, the distribution function G is degenerate.

With the assumption of no inter-household transfers, our problem can be expressed using

our standard notation with the aggregate budget constraint replaced by a household-level

budget constraint:

c1 +
c2
R

≤ Y for each household. (10)

To simplify notation, we henceforth we set δ = 1, R = 1 and Y = 1.46

We now formulate a version of a proposition by AWA (2006).

We begin by denoting the support of the taste shifter θ by Θ = [ θ, θ ], where 0 < θ < θ <

∞. We denote the distribution function of θ by F : (0,∞) → [0, 1]; we denote the density

function of θ by F ′ : (0,∞) → [0,∞); and, following AWA (2006), we define a function

Γ : (0,∞) → R by the formula

Γ(θ) = (1− β) θ F ′(θ) + F (θ).

46This involves no loss of generality because the utility function can be rescaled.
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Next, we define the “pooling type” θ1 to be the minimum θ ∈ ( 0, θ ) such that

1
θ−t

∫ θ

t

Γ(s)ds ≥ 1 for all t ∈ [ θ, θ ).

Notice that θ1 is well-defined. Indeed, θ1 > 0 and – if we denote by Θ1 the set of all θ ∈ ( 0, θ )

such that 1
θ−t

∫ θ

t
Γ(s) ds ≥ 1 for all t ∈ [ θ, θ ) – then Θ1 is the non-empty half-open interval

[ θ1, θ ). However, it is entirely possible that θ1 is a “hypothetical” type, in the sense that

θ1 < θ.47

Our candidate for an optimal consumption allocation is then obtained by requiring that:

(i) all types in the “separating interval” ΘS = {θ | θ ∈ Θ, θ < θ1} choose freely from the

unconstrained budget line, namely the set of all (c1, c2) such that c1 ≥ 0, c2 ≥ 0 and

c1 + c2 = 1; and (ii) all types in the “pooling interval” ΘP = {θ | θ ∈ Θ, θ ≥ θ1} receive the

allocation that the (possibly hypothetical) type θ1 would choose freely from the unconstrained

budget line. Notice that ΘS may be empty, but that ΘP never is.

If this construction is to work, then we need to ensure that all the allocated consumption

bundles lie in the interior of the unconstrained budget line. If θ1 > θ, then this will be the

case if and only if: (i) the most patient of the relevant types, namely θ, would choose c1 > 0

from the unconstrained budget line; and (ii) the least patient of the relevant types, namely

θ1, would choose c2 > 0 from the unconstrained budget line. If θ1 ≤ θ, then the only relevant

type is the pooling type θ1, and we need only require that this type chooses both c1 > 0 and

c2 > 0 from the unconstrained budget line.48

Finally, we need to ensure that the Lagrange multiplier used in the sufficiency argument

is non-negative. To that end, we assume that Γ is non-decreasing on the separating interval

ΘS = [ θ, θ1).
49 Notice that, if θ1 ≤ θ, then ΘS is empty; so in that case this assumption

places no restriction on Γ.

We now enumerate all of our assumptions.

A1 u1, u2 are twice continuously differentiable, with u′
1, u

′
2 > 0 and u′′

1, u
′′
2 < 0.

47It is helpful to compare our definition of θ1 with AWA’s (2006) definition of θp. AWA define θp to be

the minimum value of θ ∈ [ θ, θ ) such that
∫
θ
t
(1 − Γ(s)) ds ≤ 0 for all t ∈ [ θ, θ ). Hence θp and θ1 are

related by the formula θp = max {θ1, θ}. Hence AWA’s Proposition 3 holds when θp > θ, in which case,
θp = θ1. AWA’s Proposition 3 does not, however, hold when θp = θ. To see why, consider the following
counterexample. Suppose that θ − θ is small and that 1 − β is large. Then offering different consumption
bundles to different θ is not a priority for the planner, but preventing overconsumption is. So the planner
will want to choose a pooling type strictly less than θ.

48A simple sufficient condition ensuring that all the allocated consumption bundles lie in the interior of
the unconstrained budget line is therefore that u′

1(0+) = u′
2(0+) = +∞.

49It is helpful to compare our Assumption A4 with AWA’s (2006) Assumption A. AWA assume that Γ is
non-decreasing on the interval [ θ, θp].
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A2 u′
1(0+) = u′

2(0+) = ∞.

A3 F ′ is a function of bounded variation.50

A4 Γ is non-decreasing on the separating interval ΘS = [ θ, θ1).

A5 0 < β < 1.

Proposition 4 (Cf. Proposition 3 of AWA (2006).) Suppose that β is the same for all

households. Suppose further that inter-household transfers are not possible. Then welfare

is maximized by dividing the endowment between two accounts: a completely liquid account

(that can be used in both period 1 and period 2) and a completely illiquid account (that can

be used only in period 2). In particular, types in the separating interval ΘS – which consists

of those θ ∈ Θ such that θ < θ1, and which will be empty if θ1 ≤ θ – choose c1 strictly less

than the balance of the liquid account; and types in the pooling interval ΘP – which consists

of those θ ∈ Θ such that θ ≥ θ1, and which is never empty – set c1 equal to the balance of the

liquid account (and therefore set c2 equal to the balance of the completely illiquid account).51

In other words, in the case of homogeneous β, no inter-household transfers and a weak

restriction on the distribution function of the taste shifter θ, the socially optimal allocation is

achieved with an N -account Mechanism with N = 2: one account that is completely liquid,

and a second account that is completely illiquid in period 1 and completely liquid in period

2. Additional accounts (with intermediate levels of liquidity) do not have any value.

This proposition embeds two cases: in one case (θ1 > θ), some types are separated and

some types are pooled; and in the other case (θ1 ≤ θ), all agents are pooled. We emphasize

that, in the second case, it is entirely possible that θ1 < θ. In other words, the pooling type

θ1 is a hypothetical type that is not a member of the population Θ. Either way, all types

θ ∈ Θ with θ ≥ θ1 pool on the choice that type θ1 would make from the unconstrained

budget line. The key difference between our analysis and that of AWA (2006) is that their

analysis covers the case θ1 > θ, whereas our analysis holds for all values of θ1.
52

50Intuitively speaking, F ′ is a function of bounded variation iff there exists a bounded Borel measure F ′′

on (0,∞) such that F ′ is the distribution function of F ′′. For example, if F ′′ assigns mass 1 to the point
1 and mass −1 to the point 2 (and assigns no mass to any other point) then F ′ will be the density of the
uniform distribution on [1, 2]. More generally: (i) the truncation to the interval [ θ, θ ] of the densities of most
named distributions are functions of bounded variation; and (ii) any step function, the support of which is
contained in [ θ, θ ], is a function of bounded variation. See Appendices B.3 and B.4 for a detailed discussion
of functions of bounded variation.

51In particular, no money burning arises in equilibrium. See Ambrus and Egorov (2013) for cases (that
do not satisfy our assumptions) in which money burning arises.

52There is another important difference between our analysis and AWA’s. The original AWA proof shows
that the two-account system is optimal in the class of continuous incentive-compatible consumption alloca-
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In summary, Proposition 4 implies that no gain in welfare is achieved by increasing

the number of accounts beyond N = 2 in the family of N -account Mechanisms (equations

2-6). But the proposition relies on two strong assumptions – homogeneous β and no inter-

household transfers. We next analyze the model in the case in which the latter assumption

does not hold.

B Proof of Proposition 4

B.1 Formulation of the Proposition

In the main text we assumed that the income Y of a household was 1 and that the total mass

F ( θ ) of households was 1. This was done in order to reduce notation. In this appendix we

will work with general Y and general F ( θ ), since it is easier to follow the derivations in the

general case.

The first step in formulating Proposition 4 is then to define θ1 in this more general setting.

Recalling that the function Γ is given by the formula

Γ(θ) = (1− β) θ F ′(θ) + F (θ),

we define θ1 to be the minimum θ ∈ ( 0, θ ) such that

1

θ − t

∫ θ

t

Γ(s)ds ≥ F ( θ ) for all t ∈ [ θ, θ ).

for all t ∈ [ θ, θ ). Assumptions A1-A5 are then assumed to hold exactly as stated in the

main text. Finally, we restate Proposition 4 for the reader’s convenience.

4

Proposition 0 (Cf. Proposition 3 of AWA (2006).) Suppose that β is the same for all

households. Suppose further that inter-household transfers are not possible. Then welfare

is maximized by dividing the endowment between two accounts: a completely liquid account

(that can be used in both period 1 and period 2) and a completely illiquid account (that can

be used only in period 2). In particular types in the separating interval ΘS – which consists

of those θ ∈ Θ such that θ < θ1, and which will be empty if θ1 ≤ θ – choose c1 strictly less

tions, whereas our proof shows that the two-account system is optimal in the class of all incentive-compatible
consumption allocations. This is potentially important because many incentive-compatible consumption allo-
cations are in fact discontinuous. For example, suppose that there is a type θ2 ∈ ( θ, θ ) and two consumption
bundles c and c such that all types in [ θ, θ2 ) choose c and all types in ( θ2, θ ] choose c. Then there is a jump
in the allocation at θ2.
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than the balance of the liquid account; and types in the pooling interval ΘP – which consists

of those θ ∈ Θ such that θ ≥ θ1, and which is never empty – set c1 equal to the balance of the

liquid account (and therefore set c2 equal to the balance of the completely illiquid account).

Our proposition generalizes AWA’s analysis in two respects. First, AWA’s analysis cov-

ers the case θ1 > θ, whereas our analysis holds for all values of θ1. Second, AWA’s analysis

shows that the two-account system is optimal in the class of continuous incentive-compatible

consumption allocations, whereas our analysis shows that the two-account system is opti-

mal in the class of all incentive-compatible consumption allocations. The first point could

be expressed by saying that AWA’s analysis covers the partial-separation case, whereas our

analysis covers both the pooling and the partial-separation case. The second point is impor-

tant, because many incentive-compatible consumption allocations – including some of the

simplest possible incentive-compatible consumption allocations – are discontinuous.

B.2 A Candidate Utility Allocation

Our strategy of proof is to construct a candidate utility allocation and a candidate La-

grange multiplier, and then show that the utility allocation maximises the Lagrangian when

violations of the resource constraint are penalized using the Lagrange multiplier.

We begin by constructing a candidate consumption allocation. This is obtained by requir-

ing that: (i) all types θ in the separating interval ΘS = {θ | θ ∈ Θ, θ < θ1} = [ θ, θ1) choose

freely from the unconstrained budget line, namely the set of all (c1, c2) such that c1 ≥ 0,

c2 ≥ 0 and c1+c2 = Y ; and (ii) all types θ in the pooling interval ΘP = {θ | θ ∈ Θ, θ ≥ θ1} =

[max{ θ, θ1}, θ ] receive the allocation that the (possibly hypothetical) type θ1 would choose

freely from the unconstrained budget line.53

We transform the candidate consumption allocation (c1, c2) : Θ → (0∞) into a candidate

utility allocation (r1, r2) : Θ → R by setting r1(θ) = u1(c1(θ)) and r2(θ) = u2(c2(θ)). We

would like to show that the utility allocation (r1, r2) is optimal among all economically

meaningful utility allocations (v1, v2).

This sets up a mathematical hurdle. For, while (r1, r2) itself is fairly regular (it is a

continuously differentiable function of θ with a kink at θ1), the alternative utility allocations

(v1, v2) may not even be continuous. We will get over this hurdle by using the one regularity

53The consumption allocation will be interior if and only if

u′
2(Y )

u′
1(0+)

<
min{θ1, θ}

β
≤ θ1

β
<

u′
2(0+)

u′
1(Y )

.

Assumption A2 obviously implies this condition.
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property that incentive-compatible utility allocations do possess: they are monotonic. Hence

they are functions of bounded variation.

B.3 Functions of Bounded Variation on Θ

There are a number of competing definitions of a function of bounded variation. According

to one elementary definition, a function f : Θ → R is of bounded variation iff it is the

difference of two bounded and non-decreasing functions f+, f− : Θ → R. The most serious

drawback with this definition for our purposes is that the functions defined in this way do

not form a function space. This definition cannot therefore be used in a Lagrangian analysis.

A second drawback of the definition is that it does not capture the behaviour of a function

of bounded variation at the endpoints of Θ. We shall therefore adopt a definition that leads

directly to a usable function space, and which ties down the behaviour of a function at the

endpoints of Θ.

The intuitive idea is to say that f is a function of bounded variation on Θ iff it is the

distribution function of a bounded Borel measure on Θ plus a constant of integration. More

precisely, we begin from a constant of integration, denoted suggestively by fL( θ ), and a

bounded Borel measure on Θ, denoted suggestively by f ′. We then define the left-hand

limits fL of f by

fL(θ) = fL( θ ) + f ′([ θ, θ ))

for all θ ∈ Θ (including θ) and the right-hand limits fR of f by

fR(θ) = fL( θ ) + f ′([ θ, θ ])

for all θ ∈ Θ (including θ). And we endow the set of functions obtained in this way with the

norm

∥f∥BV = |fL( θ )|+ ∥f ′∥TV ,

where ∥·∥TV is the total-variation norm on bounded Borel measures on Θ.

This definition has at least three advantages: it is concrete; it builds on familiar ideas like

distribution functions and the total-variation norm; and it brings out the subtleties implicit

in the concept of a function of bounded variation. One subtlety is the fact that a “function”

of bounded variation is not a function in the narrow sense of that word: it is only well defined

where fL = fR, and there may be a countable set of points at which this is not the case.

(These points are precisely the atoms of the bounded Borel measure f ′. As such, they may

include the endpoints θ and θ.) A second subtlety is the fact that a function of bounded

variation has limits from both the left and right at all points of Θ, including a limit from the
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left at θ and a limit from the right at θ. (This makes perfect sense if one views functions of

bounded variation on Θ as restrictions to Θ of functions of bounded variation on (0,∞).) In

view of these subtleties, one cannot simply adopt a convention that all functions of bounded

variation are (say) right continuous.

B.4 Functions of Bounded Variation on (0,∞)

The discussion of the previous section applies mutatis mutandis to functions of bounded

variation on (0,∞). The main differences are that: (i) we do not need to consider behaviour

at the endpoints of the interval (0,∞); and (ii) it is preferable to specify the constant of

integration at an interior point. Rather than work through this material in general, we shall

simply discuss the special case of F ′.

We note first that – according to Assumption A2 – the support of F ′ (as a function)

is contained in Θ. It follows, first, that F ′
L( θ ) = F ′

R( θ ) = 0. It follows, second, that the

support of F ′′ (as a measure) is contained in Θ. In other words, |F ′′| ((0, θ)) = |F ′′| ((θ,∞)) =

0.

Now, because |F ′′| ((0, θ)) = 0, we can suppress the constant of integration in the formulae

for F ′ in terms of F ′′. More explicitly, we have

F ′
L(θ) = F ′′((0, θ)),

F ′
R(θ) = F ′′((0, θ])

for all θ > 0. It then follows that

0 = F ′
R( θ ) = F ′′(( 0, θ ]) = F ′′(( 0, θ )) + F ′′([ θ, θ ])

= F ′
L( θ ) + F ′′([ θ, θ ]) = F ′′([ θ, θ ]).

In other words, F ′′ assigns total mass 0 to Θ.

B.5 The Lagrangian

Denote by BV(Θ,R) the Banach space of functions of bounded variation on Θ with the norm

∥·∥BV , and by

Ot = BV(Θ, (ut(0+), ut(∞−)))
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the subset of BV(Θ,R) consisting of functions taking values in the interior of the range of ut.

(Recall that ut is the utility function for date t.) Denote by Ω the set of utility allocations

v = (v1, v2) ∈ O1 ×O2

such that

θ v′1 + β v′2 = 0 (ICL)

and

v′1 ≥ 0. (ICM)

(The idea here is to split the incentive-compatibility condition into the linear part ICL and

the monotonic part ICM.) In other words, let Ω be the set of incentive-compatible utility

allocations. Define the objective function

M : BV(Θ,R)2 → R

by the formula

M(v) =

∫
(θ v1 + v2)F

′ ℓ(dθ),

where ℓ is Lebesgue measure, and define the budget operator

N : O1 ×O2 → BV(Θ,R)

by the formula

(N(v))(θ) = Y − C1(v1(θ))− C2(v2(θ)).

Then the planner’s problem is to maximize M over the the set of all utility allocations v ∈ Ω

such that N(v) ≥ 0.

Remark 5 We use the notation ℓ(dθ) rather than dθ in the formula for M in order to be

consistent with the notation for integration elsewhere in this appendix.

Since N takes values in BV(Θ,R), a Lagrange multiplier is a continuous linear func-

tional on BV(Θ,R). Denote the space of all continuous linear functionals on BV(Θ,R) by

BV(Θ,R)∗. Then the Lagrangian is the mapping

L : Ω× BV(Θ,R)∗ → R

given by the formula

L(v;λ) = M(v) + ⟨N(v), λ⟩ ,
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where ⟨N(v), λ⟩ denotes the real number obtained when the continuous linear functional

λ ∈ BV(Θ,R)∗ is evaluated at the point N(v) ∈ BV(Θ,R).

Remark 6 Notice that both M and N are defined on open sets containing Ω, and not just

on Ω itself.

Remark 7 M is well defined since v1 and v2 are well defined except at a countable number

of points.

Remark 8 N is well defined since ut(0+) < min vt ≤ max vt < ut(∞−) and Ct is continu-

ously differentiable on (ut(0+), ut(∞−)). Hence

∥(Ct ◦ vt)′∥TV ≤ K ∥v′t∥TV ,

where

K = max{C ′
t(w) | w ∈ [ min vt,max vt ]} .

Remark 9 According the the Riesz representation theorem, the dual C(Θ,R)∗ of the space

C(Θ,R) of continuous functions on Θ can be represented by the space M(Θ,R) of bounded

Borel measures on Θ. Unfortunately, there does not seem to be a correspondingly tractable

representation for the dual BV(Θ,R)∗ of the space BV(Θ,R) of functions of bounded variation

on Θ. This might be an obstacle to analyzing necessary conditions, where we would not have

any control over the Lagrange multiplier. It is less of a problem when it comes to analyzing

sufficiency conditions, where we are free to choose the Lagrange multiplier.

B.6 A Space of Lagrange Multipliers

One can associate continuous linear functionals in BV(Θ,R)∗ with bounded Borel measures

in M(Θ,R) as follows. Suppose that we are given Λ ∈ M(Θ,R). Then we can construct

λR ∈ BV(Θ,R)∗ by means of the formula

⟨f, λR⟩ =
∫

fR(θ) Λ(dθ),

where fR is the right-continuous version of f . In this way we obtain a closed linear subspace

of BV(Θ,R)∗. It turns out that this subspace is big enough for our purposes.

Remark 10 By the same token, we can construct λL ∈ BV(Θ,R)∗ by means of the formula

⟨f, λL⟩ =
∫

fL(θ) Λ(dθ),
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where fL is the left-continuous version of f .

Remark 11 Notice that λL ̸= λR and, while both λL and λR seem quite natural, neither

seems to have a claim to being canonical.

Remark 12 We use the notation Λ(dθ) in the definition of ⟨f, λR⟩ and ⟨f, λL⟩ in order to

emphasize that the integral in question is the Lebesgue integral of a measurable function with

respect to the measure Λ. (The notation dΛ(θ) might be taken to suggest that the integral

in question was the Riemann-Stieltjes integral of a continuous function with respect to the

function of bounded variation Λ.)

B.7 The Directional Derivative of the Lagrangian

Let us fix Λ ∈ M(Θ,R) and consider L( · ;λR). If our candidate allocation r ∈ Ω maximizes

L( · ;λR) then, for all v ∈ Ω, the directional derivative ∇sL(r;λR) of L( · ;λR) at r in the

direction s = v − r must be non-positive. Conversely if, for all v ∈ Ω, ∇sL(r;λR) is non-

positive, then r ∈ Ω maximizes L( · ;λR). The purpose of the present section is to derive a

formula for ∇sL(r;λR). This formula will then be used to guide our eventual choice of Λ.

In view of our choice of λR, we have

L(v;λR) =

∫
(θ v1R + v2R)F

′ ℓ(dθ) +

∫
(Y − C1(v1R)− C2(v2R)) Λ(dθ).

Hence

∇sL(r;λR) =

∫
(θ s1R + s2R)F

′ ℓ(dθ)−
∫

(C ′
1(r1R) s1R + C ′

2(r2R) s2R) Λ(dθ).

Now, because F is continuous, the standard formula for integration by parts shows that∫
s2R F ′ ℓ(dθ) = [ s2 F ]θ+θ− −

∫
F s′2(dθ),

where:

• [ s2 F ]θ+θ− denotes the difference between the right-hand limit of s2 F at θ and the left-

hand limit of s2 F at θ;

•
∫
F s′2(dθ) denotes the integral of F with respect to the measure s′2.

Furthermore, it follows from incentive compatibility that θ s′1 + β s′2 = 0. Hence∫
F s′2(dθ) = −

∫
F θ

β
s′1(dθ) = − 1

β
[ s1 (θ F ) ]θ+θ− + 1

β

∫
s1R (θ F )′ ℓ(dθ),
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(integrating by parts again, and using the fact that F is continuous). Hence the first integral

in the directional derivative∫
(θ s1R + s2R)F

′ ℓ(dθ) =

∫
θ s1R F ′ ℓ(dθ) +

∫
s2R F ′ ℓ(dθ)

=

∫
θ s1R F ′ ℓ(dθ) + [ s2 F ]θ+θ− + 1

β
[ s1 (θ F ) ]θ+θ− − 1

β

∫
s1R (θ F )′ ℓ(dθ)

=
(

θ
β
s1R( θ ) + s2R( θ )

)
F ( θ )− 1

β

∫
s1R ((1− β) θ F ′ + F ) ℓ(dθ)

(where we have used the fact that F ( θ ) = 0).

Next, G be the distribution function of the measure C ′
2(r2R) Λ. I.e. let G be the unique

element of BV(Θ,R) such that G′ = C ′
2(r2R) Λ and GL( θ ) = 0. Then∫

C ′
2(r2R) s2R Λ(dθ) =

∫
s2R G′(dθ)

= [ s2G ]θ+θ− −
∫

Gs′2(dθ) +
∑

θ∈[ θ ,θ ]

∆s2∆G,

where ∆s2 and ∆G denote the jumps in s2 and G at θ (if any). Furthermore, it follows from

incentive compatibility that θ s′1 + β s′2 = 0. In particular, θ∆s1 + β∆s2 = 0. Hence∫
Gs′2(dθ) = −

∫
G θ

β
s′1(dθ)

= − 1
β
[ s1 (θ G) ]θ+θ− + 1

β

∫
s1R (θ G)′ (dθ)− 1

β

∑
θ∈[ θ ,θ ]

∆s1∆(θ G)

= − 1
β
[ s1 (θ G) ]θ+θ− + 1

β

∫
s1R (θ G)′ (dθ)− 1

β

∑
θ∈[ θ ,θ ]

∆s1 θ∆G

(integrating by parts again and using the fact that ∆(θ G) = θ∆(G)), and∑
θ∈[ θ ,θ ]

∆s2∆G = − 1
β

∑
θ∈[ θ ,θ ]

θ∆s1∆G.

Overall, ∫
C ′

1(r1R) s1R Λ(dθ) =

∫
C ′

1(r1R)

C ′
2(r2R)

s1R G′(dθ)
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and∫
C ′

2(r2R) s2R Λ(dθ) = [ s2G ]θ+θ− + 1
β
[ s1 (θ G) ]θ+θ− − 1

β

∫
s1R (θ G)′ (dθ)

= s2R( θ )GR( θ ) +
1
β
s1R( θ ) θ GR( θ )− 1

β

∫
s1R (θ G′(dθ) +Gℓ(dθ))

=
(

θ
β
s1R( θ ) + s2R( θ )

)
GR( θ )− 1

β

∫
s1R (θ G′(dθ) +Gℓ(dθ))

(where we have used the facts that GL( θ ) = 0 and (θ G)′ (dθ) = θ G′(dθ) +Gℓ(dθ)).

Finally, putting all of this information together, we have

∇sL(r;λR) =
(

θ
β
s1R( θ ) + s2R( θ )

)
F ( θ )− 1

β

∫
s1R ((1− β) θ F ′ + F ) ℓ(dθ)

−
∫

C ′
1(r1R)

C ′
2(r2R)

s1R G′(dθ)

−
(

θ
β
s1R( θ ) + s2R( θ )

)
GR( θ ) +

1
β

∫
s1R (θ G′(dθ) +Gℓ(dθ))

=
(

θ
β
s1R( θ ) + s2R( θ )

) (
F ( θ )−GR( θ )

)
+ 1

β

∫
s1R (G− (1− β) θ F ′ − F ) ℓ(dθ)

+ 1
β

∫
s1R

(
θ − β

C ′
1(r1R)

C ′
2(r2R)

)
G′(dθ).

B.8 A Candidate Lagrange Multiplier

We are now in a position to motivate our choice of Lagrange multiplier Λ. We shall do this

in two steps. First, we motivate our choice of G. Second, we show how to translate our

choice of G into a choice of Λ.

In choosing G, the broad aim is to ensure that ∇sL(r;λR) ≤ 0. However, given that

we have only limited control over s, it will be helpful to make as many of the terms in the

formula for ∇sL(r;λR) vanish as possible.

Recall that

∇sL(r;λR) =
(

θ
β
s1R( θ ) + s2R( θ )

) (
F ( θ )−GR( θ )

)
+ 1

β

∫
s1R (G− Γ) ℓ(dθ)

+ 1
β

∫
s1R

(
θ − β

C ′
1(r1R)

C ′
2(r2R)

)
G′(dθ),
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where Γ = (1− β) θ F ′ − F . We can therefore make a start by requiring that

GR( θ ) = F ( θ ).

This will ensure that the first term vanishes.

Remark 13 At this point we have specified both GL( θ ) and GR( θ ). It remains to specify

G in the interior of Θ.

Next, suppose that θ1 > θ. Then

C ′
1(r1R)

C ′
2(r2R)

=

{
θ
β

for θ ∈ ΘS = [ θ, θ1 )
θ1
β

for θ ∈ ΘP = [ θ1, θ ]

}
.

Hence the expression for ∇sL(r;λR) simplifies to

1
β

∫
ΘS∪ΘP

s1R (G− Γ) ℓ(dθ) + 1
β

∫
ΘP

s1R (θ − θ1)G
′(dθ).

Suppose further that we follow the suggestion of AWA (2006), and put G = Γ on ΘS, where

Γ is the function defined in Section B.1 above. Then the contribution to ∇sL(r;λR) from

the separating interval ΘS vanishes altogether, and all that is left is the contribution

1
β

∫
ΘP

s1R (G− Γ) ℓ(dθ) + 1
β

∫
ΘP

s1R (θ − θ1)G
′(dθ)

to ∇sL(r;λR) from the pooling interval ΘP . Suppose finally that we follow the suggestion

of AWA (2006), and put G = F ( θ ) on ( θ1, θ ). Then the measure G′ will have an atom of

size F ( θ ) − ΓL(θ1) at θ1, and it will vanish on ( θ1, θ ]. Since the term θ − θ1 multiplying

G′(dθ) vanishes at θ1, the second integral itself vanishes, and the first integral reduces to

1
β

∫
ΘP

s1R
(
F ( θ )− Γ

)
ℓ(dθ).

Next, suppose that θ1 ≤ θ. In this case, the expression for ∇sL(r;λR) simplifies to

1
β

∫
s1R (G− Γ) ℓ(dθ) + 1

β

∫
s1R (θ − θ1)G

′(dθ).

Suppose further that we follow the suggestion of AWA (2006), and put G = F ( θ ) on the

whole of ( θ, θ ). Then the measure G′ will have an atom of size F ( θ ) at θ, and it will vanish
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on ( θ, θ ]. Hence the expression for ∇sL(r;λR) becomes

1
β

∫
s1R
(
F ( θ )− Γ

)
ℓ(dθ) + 1

β
s1R( θ ) ( θ − θ1)F ( θ ).

In other words, compared with the case θ1 > θ, there is an extra term arising from the atom

of G′ at θ.

Finally, we obtain the Lagrange multiplier Λ itself from the formula

Λ =
1

C ′
2(r2R)

G′.

B.9 Non-Negativity of the Lagrange Multiplier

Since C ′
2(r2R) > 0, Λ ≥ 0 iff G′ ≥ 0. We will show that G′ ≥ 0. Suppose first that θ1 > θ.

Then we have

GL( θ ) = 0

G = Γ on ( θ, θ1 )

G = F ( θ ) on ( θ1, θ )

GR( θ ) = F ( θ )

Now, it follows from the formula for Γ that

GR( θ ) = ΓR( θ ) = (1− β) θ F ′
R( θ ) + F ( θ ) = (1− β) θ F ′

R( θ ) ≥ 0.

And GL( θ ) = 0 by construction. Hence

∆G( θ ) = GR( θ )−GL( θ ) ≥ 0.

Next, it follows from Assumption A4 that Γ is non-decreasing on ( θ, θ1). Hence G
′ = Γ′ ≥ 0

there. Third, we have

∆G( θ1 ) = F ( θ )− ΓL( θ1 ).

But if it were the case that ΓL( θ1 ) > F ( θ ) then there would be an open interval ( θ1−ε, θ1 )

on which Γ > F ( θ ). This would contradict the definition of θ1 as the minimum θ ∈ ( 0, θ )

such that 1
θ−t

∫ θ

t
Γ(s)ds ≥ F ( θ ) for all t ∈ [ θ, θ ). Hence ΓL( θ1 ) ≤ F ( θ ) and ∆G( θ1 ) ≥ 0.

Fourth, we have G′ = 0 on ( θ1, θ ). Finally, we obviously have ∆G( θ ) = 0.
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Suppose now that θ1 ≤ θ. Then we have

GL( θ ) = 0

G = F ( θ ) on ( θ, θ )

GR( θ ) = F ( θ ).

So it is obvious that G′ ≥ 0 on the whole of [ θ, θ ].

B.10 Non-Positivity of the Directional Derivative

Suppose that θ1 > θ. Then, in the light of the discussion in Section B.8, we have

∇sL(r;λR) =
1
β

∫
ΘP

s1R
(
F ( θ )− Γ

)
ℓ(dθ).

Define H : (0,∞) → R by the formula

H(θ) =

∫ θ

θ

(
Γ− F ( θ )

)
ℓ(dθ).

Then ∫
ΘP

s1R
(
F ( θ )− Γ

)
ℓ(dθ) =

∫
[ θ1,θ ]

s1R
(
F ( θ )− Γ

)
ℓ(dθ)

=

∫
[ θ1,θ ]

s1R H ′ ℓ(dθ)

= [ s1H ]θ+θ1− −
∫
[ θ1,θ ]

H s′1(dθ)

(integrating by parts and using the fact that H is continuous). Moreover

[ s1H ]θ+θ1− = s1R( θ )H( θ )− s1L( θ1 )H( θ1 )

and ∫
[ θ1,θ ]

H s′1(dθ) = H( θ1 )∆s1( θ1 ) +

∫
( θ1,θ )

H s′1(dθ) +H( θ )∆s1( θ ).
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Hence, overall,

∇sL(r;λR) = −H( θ1 ) s1R( θ1 )−
∫
( θ1,θ )

H s′1(dθ) +H( θ ) s1L( θ )

= −
∫
( θ1,θ )

H s′1(dθ)

(since H( θ ) = 0 by construction and H( θ1 ) = 0 by definition of θ1). Now v′1 ≥ 0 on the

whole of Θ, since v1 is non-decreasing, and r′1 = 0 on ( θ1, θ ), since r1 is constant there.

Hence s′1 ≥ 0 on ( θ1, θ ). On the other hand, for all θ ∈ [ θ1, θ ], we have

H(θ) =

∫ θ

θ

(
Γ− F ( θ )

)
ℓ(dθ) = ( θ − θ )

(
1

θ−θ

∫ θ

θ

Γ ℓ(dθ)− F ( θ )

)
≥ 0,

by definition of θ1. Hence ∇sL(r;λR) ≤ 0, as required.

Remark 14 Notice that s1 is the difference of the two non-decreasing functions v1 and r1.

Hence there is no general reason why s1 should be non-decreasing. The situation is saved by

the fact that r1 is constant on ( θ1, θ ).

Suppose now that θ1 ≤ θ. Then, in the light of the discussion in Section B.8, we have

∇sL(r;λR) =
1
β
s1R( θ ) ( θ − θ1 )F ( θ ) + 1

β

∫
s1R
(
F ( θ )− Γ

)
ℓ(dθ).

Now, arguing as in the case θ1 > θ, we have∫
s1R
(
F ( θ )− Γ

)
ℓ(dθ) =

∫
[ θ,θ ]

s1R
(
F ( θ )− Γ

)
ℓ(dθ)

=

∫
[ θ,θ ]

s1R H ′ ℓ(dθ)

= [ s1H ]θ+θ− −
∫
[ θ,θ ]

H s′1(dθ)

= −H( θ ) s1R( θ )−
∫
( θ,θ )

H s′1(dθ) +H( θ ) s1L( θ )

= −H( θ ) s1R( θ )−
∫
( θ,θ )

H s′1(dθ)

(since H( θ ) = 0 by construction). Hence, overall, we have

β∇sL(r;λR) =
(
( θ − θ1 )F ( θ )−H( θ )

)
s1R( θ )−

∫
( θ,θ )

H s′1(dθ).
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But

( θ − θ1 )F ( θ )−H( θ ) =

∫ θ

θ1

F ( θ ) ℓ(dθ)−
∫ θ

θ

(Γ− F ( θ )) ℓ(dθ)

(by definition of H)

= −
∫ θ

θ1

(
Γ− F ( θ )

)
ℓ(dθ)−

∫ θ

θ

(
Γ− F ( θ )

)
ℓ(dθ)

(since Γ = 0 on [ θ1, θ ))

= −H( θ1 )

(by definition of H again)

= 0.

(by definition of θ1). Hence

β∇sL(r;λR) = −
∫
( θ,θ )

H s′1(dθ).

Hence, arguing as in the case θ1 > θ, ∇sL(r;λR) ≤ 0.

C Proof of Proposition 15

We now study the case in which the government can make inter-household transfers. Specif-

ically, we now replace household-by-household budget balance (Equation 7) with overall

budget balance (Equation 6). With overall budget balance, we will show that a combina-

tion of a perfectly liquid and a perfectly illiquid account is not sufficient to maximize social

surplus. We continue to make assumptions A1-A5. To these assumptions we add:

A6 F ′ is bounded away from 0 on ( θ, θ ).54

Proposition 15 Suppose that inter-household transfers are possible. A two-account system

with one completely liquid account and one completely illiquid account does not maximize

welfare.

Intuitively, when inter-household transfers are possible (in the interior case, with partial

separation), we can use an incentive compatible mechanism to redistribute c1 away from

low−θ types (i.e., households with low marginal utility, ceteris paribus).

54In particular, both the right-hand limit F ′
R( θ ) of F

′ at θ and the left-hand limit F ′
L( θ ) of F

′ at θ are
strictly positive.
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C.1 The Optimization Problem of the Planner

If self 1 is presented with two accounts, a perfectly liquid account containing the amount

xliquid > 0 and a perfectly illiquid account containing the amount xilliquid ≥ 0, then the

outcome will depend on her type θ. There will exist θ2 ∈ (0,∞) such that: if θ < θ2, then

she consumes less than the balance xliquid in her liquid account: and, if θ ≥ θ2, then she

consumes the whole of xliquid. The cutoff θ2 need not lie in [ θ, θ ]. It could be that θ2 < θ, in

which case there will be perfect pooling: all types will consume the whole of xliquid and both

c1 and c2 will be constant. Or it could be that θ2 > θ, in which case there will be perfect

separation: all types will consume less than xliquid, c1 will be strictly increasing in θ and c2

will be strictly decreasing in θ.

More generally, we will obtain consumption allocations c1, c2 : Θ → (0,∞) and associated

utility allocations r1, r2 : Θ → R, where the latter are given by the formulae r1(θ) = u1(c1(θ))

and r2(θ) = u2(c2(θ)). The overall utility allocation r = (r1, r2) will be a smooth function of

θ for θ < θ2, have a kink at θ2, and be constant for θ > θ2. The idea behind the proof is to

find necessary conditions for utility allocations of this type to be optimal, and to use these

necessary conditions to derive a contradiction.

The first step is to formulate the optimization problem of the planner. We do this in

terms of general utility allocations v1, v2 : Θ → R, reserving the notation r1, r2 for the

specific allocations arising from two-account systems with one completely liquid account and

one completely illiquid account. Accordingly, the planner seeks to maximize social welfare∫
(θ v1(θ) + v2(θ)) dF (θ)

over utility allocations

(v1, v2) : [ θ, θ ] → (u1(0+), u1(∞−))× (u2(0+), u2(∞−))

subject to aggregate budget balance and incentive compatibility. Aggregate budget balance

can be expressed in the form∫
(Y − C1(v1(θ))− C2(v2(θ))) dF (θ) ≥ 0, (BC)

where Ct = u−1
t for t ∈ {1, 2}. Incentive compatibility breaks down into two parts, a linear

part

θ v′1 + β v′2 = 0 (ICL)
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and a monotonic part

v′2 ≤ 0. (ICM)

Remark 16 The two conditions (ICL) and (ICM) are simply the differential counterpart of

the usual integral representation of incentive compatibility in a mechanism-design problem.

C.2 The Case θ2 ∈ ( θ, θ )

Consider first the case in which xliquid and xilliquid are such that θ2 ∈ ( θ, θ ). In this case,

the second step is to parameterize candidate solutions v = (v1, v2) to the planner’s problem

in terms of boundary values v1( θ ), v2( θ ) and continuous functions v′1L : [ θ, θ2 ] → R,
v′1R :

[
θ2, θ

]
→ R. More precisely, we can put:

1. v1(θ) = v1( θ )−
∫ θ

θ
v′1R(t) dt for θ ∈

[
θ2, θ

]
;

2. v1(θ) = v1( θ2 )−
∫ θ2
θ

v′1L(t) dt for θ ∈ [ θ, θ2 ];

3. v′2R(θ) = − θ
β
v′1R(θ) for θ ∈

[
θ2, θ

]
;

4. v′2L(θ) = − θ
β
v′1L(θ) for θ ∈ [ θ, θ2 ];

5. v2(θ) = v2( θ )−
∫ θ

θ
v′2R(t) dt for θ ∈

[
θ2, θ

]
;

6. v2(θ) = v2( θ2 )−
∫ θ2
θ

v′2L(t) dt for θ ∈ [ θ, θ2 ].

In other words: v1 is the continuous function with continuous derivative v′1L on [ θ, θ2 ),

continuous derivative v′1R on
(
θ2, θ

]
and value v1( θ ) at θ; and v2 is the continuous function

with continuous derivative v′2L on [ θ, θ2 ), continuous derivative v′2R on
(
θ2, θ

]
and value

v2( θ ) at θ.

Remark 17 Notice that the two-account system described in Proposition 15 gives rise to a

utility allocation r = (r1, r2) satisfying conditions 1-6. Moreover – as we shall see below – in

order to show that r is not optimal, it suffices to consider variations in this same class. We

simply do not need to consider variations in which (say) θ2 changes or v = (v1, v2) can be

discontinuous.
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The third step is to formulate the Langrangian. This can be written

L(v1( θ ), v2( θ ), v
′
1L, v

′
1R, λ, ζL, ζR) =

∫
(θ v1(θ) + v2(θ)) dF (θ)

+λ

∫
(Y − C1(v1(θ))− C2(v2(θ))) dF (θ)

−
∫
[ θ,θ2 ]

v′2L(θ) dζL(θ)

−
∫
[ θ2,θ ]

v′2R(θ) dζR(θ), (11)

where:

1. the arguments of L are the parameters v1( θ ), v2( θ ), v
′
1L and v′1R, and the multipliers

λ, ζL and ζR;

2. λ is a scalar (namely the multiplier on the aggregate budget constraint);

3. ζL is a finite non-negative Borel measure on [ θ, θ2 ] (namely the multiplier associated

with the non-positivity constraint on v′2L);

4. ζR is a finite non-negative Borel measure on
[
θ2, θ

]
(namely the multiplier associated

with the non-positivity constraint on v′2R);

5. the variables v1, v2, v
′
2L and v′2R on the right-hand side are determined by the param-

eters v1( θ ), v2( θ ), v
′
1L and v′1R as explained above.

Remark 18 The Langrangian does not include a term corresponding to (ICL). This is be-

cause we have used (ICL) to solve for v′2L and v′2R in terms of v′1L and v′1R.

The fourth step is to note that we can associate parameters (r1( θ ), r2( θ ), r
′
1L, r

′
1R) with

the reference utility allocation (r1, r2) and parameters (v1( θ ), v2( θ ), v
′
1L, v

′
1R) with the alter-

native utility allocation (v1, v2) in the obvious way, and take the derivative of the Langrangian

at the parameter values (r1( θ ), r2( θ ), r
′
1L, r

′
1R) in the direction (s1( θ ), s2( θ ), s

′
1L, s

′
1R), where

s = v − r. Furthermore, this calculation can be simplified by noting that the variables

(v1, v2, v
′
2L, v

′
2R) in the RHS of the equation for the Langrangian are linear in the underlying

parameters (v1( θ ), v2( θ ), v
′
1L, v

′
1R). Hence we can simply take the derivative of the RHS

at the point (r1, r2, r
′
2L, r

′
2R) in the direction (s1, s2, s

′
2L, s

′
2R) and only then substitute for

(s1, s2, s
′
2L, s

′
2R) in terms of (s1( θ ), s2( θ ), s

′
1L, s

′
1R).
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Taking the derivative of the RHS at the point (r1, r2, r
′
2L, r

′
2R) in the direction (s1, s2, s

′
2L, s

′
2R),

we obtain

0 =

∫
(θ s1 + s2) dF − λ

∫
(C ′

1(r1) s1 + C ′
2(r2) s2) dF

−
∫
[θ,θ2]

s′2L(θ) dζL(θ)−
∫
[θ2,θ]

s′2R(θ) dζR(θ) (12)

for all feasible (s1, s2, s
′
2L, s

′
2R). Moreover, the constraints must all be satisfied. That is,

0 =

∫
(Y − C1(r1(θ))− C2(r2(θ))) dF (θ),

0 ≥ r′2L,

0 ≥ r′2R.

Finally, constraint qualification must hold. That is,

0 =

∫
[θ,θ2]

r′2L(θ) dζL(θ), (13)

0 =

∫
[θ2,θ]

r′2R(θ) dζR(θ). (14)

Furthermore, a variation (s1, s2, s
′
2L, s

′
2R) is feasible iff it can be expressed in terms of

the underlying parameters (s1( θ ), s2( θ ), s
′
1L, s

′
1R). We therefore substitute for the variation

(s1, s2, s
′
2L, s

′
2R) in terms of the underlying parameters (s1( θ ), s2( θ ), s

′
1L, s

′
1R) and manipu-

late the RHS in such a way as to expose the linear dependence of the RHS on s1( θ ), s2( θ ),

s′1L and s′1R.

The first contribution to the RHS is
∫
θ s1 dF (θ). Putting F (θ) =

∫
[θ,θ]

F (t) dt, and

noting that θ F −F and s1 are both continuous, we can integrate this contribution by parts

to obtain ∫
θ s1 dF (θ) =

[
( θ F − F ) s1

]θ
θ− −

∫
( θ F − F ) s′1 dθ

=
(
θ F ( θ )− F ( θ )

)
s1( θ )−

∫
( θ F − F ) s′1 dθ

=
(
θ F ( θ )− F ( θ )

)
s1( θ )

−
∫
[ θ,θ2 ]

( θ F − F ) s′1L dθ −
∫
[ θ2,θ ]

( θ F − F ) s′1R dθ,
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The second contribution to the RHS is
∫
s2 dF (θ). For this contribution, we have∫

s2 dF (θ) = [F s2]
θ
θ− −

∫
F s′2 dθ

= F ( θ ) s2( θ )−
∫

F s′2 dθ

= F ( θ ) s2( θ )−
∫
[ θ,θ2 ]

F s′2L dθ −
∫
[ θ2,θ ]

F s′2R dθ

= F ( θ ) s2( θ ) +

∫
[ θ,θ2 ]

F θ
β
s′1L dθ +

∫
[ θ2,θ ]

F θ
β
s′1R dθ.

Next, putting Λ1(θ) =
∫
[θ,θ]

C ′
1(r1(t)) dF (t), we have

−λ

∫
C ′

1(r1) s1 dF = −
∫

s1 λΛ
′
1 dθ

= − [s1 λΛ1]
θ
θ− +

∫
λΛ1 s

′
1 dθ

= −s1( θ )λΛ1( θ ) +

∫
λΛ1 s

′
1 dθ

= −s1( θ )λΛ1( θ )

+

∫
[ θ,θ2 ]

λΛ1 s
′
1L dθ +

∫
[ θ2,θ ]

λΛ1 s
′
1R dθ.

Similarly, putting Λ2(θ) =
∫
[θ,θ]

C ′
2(r2(t)) dF (t),

−λ

∫
C ′

2(r2) s2 dF = −
∫

s2 λΛ
′
2 dθ

= − [s2 λΛ2]
θ
θ− +

∫
λΛ2 s

′
2 dθ

= −s2( θ )λΛ2( θ ) +

∫
λΛ2 s

′
2 dθ

= −s2( θ )λΛ2( θ )

+

∫
[ θ,θ2 ]

λΛ2 s
′
2L dθ +

∫
[ θ2,θ ]

λΛ2 s
′
2R dθ

= −s2( θ )λΛ2( θ )

−
∫
[ θ,θ2 ]

λΛ2
θ
β
s′1L dθ −

∫
[ θ2,θ ]

λΛ2
θ
β
s′1R dθ.

Finally, we have

−
∫
[θ,θ2]

s′2L(θ) dζL(θ) =

∫
[θ,θ2]

θ
β
s′1L(θ) dζL(θ)
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and

−
∫
[θ2,θ]

s′2R(θ) dζR(θ) =

∫
[θ2,θ]

θ
β
s′1R(θ) dζR(θ).

The fifth step is to equate the coefficients of s1( θ ), s2( θ ), s
′
1L and s′1R to 0. Doing so

yields:

0 = θ F ( θ )− F ( θ )− λΛ1( θ ), (15)

0 = F ( θ )− λΛ2( θ ), (16)

0 = −( θ F − F ) dθ + θ
β
F dθ + λΛ1 dθ − θ

β
λΛ2 dθ +

θ
β
dζL, (17)

0 = −( θ F − F ) dθ + θ
β
F dθ + λΛ1 dθ − θ

β
λΛ2 dθ +

θ
β
dζR. (18)

Now, we certainly have r′2L < 0 on [ θ, θ2 ]. (This is because, if θ < θ2, then self 1 consumes

less than xliquid. Hence r
′
1L > 0 and r′2L < 0.) It therefore follows from constraint qualification

(namely (13)) that ζL = 0. Equation (17) therefore implies that

λ (θΛ2 − β Λ1) = θ F − β (θ F − F ) = (1− β) θ F + β F = Γ (19)

almost everywhere on [θ, θ2], where Γ = (1−β) θ F ′+F and Γ(θ) =
∫
[θ,θ]

Γ(t) dt. Furthermore,

since F ′ is of bounded variation,

θΛ2(θ)

θ − θ
→ θ C ′

2(r2(θ))F
′(θ+),

β Λ1(θ)

θ − θ
→ β C ′

1(r1(θ))F
′(θ+),

Γ

θ − θ
→ Γ(θ+) = (1− β) θ F ′(θ+)

as θ ↓ θ. But, since (r1(θ), r2(θ)) is chosen freely from the ambient budget line by the θ type,

we must have
C ′

1(r1(θ))

θ
=

C ′
2(r2(θ))

β
.

We therefore have
θΛ2(θ)− β Λ1(θ)

θ − θ
→ 0

as θ ↓ θ. On the other hand,

Γ

θ − θ
→ (1− β) θ F ′(θ+) > 0
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as θ ↓ θ. Passing to the limit in equation (19), we therefore obtain

0 = (1− β) θ F ′(θ+).

But all three terms on the RHS are strictly positive. Indeed: β < 1; θ > 0; and F ′ is

bounded away from 0 on ( θ, θ ). We have therefore reached a contradiction. This establishes

that we cannot have θ2 ∈ ( θ, θ ).

C.3 The Case θ2 ∈ [ θ,∞ )

Consider now the case in which xliquid and xilliquid are such that θ2 ∈ [ θ,∞ ). In this case, we

can derive equations (15, 16 and 17) exactly as in Section C.2 above. In particular, we can

still derive equation (17). We can therefore derive a contradiction by essentially the same

argument.

C.4 The Case θ2 ∈ ( 0, θ ]

Consider now the case in which xliquid and xilliquid are such that θ2 ∈ ( 0, θ ]. In this case,

we can still derive equations (15, 16 and 18). However, we can no longer derive equation

(17). We therefore need new arguments. The first point to note is that, since θ2 ≤ θ, all

types θ ∈ [ θ, θ ] choose the point that a hypothetical θ2 type would choose from the ambient

budget set. We therefore have

Λ1( θ ) =

∫
[θ,θ]

C ′
1(r1(t)) dF (t) = F ( θ )C ′

1(r1(θ2)), (20)

Λ2( θ ) =

∫
[θ,θ]

C ′
2(r2(t)) dF (t) = F ( θ )C ′

2(r2(θ2)). (21)

Furthermore, since the θ2 type chooses freely from the ambient budget set, we have

C ′
1(r1(θ2))

θ2
=

C ′
2(r2(θ2))

β
.

Using (15) and (16), we therefore obtain

θ F ( θ )− F ( θ )

F ( θ )
=

Λ1( θ )

Λ2( θ )
=

C ′
1(r1(θ2))

C ′
2(r2(θ2))

=
θ2
β
. (22)
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Hence

( θ − θ2 )F ( θ ) = θ F ( θ )− β
(
θ F ( θ )− F ( θ )

)
= (1− β) θ F ( θ ) + β F ( θ )

= Γ( θ ), (23)

where Γ and Γ are as above.

Remark 19 Bearing in mind that θ2 ≤ θ, so that Γ(θ2) = 0, this equation can also be

written

(θ − θ2)F ( θ ) = Γ( θ )− Γ(θ2)

or
1

θ − θ2

∫
[θ2,θ]

Γ(t) dt = F ( θ ). (24)

The significance of this observation is that θ1 satisfies equation (24) too. So, while the

necessary conditions that we have used here do not quite imply that θ2 = θ1, they do highlight

a close relationship between the two. The intuitive reason for this relationship is clear.

If θ2 ≤ θ then all types make the same choice. In particular, there are no interpersonal

transfers. Since this outcome is – by hypothesis – the optimum in the class of outcomes

with or without transfers, then a fortiori it is the optimum in the class of outcomes without

transfers.

However, we have not yet used equation (18). It follows from this equation that

dζR = β
θ
( θ F − F ) dθ − F dθ + λ

(
Λ2 − β

θ
Λ1

)
dθ.

In other words, ζR is absolutely continuous w.r.t. Lebesgue measure, with density

ζ ′R = β
θ
( θ F − F )− F + λ

(
Λ2 − β

θ
Λ1

)
.

Furthermore:

Λ1(θ) =

∫
[θ,θ]

C ′
1(r1(t)) dF (t) = F (θ)C ′

1(r1(θ2)) =
F (θ)

F ( θ )
Λ1( θ )

=
F (θ)

F ( θ )

θ2
β
Λ2( θ ) =

F (θ)

F ( θ )

θ2
β

F ( θ )

λ
=

θ2
β

F (θ)

λ
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(where the last line follows from (22) and (16)); and

Λ2(θ) =

∫
[θ,θ]

C ′
2(r2(t)) dF (t) = F (θ)C ′

2(r2(θ2)) =
F (θ)

F ( θ )
Λ2( θ )

=
F (θ)

F ( θ )

F ( θ )

λ
=

F (θ)

λ

(where the last line follows from (16)). Hence

λ (θΛ2 − β Λ1) = (θ − θ2)F (θ)

and

θ ζ ′R = β ( θ F − F )− θ F + (θ − θ2)F

= (θ − θ2)F (θ)− Γ.

Now, F (θ) = Γ(θ) = 0. Hence θ ζ ′R(θ) = 0. Furthermore, we must have θ ζ ′R ≥ 0 on(
θ, θ
)
. Hence

θ ζ ′R(θ)− θ ζ ′R(θ)

θ − θ
≥ 0.

Letting θ → θ+, we therefore obtain

(θ ζ ′R)
′(θ+) = (β θ − θ2)F

′(θ+) ≥ 0.

Since F ′(θ+) > 0, it follows that

θ2 ≤ β θ. (25)

Similarly, (23) implies that (θ − θ2)F ( θ )− Γ( θ ) = 0. Hence θ ζ ′R( θ ) = 0. Hence

θ ζ ′R( θ )− θ ζ ′R(θ)

θ − θ
≤ 0.

Letting θ → θ−, we therefore obtain

(θ ζ ′R)
′(θ−) = (β θ − θ2)F

′(θ−) ≤ 0.

Since F ′(θ−) > 0, it follows that

θ2 ≥ β θ. (26)

But inequalities (25) and (26) are inconsistent with one another, so we have a contradiction.
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Remark 20 We can use the preceding analysis to obtain some perspective on why a pooling

mechanism in which all resources are placed in the illiquid account is never optimal. Suppose

that we replace the inequality constraint 0 ≥ r′2R with an equality constraint and choose the

multiplier ζR in such a way that this constraint is respected. Then, proceeding almost exactly

as above, we will obtain

(θ ζ ′R)
′

= (θ − θ2)F
′ + F − Γ

= (θ − θ2)F
′ − (1− β) θ F ′

= (β θ − θ2)F
′.

Moreover we will have the boundary conditions θ ζ ′R(θ) = 0 and θ ζ ′R( θ ) = 0. It follows

that θ2 ∈
(
β θ, β θ

)
and θ ζ ′R < 0 on

(
θ, θ
)
. Hence a small change in the direction of any

incentive-compatible and fully separating mechanism is desirable. (This would have the effect

of reducing r′2 from 0 – and increasing r′1 from 0 – at all points in the range ( θ, θ ).) In other

words, it is always desirable to allow some flexibility to the decision maker to respond to the

information contained in θ.

D Differential Equations that Provide an Upper Bound

for Welfare in the General Non-Linear Mechanism

Here we study the case of an economy populated by households with heterogeneous values

of β. The case of homogeneous β is a simpler variant of the case studied in this section.

D.1 The General Non-Linear Problem

In the General Non-linear Mechanism, the planner chooses a budget set

C ⊂ (0,∞)2

and consumption allocations c1, c2 : Θ×B → (0,∞) to maximize welfare∫ ∫
(θ u1(c1(θ, β)) + u2(c2(θ, β))) f(θ) g(β) dθ dβ

subject to the resource constraint∫ ∫ (
Y − c1(θ, β)− 1

R
c2(θ, β)

)
f(θ) g(β) dθ dβ ≥ 0
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and the incentive-compatibility constraint

(c1(θ, β), c2(θ, β)) ∈ argmax
(c̃1,c̃2)∈C

{θ u1( c̃1) + β u2( c̃2)} .

Here, f is the density of θ (associated with distribution function F in the main text); g is the

density of β (associated with distribution function G in the main text); Y is the per capita

endowment; and R is the gross rate of return. Furthermore, we assume that: Θ = [ θ, θ ];

B = [ β, β ]; 0 < θ < θ < ∞; 0 < β < β < ∞; f is continuous and bounded away from 0 on

Θ; g is continuous and bounded away from 0 on B.

Remark 21 For example: f might take the form

f(θ) =
exp

(
−1

2

(
θ−µ
σ

)2)
∫ θ

θ
exp

(
−1

2

(
θ−µ
σ

)2)
dθ

for θ ∈ [ θ, θ ]

and f(θ) = 0 otherwise, i.e., f might be the density of the univariate normal distribution

with mean µ and variance σ2 truncated to the interval [ θ, θ ]; and g might take the form

g(β) =
1

β − β
for β ∈ [ β, β ]

and g(β) = 0 otherwise, i.e., g might be the density of the uniform distribution on the interval

[ β, β ].

D.2 Transforming the Problem

The first step in solving this problem is to note that

(c1, c2) ∈ argmax
(c̃1,c̃2)∈C

{θ u1(c̃1) + β u2(c̃2)}

iff

(c1, c2) ∈ argmax
(c̃1,c̃2)∈C

{
θ
β
u1(c̃1) + u2(c̃2)

}
.

The set of optimal choices of the individual therefore depends only on ϕ = θ / β. Combining

this fact with the assumed continuity of the distribution functions F and G of θ and β

implies that, if we put Φ = [ϕ, ϕ ] where ϕ = θ / β and ϕ = θ / β, then the planner can work

with consumption allocations c1, c2 : Φ → (0,∞) instead of with consumption allocations

c1, c2 : Θ×B → (0,∞).
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The second step is to note that we can work with utility allocations v1, v2 : Φ → R
instead of with consumption allocations c1, c2 : Φ → (0,∞). The former are related to the

latter via the formulae v1(ϕ) = u1(c1(ϕ)) and v2(ϕ) = u2(c2(ϕ)). We can also invert these

formulae to get c1(ϕ) = C1(v1(ϕ)) and c2(ϕ) = C2(v2(ϕ)).

The third step is to note that we can change variables in the integral defining welfare

and in the integral giving the resource constraint, replacing (θ, β) with (ϕ, β).

At this point, the planner’s problem can be expressed as that of choosing v1, v2 : Φ → R
to maximize welfare ∫ ∫

(β ϕ v1(ϕ) + v2(ϕ)) β f(β ϕ) g(β) dϕ dβ

subject to the resource constraint∫ ∫ (
Y − C1(v1(ϕ))−

1

R
C2(v2(ϕ))

)
β f(β ϕ) g(β) dϕ dβ ≥ 0

and the incentive-compatibility constraint, which now has two parts, namely a linear part,

0 = ϕ v′1(ϕ) + v′2(ϕ) (ICL)

and a monotonic part,

0 ≤ −v′2(ϕ). (ICM)

Remark 22 Notice that, whenever c1 and c2 are chosen from a budget set C, v1 will be non-

decreasing and v2 will be non-increasing. However, neither function need be differentiable

(or even continuous). Hence the derivatives v′1 and v′2 might in principle be a non-negative

and a non-positive measure respectively. This does not invalidate (ICL) or (ICM), both of

which make sense for measures. However, in what follows, we will sometimes reason as if

v′1 and v′2 exist in the usual sense.

The fourth step is to introduce the marginal density h of ϕ and the conditional density

j of β given ϕ, namely

h(ϕ) =

∫
β f(β ϕ) g(β) dβ (27)

and

j(β | ϕ) = β f(β ϕ) g(β)

h(ϕ)
. (28)

We can also introduce the conditional expectation of β, namely

b(ϕ) =

∫
β j(β | ϕ) dβ. (29)
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Remark 23 The limits of integration in the definition of h (namely (27)) are implicit in

the definitions of f and g. Since the integrand will only be non-zero if both f(β ϕ) and g(β)

are non-zero, these limits are max
{
β , θ / ϕ

}
and min

{
β , θ / ϕ

}
. In particular, the support

of the conditional distribution of β varies with ϕ:

1. For ϕ ∈
[
ϕ ,min

{
θ / β , θ / β

}]
, the support of β is

[
θ / ϕ , β

]
. In other words: the

range of β types that is consistent with ϕ is increasing in ϕ, and this range always in-

cludes β. By the same token, the range of θ types that is consistent with ϕ is increasing

in ϕ, and this range always includes θ.

2. For ϕ ∈
[
max

{
θ / β , θ / β

}
, ϕ
]
, the support of β is

[
β , θ / ϕ

]
. In other words: the

range of β types that is consistent with ϕ is decreasing in ϕ, and this range always

includes β.

3. If θ / β < θ / β then, for ϕ ∈
[
min

{
θ / β , θ / β

}
,max

{
θ / β , θ / β

}]
, the support of

β is [ β , β ]. In other words, if the range of θ types is large relative to the range of β

types, then all β types are consistent with intermediate values of ϕ.

4. If θ / β > θ / β then, for ϕ ∈
[
min

{
θ / β , θ / β

}
,max

{
θ / β , θ / β

}]
, the support of β

is
[
θ / ϕ , θ / ϕ

]
. In other words, if the range of θ types is small relative to the range

of β types, then there is no value of ϕ for which all β types are consistent with that

value.

Armed with b and h, the integral defining welfare and the integral giving the resource

constraint can be expressed ∫ (
b(ϕ)ϕ v1(ϕ) + v2(ϕ)

)
h(ϕ) dϕ (W)

and ∫ (
Y − C1(v1(ϕ))−

1

R
C2(v2(ϕ))

)
h(ϕ) dϕ ≥ 0. (R)

We have therefore completed the transformation of our initial two-dimensional problem into

a purely one-dimensional problem.
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The Langrangian for the one-dimensional problem can be written∫ (
b(ϕ)ϕ v1(ϕ) + v2(ϕ)

)
h(ϕ) dϕ

+λ

∫ (
Y − C1(v1(ϕ))−

1

R
C2(v2(ϕ))

)
h(ϕ) dϕ

−
∫

(ϕ v′1(ϕ) + v′2(ϕ))µ(ϕ)h(ϕ) dϕ

−
∫

v′2(ϕ) ν(ϕ)h(ϕ) dϕ,

where the Lagrange multipliers on the resource constraint, the incentive-compatibility con-

straint (ICL) and the incentive-compatibility constraint (ICM) take the form λ ∈ R, µ :

Φ → R and ν : Φ → R.

D.3 The First-Order Conditions

In order to derive first-order conditions from this Langrangian, we must first eliminate v′1

and v′2. We can do this by integrating by parts. Taking the third term of the Langrangian,

we obtain

−
∫

(ϕ v′1 + v′2)µh dϕ = −
∫

((ϕ v1)
′ − v1 + v′2)µh dϕ

=

∫
v1 µh dϕ−

∫
((ϕ v1)

′ + v′2)µh dϕ,

where we have dropped the dependence of v1, v2, µ and h on ϕ. Moreover

−
∫

((ϕ v1)
′ + v′2)µh dϕ = − [((ϕ v1) + v2)µh]ϕϕ +

∫
((ϕ v1) + v2) (µh)′ dϕ

=

∫
((ϕ v1) + v2) (µh)′ dϕ

(since h(ϕ) = h(ϕ) = 0). Similarly, taking the fourth term,

−
∫

v′2 ν h dϕ = − [v2 ν h]
ϕ
ϕ +

∫
v2 (ν h)

′ dϕ

=

∫
v2 (ν h)

′ dϕ.
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The Langrangian can therefore be written∫ ((
(b ϕ+ µ) v1 + v2 + λ

(
Y − C1(v1)−

1

R
C2(v2)

))
h

+ (ϕ v1 + v2) (µh)′ + v2 (ν h)
′
)
dϕ.

Differentiating the latter Langrangian with respect to v1 and v2, we obtain the first-order

conditions

0 =
(
b ϕ+ µ− λC ′

1(v1)
)
h+ ϕ (µh)′

and

0 =

(
1− λ

1

R
C ′

2(v2)

)
h+ (µh)′ + (ν h)′.

We also have: (IC1), namely

0 = ϕ v′1 + v′2;

the complementary slackness condition associated with the resource constraint, namely

0 ≤
∫ (

Y − C1(v1)− 1
R
C2(v2)

)
h dϕ

0 ≤ λ

}
;

and the complementary slackness condition associated with (IC2), namely

0 ≤ −v′2

0 ≤ ν

}
.

D.4 The Relaxed Problem

We focus on the relaxed version of the problem, in which we do not impose (IC2). Fur-

thermore, we look for a solution of the Relaxed Problem in which the resource constraint

holds as an equality. We therefore drop ν from the equations and tackle the three differential

equations

0 =
(
b ϕ+ µ− λC ′

1(v1)
)
h+ ϕ (µh)′, (30)

0 =

(
1− λ

1

R
C ′

2(v2)

)
h+ (µh)′, (31)

0 = ϕ v′1 + v′2 (32)
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and the integral equation

0 =

∫ (
Y − C1(v1)−

1

R
C2(v2)

)
h dϕ. (33)

The first step is to make v1 and v2 the subjects of equations (30) and (31). Putting

U1 = (C ′
1)

−1 and U2 = (C ′
2)

−1, we obtain

v1 = U1

(a1
λ

)
, (34)

v2 = U2

(a2
λ

)
, (35)

where

a1 = b ϕ+ µ+
ϕ (µh)′

h
, (36)

a2 = R

(
1 +

(µh)′

h

)
. (37)

D.5 Solving (30-32) where b and h are Smooth

Consider the equations (30-32) in the open region Φ̊ = Φ ∖
{
ϕ , θ / β , θ / β , ϕ

}
. In this

region, both b and h are smooth. Hence we may differentiate (34,35) to obtain

v′1 = U ′
1

(a1
λ

) a′1
λ
, (38)

v′2 = U ′
2

(a2
λ

) a′2
λ

(39)

and, substituting (38,39) in (32),

0 = ϕU ′
1

(a1
λ

) a′1
λ

+ U ′
2

(a2
λ

) a′2
λ
.

Next, provided that u1 and u2 have the same coefficient of relative risk aversion γ, the

latter equation is homogeneous in λ. It therefore simplifies further to

0 = ϕU ′
1(a1) a

′
1 + U ′

2(a2) a
′
2.

(If u1 and u2 have coefficient of relative risk aversion γ, then U ′
1(x) = U ′

2(x) =
1
γ
x

1
γ
−2.)
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Next, substituting for a′1 and a′2 and collecting terms in µ′′, µ′ and µ, we obtain

0 =
(
ϕ2 U ′

1 (a1) +RU ′
2 (a2)

)
h2 µ′′

+(ϕ (ϕh′ + 2h)U ′
1 (a1) + h′RU ′

2 (a2))hµ
′

+
(
ϕ
(
h (ϕh′′ + h′)− ϕh′2)U ′

1 (a1) +
(
hh′′ − h′2)RU ′

2 (a2)
)
µ

+ϕ (ϕ b′ + b)U ′
1 (a1) h

2. (40)

In other words, in the region Φ̊, equations (30-32) reduce to a second-order ordinary differ-

ential equation for µ.

D.6 Solving (30-32) where b and h have Kinks

Now consider the equations (30-32) at the points ϕ1 = θ / β and ϕ2 = θ / β, where both b

and h have kinks. We cannot differentiate (34,35) at these points. However, we do have

∆v1(ϕi) = U1

(
a1(ϕi+)

λ

)
− U1

(
a1(ϕi−)

λ

)
,

∆v2(ϕi) = U2

(
a2(ϕi+)

λ

)
− U2

(
a2(ϕi−)

λ

)
where

a1(ϕi+) = b ϕi + µ(ϕi+) +
ϕ (µh)′(ϕi+)

h(ϕi)
,

a1(ϕi−) = b ϕi + µ(ϕi−) +
ϕ (µh)′(ϕi−)

h(ϕi)
,

a2(ϕi+) = R

(
1 +

(µh)′(ϕi+)

h(ϕi)

)
,

a2(ϕi−) = R

(
1 +

(µh)′(ϕi−)

h(ϕi)

)
.

Hence, at ϕi, we can impose the value-matching condition

0 = ∆µ(ϕi) = µ(ϕi+)− µ(ϕi−) (41)

and the incentive condition

0 = ϕi (U1(a1(ϕi+))− U1(a1(ϕi−))) + (U2(a2(ϕi+))− U2(a2(ϕi−))) . (42)

81



D.7 Solving (30-32) at the Endpoints

Assuming for concreteness that ϕ1 < ϕ2, we now have the second-order ordinary differential

equation (40) in the three open intervals (ϕ, ϕ1), (ϕ1, ϕ2) and (ϕ2, ϕ ). Moreover, we have

two boundary conditions at each of ϕ1 and ϕ2. (Cf. (41) and (42).) The obvious way of

completing the equation would therefore be to require that µ take on appropriate values

at the boundaries ϕ and ϕ. However, h decays linearly to 0 at both ϕ and ϕ. Moreover,

inspection of (40) shows that:

1. the coefficient of µ′′ is positive and of order h2 near ϕ and ϕ;

2. the coefficient of µ′ is positive and of order h near ϕ, and negative and of order h near

ϕ;

3. the coefficient of µ is negative and of order 1 near ϕ and ϕ.

Hence µ will not take on boundary values at ϕ and ϕ in the usual way.55 On the other hand,

the inhomogeneous term, namely

ϕ (ϕ b′ + b)U ′
1(a1)h

2,

is of order h2 near ϕ and ϕ. In particular, it is bounded. Hence the relevant solution of the

equation is the one that is bounded near ϕ and ϕ.56

D.8 Solving for λ

As we have seen, we can find µ by solving the second-order o.d.e. (40) with the required

boundary conditions at the internal boundaries ϕ1 and ϕ2 and the required boundedness

properties at the endpoints ϕ and ϕ. Like b and h, µ can be expected to have kinks at ϕ1

and ϕ2. The next step is to solve for λ. This can be done using the resource equation (33).

Indeed, if u1 and u2 have the same coefficient of relative risk aversion γ, then we have

Ci(vi) = Ci

(
Ui

(ai
λ

))
=
(ai
λ

) 1
γ
.

55Intuitively speaking, the dynamics of ϕ move away from the endpoints ϕ and ϕ.
56Since the inhomogeneous term is of order h2 near ϕ and ϕ, the solution can in fact be expected to decay

quadratically to 0 at both ϕ and ϕ. In particular, we would expect that it would satisfy µ(ϕ ) = µ′(ϕ ) = 0

and µ(ϕ ) = µ′(ϕ ) = 0. These equations cannot, however, be used as boundary conditions. For one thing,
there are too many of them! (There are 4 instead of 2.) They are simply additional properties that we would
expect the unique bounded solution to possess.
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Hence, substituting in (33),

0 =

∫ (
Y −

(a1
λ

) 1
γ − 1

R

(a2
λ

) 1
γ

)
h dϕ = λ− 1

γ

∫ (
λ

1
γ Y − a

1
γ

1 − 1

R
a

1
γ

2

)
h dϕ,

or

λ
1
γ =

∫ (
a

1
γ

1 + 1
R
a

1
γ

2

)
h dϕ∫

Y h dϕ
. (43)

Bearing in mind that a1 and a2 are given in terms of µ by equations (36) and (37), this gives

us a formula for λ in terms of µ.

D.9 Completing the Solution

It is then a straightforward matter to find the remaining unknowns in the model: v1 and v2

are given in terms of λ and µ by (34) and (35); and c1 and c2 are given in terms of v1 and

v2 by the formulae c1 = C1(v1) and c2 = C2(v2).

D.10 Numerical implementation

We generate a numerical solution (using Matlab’s bvp4c function57) for the second-order

differential equation for µ (equation 40) with the boundary conditions described in section

D.7 of this appendix. In order to calculate welfare, we solve the second-order differential

equation simultaneously with two other first-order differential equations. Our procedure to

obtain such system of o.d.e.’s is explained below.

Notice that the numerator of λ
1
γ , given by (43), is a definite integral. Its value can

be accurately obtained by adding an appropriate expression to the system of differential

equations. Let:

Numλ(ϕ) =

∫ ϕ

ϕ

(
a1(x)

1
γ +

1

R
a2(x)

1
γ

)
h(x)dx

∂Numλ(ϕ)

∂ϕ
=

(
a1(ϕ)

1
γ +

1

R
a2(ϕ)

1
γ

)
h(ϕ) (44)

Going by these definitions, we are interested in calculating Numλ(ϕ), which is exactly the

terminal condition that one obtains when solving the o.d.e. given by (44). The boundary

57See https://www.mathworks.com/help/matlab/ref/bvp4c.html
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conditions for Numλ(ϕ) are straightforward to obtain and are given by:

Numλ(ϕ) = 0

Numλ(ϕi+)−Numλ(ϕi−) = 0

Next, optimized welfare (from the planner’s perspective) is given by:

W opt =

∫
(b(ϕ)ϕv1(ϕ) + v2(ϕ))h(ϕ)dϕ

but it cannot be simultaneously calculated with a similar procedure as the previous one,

because v1 and v2 are given in terms of λ and λ is only obtained after solving the system

of o.d.e.’s. To go past this problem, consider the following affine transformation of W opt,

where we have plugged in (34), (35), U1, and U2 into the definition of W opt and λ has been

factorized out of the RHS:

W opt · λ
1−γ
γ +

λ
1−γ
γ

(1− γ)

(∫
ϕb(ϕ)h(ϕ)dϕ+ 1

)
=∫ (

b(ϕ)ϕ
(a1(ϕ))

1−γ
γ

(1− γ)
+

(a2(ϕ))
1−γ
γ

(1− γ)

)
h(ϕ)dϕ︸ ︷︷ ︸

≡Ŵ

(45)

We can now solve for Ŵ just like we did for Numλ, by adding its corresponding o.d.e. to

the system and solving them all simultaneously using Matlab’s bvp4c. Finally, we can use

(45) to recover W opt.

D.11 The Case with Homogeneous Present Bias

The preceding derivations and numerical implementation correspond to the Relaxed Problem

with heterogeneous present bias. The problem with homogeneous present bias is a special

case of the previous one and its solution procedure differs in the following aspects.

Analytically, the derivation of the solution only differs in Section D.3, where one cannot

use the result that h(ϕ̄) = h(ϕ) = 0. Solving the Relaxed Problem without using that

result leads to the exact same second-order differential equation for µ (40). This occurs

because the new first-order conditions of the problem directly imply that µ(ϕ) = µ(ϕ̄) = 0.

Replacing this information in the remaining FOCs leads to the same set of equations as in

the heterogeneous present bias problem.

Notice as well that the discussion in Section D.6 does not apply to the case with homo-
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geneous present bias. This happens because each of the open intervals (ϕ, ϕ1) and (ϕ2, ϕ̄)

collapses to a single point as V ar(β) → 0. In this sense, the homogeneous present bias case

can be thought of as a limiting case of the heterogeneous present bias case and (40) can be

solved in a single interval in Φ. On the contrary, the heterogeneous present bias problem had

to be solved in up to three open intervals. Hence, switching from solving the homogeneous

to the heterogeneous present bias case entails switching from solving a regular boundary

value problem to a multipoint boundary value problem. This increases the complexity of the

programming required to obtain a numerical solution with Matlab’s bvp4c function. Hence,

and for ease of exposition, we present two separate pieces of code in the replication materials:

one for the homogeneous present bias case and another code for the heterogeneous one.

E Analysis of the Quasi-Linear Limit Case

E.1 Proof of Proposition 1

The wedge between the welfare criterion of the planner and the choice-function of the agent,

which is generated by present bias β < 1, can be exactly offset by the early-withdrawal

penalty π = 1− β. This Pigouvian tax corrects the negative internality generated by over-

consumption. With this penalty, the household’s (present-biased) Euler Equation reduces

to:

(1− π) θ u′
1(c1) = β θ u′

1(c1) = β u′
2(c2).

Crossing out identical terms, we obtain

θ u′(c1) = u′
2(c2),

which is the planner’s Euler Equation (if the planner observed θ).

To this point, the argument does not rely on quasi-linearity, which we now deploy to prove

that the resulting allocation is also first-best. At the margin, all agents are doing some

consumption in period 2 (because we assume an interior solution), so for all households the

value of a marginal dollar of wealth is u′
2(c2) = 1. Accordingly, social welfare cannot be

raised by changing the level of inter-household transfers.

E.2 Proof of Proposition 2

In Subsections 3.1 and 4.1, we discuss the quasi-linear limit case of our model: i.e., the case

in which the utility function in the second period is linear (i.e., u2(c2) = c2). In this case,
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the planner’s problem can be written

max

∫ (
θu1(c1) + u2(c2)

)
dF (θ) dG(β) = max

∫ (
θu1(c1) + c2

)
dF (θ) dG(β),

subject to ∫ (
c1 + c2

)
dF (θ) dG(β) = Y,

ϕ ∈ argmax
ϕ′∈Φ

{ϕu1(c1(ϕ
′)) + u2(c2(ϕ

′))} (IC)

for ϕ ≡ θ/β.

We study equilibria that satisfy the revelation principle, and, following the literature,

refer to these as direct mechanisms. When we talk about ϕ, we refer to the true value of ϕ

elicited from each agent in an equilibrium that satisfies the revelation principle.

We now turn to proving Proposition 2.

E.2.1 Implementability

Given the representation of the problem in the space of ϕ, we now effectively have a single-

type mechanism-design problem. We begin by transforming the problem into the promised

utility space, v1(ϕ) = u1(c1(ϕ)) and v2(ϕ) = u2(c2(ϕ)) = c2(ϕ). We invoke the standard

equivalence between global incentive compatibility and the combination of integral incentive

compatibility and monotonicity. Monotonicity implies v′1(ϕ) ≥ 0, and in the standard way

we solve the relaxed problem (not subject to monotonicity) and verify that the solution

satisfies monotonicity.

Integral incentive compatibility is the standard condition, derived from the Envelope

Theorem. In particular, the Envelope Theorem implies d
dϕ

(ϕv1(ϕ) + v2(ϕ)) = v1(ϕ), and we

obtain integral incentive compatibility by integrating:

ϕ v1(ϕ) + v2(ϕ) = ϕ v1(ϕ) + v2(ϕ) +

∫ ϕ

ϕ

v1(ζ)dζ.

We then use integral incentive compatibility to define the function v2 in terms of the function

v1 and the constant v2(ϕ), which gives us the implementing function v2 that guarantees

integral incentive compatibility:

v2(ϕ) = ϕ v1(ϕ) + v2(ϕ) +

∫ ϕ

ϕ

v1(ζ)dζ − ϕ v1(ϕ).

We then characterize v2(ϕ) from v1 using the resource constraint. Rewriting the resource
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constraint over promised utility in the ϕ space:∫ (
u−1
1 (v1(ϕ)) + v2(ϕ)

)
dH(ϕ) = Y.

Rearranging: ∫
v2(ϕ) dH(ϕ) = Y −

∫
u−1
1 (v1(ϕ)) dH(ϕ).

Or, in other words, given a specification of a function v1, we can use this condition plus

the implementability condition to pin down v2. In other words, if we substitute in the

implementability condition for v2, we get an equation for v2(ϕ)in terms of v1:

v2(ϕ) = Y −
∫

u−1
1 (v1(ϕ)) dH(ϕ)− ϕ v1(ϕ)−

∫ (∫ ϕ

ϕ

v1(ζ)dζ − ϕ v1(ϕ)

)
dH(ϕ).

E.2.2 Completing the Model

Lastly, let us rewrite the objective function in terms of ϕ and v1. The contribution of type-ϕ

agents to social welfare is E[ θ |ϕ ] v1(ϕ) + v2(ϕ). Therefore, the planner objective function

is: ∫ (
E[ θ |ϕ ] v1(ϕ) + v2(ϕ)

)
dH(ϕ).

Substituting in the characterization of v2 above, we get:

max
v1

{∫ (
E[ θ |ϕ ] v1(ϕ)− u−1

1 (v1(ϕ))
)
dH(ϕ) + Y

}
s.t. (Monotonicity).

That is, the planner chooses a non-decreasing function v1, with the implementability condi-

tions above defining the function v2 that implements this outcome.

From here, we solve the relaxed problem, not subject to monotonicity. The relaxed

problem is simply given by

max
v1

{∫ (
E[ θ |ϕ ] v1(ϕ)− u−1

1 (v1(ϕ))
)
dH(ϕ) + Y

}
and so has a solution given by the first order condition for optimal allocation

E[ θ |ϕ ]u′
1 (c1(ϕ)) = 1.

From here, all that remains is to verify that this allocation satisfies monotonicity. Monotonic-

ity arises provided that E[ θ |ϕ ] is non-decreasing. Hence, provided E[ θ |ϕ ] is non-decreasing,
we have characterized the optimal allocation.
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E.2.3 The Optimal Penalty

Consider the implied marginal penalty π(ϕ) that implements the above allocation rule. The

marginal trade-off of a private agent is then:

(1− π(ϕ))ϕu′
1(c1(ϕ)) = 1.

Therefore, the marginal penalty is:

1− π(ϕ) =
E[ θ |ϕ ]

ϕ
= E

[
θ

ϕ
|ϕ
]
= E[ β |ϕ ].

E.2.4 Homogeneous β

If β is homogeneous, then E[ β |ϕ ] = β, and we have:

π(ϕ) = 1− β.

That is, we simply have a Pigouvian tax. This gives another proof of Proposition 1.

E.2.5 Heterogeneous β

If β is heterogeneous and the regularity condition of Proposition 2 is satisfied, then as

mentioned before we have:

π(ϕ) = 1− E[ β |ϕ ].

That is, we have an “average Pigouvian tax”: the optimal tax rate on the margin for a

type-ϕ agent is the average tax rate in that population.

We know that π(ϕ) must be close to 1−β near ϕ, where the highest β types are the only

ones with that ϕ type. Similarly, we know that π(ϕ) ≃ 1− β near ϕ. This suggests a large

degree of flexibility over initial withdrawals, and much tighter restrictions on flexibility for

households withdrawing a lot.
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E.2.6 Corollary 3

The joint density of (ϕ, θ) takes the form θϕ−2f(θ)g(θϕ−1) (up to normalization to integrate

to one). Thus if we are in the beta wide case, we can write

E[θ|ϕ] =



∫ βϕ
θ θ2ϕ−2f(θ)g(θϕ−1)dθ∫ βϕ
θ θϕ−2f(θ)g(θϕ−1)dθ

, ϕ < θ
β

∫ θ
θ θ2ϕ−2f(θ)g(θϕ−1)dθ∫ θ
θ θϕ−2f(θ)g(θϕ−1)dθ

, θ
β
≤ ϕ ≤ θ

β

∫ θ
βϕ θ2ϕ−2f(θ)g(θϕ−1)dθ∫ θ
βϕ θϕ−2f(θ)g(θϕ−1)dθ

, θ
β
< ϕ

If β is uniformly distributed, this simplifies to

E[θ|ϕ] =



∫ βϕ
θ θ2f(θ)dθ∫ βϕ
θ θf(θ)dθ

, ϕ < θ
β

∫ θ
θ θ2f(θ)dθ∫ θ
θ θf(θ)dθ

, θ
β
≤ ϕ ≤ θ

β

∫ θ
βϕ θ2f(θ)dθ∫ θ
βϕ θf(θ)dθ

, θ
β
< ϕ

It follows that E[θ|ϕ] is constant over the middle interval, giving rise to a pooling region

(part 1 of the result). Observe then that

E[β|ϕ] = E[
θ

ϕ
|ϕ] = 1

ϕ
E[θ|ϕ]

which therefore decreases over the middle region, confirming part 2 of the result.
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