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Overview
• Examples of Reliability Disasters
• Analysis of Field/Warranty Data

– Solving a reliability problem with statistics: jet engine bleed system 
failure

– Using prior information to strengthen data: bearing cage field failure data
– Correct analysis of data with multiple failure modes: Device-G field-

tracking  and Shock Absorber data
– Other examples

• Accelerated Testing
– Accelerated life tests (Insulating structure)
– Accelerated repeated-measures degradation tests (LEDs)
– Accelerated destructive degradation tests (adhesive bond)
– Other examples



3

Reliability Disasters

• The general problem
• Some well known classic examples
• Less well known examples
• Causes
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Reliability

• Probability that a system, vehicle, machine, 
device, and so on, will perform its intended 
function under encountered operating conditions, 
for a specified period of time (Meeker and 
Escobar 1998)

• Quality over time (Condra 1993)
• A highly quantitative engineering discipline, often 

requiring complicated statistical and probabilistic 
analyses

• Customers expect high reliability
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A Common Problem
• A product has been introduced in the field.
• A small number of failures are detected. The 

“failure mode” is usually unanticipated.
• Do we have a serious problem? What fraction of 

the product population is susceptible to the failure 
mode? How fast will they fail?

• What is the risk (cost of future failures)?
• How can we fix the problem?
• How can we avoid similar problems in the future?
• Common element: multiple mistakes
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Examples of 
Reliability Disasters

• These are the kind of things all companies want to 
avoid

• Some Well Known Classic Examples:
– Challenger and Columbia Space Shuttle failures
– United Airlines 232 (aka Sioux City accident)
– Automobile clear-coat failures (early 1990’s)
– Ford Explorer/Firestone tires
– GE refrigerator compressor
– Sony laptop battery design defect 
– Toyota gas pedal
– BP Blowout-protector
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Some Lesser Known Examples

• Failing electrolytic capacitor PC mother 
boards 

• ATT Bell Cells
• Appliance and other environmental 

problems
• Medical device recalls



8

Sony Battery Problem
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Chilling Tale
This is the kind of thing we are trying to avoid
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GE Refrigerator Compressor
• Early 1980s, GE was losing market share to competitors---

Jack Welch was unhappy
• 1983-1986 GE designed, tested, and began to produce a 

new lower cost “rotary” compressor
• Stopped accelerated testing after one year and no failures
• One million + in service by 1987
• First failure after 1.5 years; virtually all would have 

eventually failed prematurely
• GE replaced all compressors in refrigerators that it could 

find. Total cost was  more than $450 Million 
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Failing and Failed PC Electrolytic Capacitors 



12

AT&T Round Cells 
(aka “Bell Cells”)

• Radical new design of a lead-acid battery in 1972
• Longer life predicted (70 years based on 

accelerated test)
• Lower maintenance cost (epoxy post seal)
• Hundreds of thousands installed during the 1970s
• Problems started in 1978
• A large proportion of the batteries had to be 

replaced.
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F-22 Reliability Problems
Premier U.S. Fighter Jet Has Major Shortcomings
F-22's Maintenance Demands Growing

By R. Jeffrey Smith
Washington Post Staff Writer    
Friday, July 10, 2009 

The United States' top fighter jet, the Lockheed 
Martin F-22, has recently required more than 30 
hours of maintenance for every hour in the skies, 
pushing its hourly cost of flying to more than 
$44,000,….
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Analysis of Field Data

• Warranty data
• Maintenance data
• Field-tracking data



16

Jet Engine Bleed System Failure

• Data from the Weibull Handbook (1984)
• Field data from 2256 systems in the field; 

staggered entry--multiple censoring
• Unexpected failures
• What is going on??
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Lessons Learned

• A shift in slope of a probability plot often 
indicates a different failure mode

• Look for explanatory variables to help 
better understand data sources
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Bearing Cage Field Failure Data

• Data from the Weibull Handbook (1984)
• 1703 units had been introduced into the field over 

time; oldest unit at 2220 hours of operation.
• 6 units had failed
• Design life specification was B10 = 8000 hours of 

operation
• Do we have a serious problem? Re-design 

needed? 
• How many spares needed? 
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Lessons Learned

• When data are not sufficient to answer the 
question, it is important to seek external 
information from past experience or 
engineering/physical/chemical knowledge about 
failure mechanisms

• Sensitivity analysis provides insight and 
assessment of uncertainty

• Bayesian methods provide a convenient 
summarization of the effects of using “prior” 
information
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Rocket Motor Field Data Analysis 

• Data from Olwell and Sorell (2001) RAMS 
proceedings

• Rocket motor is one of five critical missile 
components 

• 20,000 missiles in inventory
• 2,000 firings over the life of the missile; 

catastrophic motor failures for three older missiles
• Concern about a possible wearout failure mode
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Lessons Learned

• Even with very limited data, useful 
inferences on reliability may be possible. 

• It is important to use external (prior) 
information, when available

• The shapes of the likelihood (and posterior 
distribution) are important
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Using Simulation and Graphics 
to Gain Experience in Assessing 

Probability Plots

• Motivated by Hahn and Shapiro (1968)
• Dangers of over interpretation of random 

variability in graphics
• Useful tool for separating signal from noise
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Lessons Learned

• Probability plots are an important took for 
(reliability) data analysis

• Simulation can rapidly provide useful 
experiences and insights for dealing with 
the interpretation of statistical variability



55

Alloy T7987 Fatigue Data

• Data from Meeker and Escobar (1998)
• Dogbone shaped specimens
• Test run until 300 thousand cycles. 

– 67 failures; 
– 5 right-censored observations

• Need to estimate cycles-to-failure distribution.
• Primary interest in the lower tail of the 

distribution.



56

.001

.003

.005

.01

.02

.03

.05

.1

.2

.3

.5

.7

.9
.98

 80 100 120 140 160 180 200 220 240 280

Fr
ac

tio
n 

Fa
ilin

g
Alloy T7987 Fatigue Data 

 with Nonparametric  Simultaneous 95% Confidence Bands  
 Weibull Probability Plot  

 Kilocycles



57

.001

.005
.01
.02

.05

.1

.2

.3

.4

.5

.6

.7

.8

.9

.95

.98

 80 100 120 140 160 180 200 220 240 280

Fr
ac

tio
n 

Fa
ilin

g
Alloy T7987 Fatigue Data 

 with Nonparametric  Simultaneous 95% Confidence Bands  
 Lognormal Probability Plot  

 Kilocycles



58Kilocycles

.001

.005
.01
.02

.05

.1

.2

.3

.4

.5

.6

.7

.8

.9

.95

.98

 80 100 120 140 160 180 200 220 240 280

Fr
ac

tio
n 

Fa
ilin

g
Alloy T7987 Fatigue Data 

 with Lognormal ML Estimate  and Pointwise 95% Confidence Intervals  
 Lognormal Probability Plot  

 

muhat = 5.128

sigmahat = 0.3276



59Kilocycles

.001

.003

.005

.01

.02

.03

.05

.1

.2

.3

.5

.7

.9
.98

 80 100 120 140 160 180 200 220 240 280

Fr
ac

tio
n 

Fa
ilin

g
Alloy T7987 Fatigue Data with sevgets ML Estimate  

 and Pointwise 95% Confidence Intervals 
 Weibull Probability Plot  

 

sevgets
normalgets

3-parameter Weibull

3-Parameter Lognormal



60

Lessons Learned

• Fitting a three-parameter Weibull or Lognormal 
distribution might provide a better fit

• In some cases the use of a three-parameter 
distribution can be justified because it is known 
that there is an initial period where the probability 
of a failure is 0

• Fitting a three-parameter distribution can lead to 
anti-conservative inferences
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Device-G Field-Tracking Data

• Data from Meeker and Escobar (1998)
• Design life of 300 thousand cycles
• Units were failing in the field more rapidly 

than had been expected.
• Needs: information on how to improve 

reliability and an estimate of device MTTF.
• Two failure modes: surge and wear
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Shock Absorber Field Data

• Data from O’Connor (1985)
• Two failure modes (identified as Mode 1 

and Mode 2)
• Need to estimate the failure-time 

distribution for the shock absorbers
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Lessons Learned

• If there is more than one failure mode, it is 
important to separate and analyze failure 
modes separately when
– Shape parameters are very different
– There is need to assess the impact of 

eliminating a failure mode
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Estimating the Distribution of 
“Customer Life”

• Data available on all customer transactions for 12 
years

• Need to estimate the distribution of remaining life 
for all current customers on January 1, 2001

• Beginning of “customer life” is the date of the first 
transaction.

• End of “customer life” is defined at the date of the 
last transaction preceded by a two-year gap.
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Lessons Learned

• It will not always be easy to find a 
distributions that “fits” the data

• A parametric model is generally needed to 
extrapolate in time

• Properly segmenting data in an appropriate 
manner may provide a path toward a good 
model
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Bearing-A Bench Test Results

• Data from student in 1999 FTC short course
• Continuous-run test for a newly designed 

bearing
• Sample of 12 units put on test; one early 

removal; 3 failures. 
• Test terminated at 1100 thousand cycles
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Simulation to Compare ML and MRR

• Subset of results from Genschel and Meeker 
(2010) in Quality Engineering

• Simulation mimicking staggered entry and 
analysis at a fixed point in time (Type 1 
censoring is a special case)

• Evaluated relative efficiency for various 
quantile estimators
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Lessons Learned

• In the analysis of censored data, maximum 
likelihood is more trustworthy than ordinary least 
squares

• Understand your failure modes
• ML and MR estimators are, in general, biased, but 

bias is insignificant relative to spread in the data
• ML estimators are more efficient than MRR 

estimators
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IC Device Accelerated Life Test

• Data from Meeker (1987)
• 4156 units tested for 1370 hours
• 28 failures; last failure at 593 hours
• Needed information: fraction failing at 

20,000 hours
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Lessons Learned

• Leveling of a probability plot usually 
implies a “limited failure population” (a.k.a 
“defective subpopulation model.”

• If you do not wait long enough
– You cannot decide if you have many units 

failing slowly or a small fraction failing early.
– Conclusions will depend strongly on the 

assumed distribution model
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Analysis of Recurrence Data

• Recurrence data arise in many applications 
involving systems that are repaired over time 
(fleets of automobiles, aircraft, machinery, etc.)

• Events of interest could include failures, 
maintenance actions, replacements, etc.

• Interest centers on such metrics as
– Mean cumulative cost
– Rate of cost accumulation

• See Nelson (2003) and Cook and Lawless (2007)
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Valve Seat Replacement Times 
(Nelson and Doganaksoy 1989)

• Data collected from valve seats from a fleet of 41 diesel 
engines operated in and around Beijing, China (days of 
operation).

• Each engine has 16 valves.
• Most failures caused by operating in a dusty environment.
• Does the replacement rate increase with age?
• How many replacement valves will be needed in the 

future?
• Can valve life in these systems be modeled as a renewal 

process?
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Earth Moving Machine Maintenance Actions
(Meeker and Escobar 1998)

• Fleet of 23 earth-moving machines put into 
service over time

• Preventive maintenance ever 300-400 hours 
of operation

• Major overhaul every 2000-3000 hours of 
operation

• Many unscheduled maintenance actions
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Locomotive Braking Grid 
Replacement Frequency Comparison

(Doganaksoy and Nelson 1991)

• A particular type of locomotive has six braking 
grids.

• Data available on locomotive age when a braking 
grid is replaced and the age at the end of the 
observation period.

• There seemed to be a problem with Batch 2.
• A statistical comparison between two different 

production batches of braking grids is desired.
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Lessons Learned

• Simple nonparametric statistical methods provide 
powerful tool for drawing conclusions from 
complicated data with minimum assumptions

• Parametric methods and methods for censored 
recurrence data are also available (but more 
complicated to implement)

• It is often a mistake to try to revert to “failure-time 
analysis” when data are recurrence data.
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Motivation for Accelerated Testing

Today manufactures need to develop newer, higher 
technology products in record time while 
improving productivity, reliability, and  quality.

• Rapid product development.
• Changing technologies/new materials
• More complicated products with more components
• Higher customer expectations for better reliability
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Levels of Accelerated Testing

• Materials
• Components
• Subsystem
• Full system

Usually testing at higher levels of integration will 
result in less acceleration

Most accelerated tests are run at lower levels of a 
product
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Voltage-Accelerated Life Test of a 
Mylar-Polyurethane Laminated Direct 

Current High Voltage Insulating Structure

• Data from Kalkanis and Rosso (1989)
• Time to dielectric breakdown of units tested at 100.3, 

122.4,157.1, 219.0, and 361.4 kV/mm.
• Needed to evaluate the reliability of the insulating 

structure and to estimate the life distribution at 
system design voltages (e.g. 50 kV/mm).
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The Inverse Power Law/Lognormal Model 
for Insulation Lifetimes

•
• The probability of failure as a function of time is

• x = log(Voltage Stress)
• β1 is negative because life is shorter at higher levels of voltage 

stress 
• σ is assumed not to depend on voltage stress
• Similar relationships used for pressure and cycling rate

0 1( )x xµ β β= +

NOR
log(t)- ( )Pr[ (temp) ] xT t µ

σ
 ≤ = Φ   

1Life CV β=
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Lessons Learned
• Transformation of data can simplify modeling
• The inverse power relationship (log life is linear in 

log(Voltage Stress) may be useful for modeling 
dielectric life

• Testing at a voltage stress that is too high can 
cause new failure modes

• New failure modes at the higher levels of stress, if 
unrecognized, leads to incorrectly optimistic 
conclusions

• Structure on a data plot can hide important 
information
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New Technology IC Device ALT

• Data from Meeker and Escobar (1998)
• 50 devices tested at each of 150, 175, 200, 

250, and 300 degrees C
• Interval censoring (inspection of devices 

approximately every four days)
• Failures seen only at 250 and 300 degrees C
• Need to estimate the life distribution at 100 

degrees C
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The Arrhenius/Lognormal Model 
for Temperature Acceleration

• Log life is inversely proportional to reciprocal Kelvin 
temperature 

• The probability of failure as a function of time is

• x = 11605/(Degrees C + 273.15)
• β1 is the “effective activation energy” 
• σ does not depend on temperature
• Widely used in the evaluation of electronic components

0 1( )x xµ β β= +

NOR
log(t)- ( )Pr[ (temp) ] xT t µ

σ
 ≤ = Φ   
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Lessons Learned
• Maximum likelihood can easily deal with interval-

censored data
• A change in the distribution slope parameter 

implies that simple acceleration models are not 
appropriate

• Too much stress can cause new failure modes
• Statistical error is greatly amplified when 

extrapolating
• Engineering information is important in 

accelerated life testing
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GaAs Laser Repeated Measures 
Degradation Data Analysis

• Lasers used in telecommunications 
applications

• Lasers tested at 80 degrees C to accelerate 
life

• Few failures expected even in the 
accelerated life test
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Accelerated Repeated Measures 
Degradation Test of LEDs

• Tests run with 50 LEDs at each of six 
combinations of temperature and current 
(two accelerating variables)

• Measured light output on each unit 
periodically

• Data are messy  
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Linear model with interaction
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Linear model without JTemp130,Current40 and no interaction
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Lessons Learned

• Repeated measures degradation data can provide 
much more information that failure-time data

• Early part of degradation path may be 
complicated, but can be ignored.

• Testing at stress levels that are too high can cause 
new failure modes

• Modeling and extrapolation in two dimensions 
(two accelerating variables) can be more 
complicated and more risky
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Accelerated Destructive Degradation Test to 
Evaluate the Lifetime of an Adhesive Bond

• Some baseline units tested without aging
• Samples of units placed into chambers operating at 

50, 60, and 70 degrees C
• Some units removed at specific times and 

destructively evaluated for strength
• Units with adhesive strength below 35 Newtons are 

considered to be failures
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Lessons Learned

• Destructive degradation data are also useful, 
but more units need to be tested

• Transformations of variables can sometimes 
simplify model assumptions

• One need to understand the reason for 
anomalous observations before acting on 
them
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Experiment to Estimate the 
Fatigue Life of a New Spring

• Data from Meeker, Escobar, and Zayac (2003)
• Large factorial accelerated test experiment. Three 

factors, 12 combinations of levels, 9 reps at each 
combination.

• 108 springs tested until 5000 k-cycles
• Goals: 
Compare New and Old processing methods
B01 life > 5000 k-cycles?
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 Weibull Probability Plot  
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30 Stroke;600 Temp;New Method
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StrokeLog, TempLinear, MethodClass, Dist:Weibull 
 Weibull Probability Plot  
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Planning a Life Test for a Metal Spring

• Sample size tool is a generalization of Stat 
101 formula

• Simulation and graphics provide more 
insight

• Illustrated here for single distribution---can 
be applied to any other kind of model

• Goal: Decide how many units to test and 
how long to test them
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 Weibull Probability Plot  

Metal Spring Planning Values
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Simulated life test with sample size  = 45 

 Weibull Distribution with eta= 123  and beta= 2 
 Weibull Probability Plot  

Censor Time ->

etahat = 50.57

betahat = 3.727

n = 45, censor at 30 kilocycles
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Simulated life test with sample size  = 45 

 Weibull Distribution with eta= 123  and beta= 2 
 Weibull Probability Plot  

Censor Time ->

etahat = 170.3

betahat = 1.539

n = 45, censor at 30 kilocycles
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Simulated life test with sample size  = 45 

 Weibull Distribution with eta= 123  and beta= 2 
 Weibull Probability Plot  

Censor Time ->

etahat = 59

betahat = 5.608

n = 45, censor at 30 kilocycles
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Simulated life test with sample size  = 45 

 Weibull Distribution with eta= 123  and beta= 2 
 Weibull Probability Plot  

Censor Time ->

etahat = 56.47

betahat = 4.877

n = 45, censor at 30 kilocycles
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2000 simulated life tests with sample size =  45 censored at 30 Thousands of Cycles 

 Weibull Distribution with eta= 123  and beta= 2 with E(r)= 2.59 
 Weibull Probability Plot  

Censor Time ->

155 samples out of 2000 with 0 failures

Conditional geometric average 95% confidence 
interval precision factor R for t_0.1 = 2.55

n = 45, censor at 30 kilocycles
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Simulated life test with sample size  = 45 

 Weibull Distribution with eta= 123  and beta= 2 
 Weibull Probability Plot  

Censor Time ->

etahat = 86.75

betahat = 3.214

n = 45, censor at 50 kilocycles
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Simulated life test with sample size  = 45 

 Weibull Distribution with eta= 123  and beta= 2 
 Weibull Probability Plot  

Censor Time ->

etahat = 157.5

betahat = 2.061

n = 45, censor at 50 kilocycles
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Simulated life test with sample size  = 45 

 Weibull Distribution with eta= 123  and beta= 2 
 Weibull Probability Plot  

Censor Time ->

etahat = 385.3

betahat = 1.312

n = 45, censor at 50 kilocycles
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Simulated life test with sample size  = 45 

 Weibull Distribution with eta= 123  and beta= 2 
 Weibull Probability Plot  

Censor Time ->

etahat = 81.81

betahat = 3.023

n = 45, censor at 50 kilocycles
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Simulated life test with sample size  = 45 

 Weibull Distribution with eta= 123  and beta= 2 
 Weibull Probability Plot  

Censor Time ->

etahat = 73.9

betahat = 4.166

n = 45, censor at 50 kilocycles
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2000 simulated life tests with sample size =  45 censored at 50 Thousands of Cycles 

 Weibull Distribution with eta= 123  and beta= 2 with E(r)= 6.83 
 Weibull Probability Plot  

Censor Time ->

1 samples out of 2000 with 0 failures

Conditional geometric average 95% confidence 
interval precision factor R for t_0.1 = 1.55

n = 45, censor at 50 kilocycles
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2000 simulated life tests with sample size =  45 censored at 30 Thousands of Cycles 

 Weibull Distribution with eta= 123  and beta= 2 with E(r)= 2.59 
 Weibull Probability Plot  

Censor Time ->

155 samples out of 2000 with 0 failures

Conditional geometric average 95% confidence 
interval precision factor R for t_0.1 = 2.55

n = 45, censor at 30 kilocycles



191Thousands of Cycles

.005

.01

.02

.03

.05

.1

.2

.3

.5

.7

.9

.98

.999

  5  10  20  50 100 200 500

Fr
ac

tio
n 

Fa
ilin

g
Simulated life test with sample size  = 45 

 Weibull Distribution with eta= 123  and beta= 2 
 Weibull Probability Plot  

Censor Time ->

etahat = 114.3

betahat = 2.216

n = 45, censor at 120 kilocycles



192Thousands of Cycles

.005

.01

.02

.03

.05

.1

.2

.3

.5

.7

.9

.98

.999

  5  10  20  50 100 200 500

Fr
ac

tio
n 

Fa
ilin

g
Simulated life test with sample size  = 45 

 Weibull Distribution with eta= 123  and beta= 2 
 Weibull Probability Plot  

Censor Time ->

etahat = 131.8

betahat = 2.136

n = 45, censor at 120 kilocycles
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Simulated life test with sample size  = 45 

 Weibull Distribution with eta= 123  and beta= 2 
 Weibull Probability Plot  

Censor Time ->

etahat = 125

betahat = 1.917

n = 45, censor at 120 kilocycles
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Simulated life test with sample size  = 45 

 Weibull Distribution with eta= 123  and beta= 2 
 Weibull Probability Plot  

Censor Time ->

etahat = 131.5

betahat = 2.184

n = 45, censor at 120 kilocycles
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Simulated life test with sample size  = 45 

 Weibull Distribution with eta= 123  and beta= 2 
 Weibull Probability Plot  

Censor Time ->

etahat = 121.5

betahat = 1.692

n = 45, censor at 120 kilocycles
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2000 simulated life tests with sample size =  45 censored at 120 Thousands of Cycles 

 Weibull Distribution with eta= 123  and beta= 2 with E(r)= 27.6 
 Weibull Probability Plot  

Censor Time ->

geometric average 95% confidence 
interval precision factor R for t_0.1 = 1.46

n = 45, censor at 120 kilocycles
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2000 simulated life tests with sample size =  45 censored at 50 Thousands of Cycles 

 Weibull Distribution with eta= 123  and beta= 2 with E(r)= 6.83 
 Weibull Probability Plot  

Censor Time ->

1 samples out of 2000 with 0 failures

Conditional geometric average 95% confidence 
interval precision factor R for t_0.1 = 1.55

n = 45, censor at 50 kilocycles



198

Concluding Remarks
• There are many kinds of reliability data: life, degradation, 

recurrence
• We often need to use available information outside of your 

data, but recognize uncertainty in that information.
• Divide and analyze (e.g., failure cause, stratification).
• Do not ignore model uncertainty, especially in 

extrapolation.
• There is no magic in accelerated testing or statistics
• Finding appropriate accelerating variables and a model 

adequate for extrapolation are critical concerns.
• Statistical methods allow one to plan efficient tests, fit 

given models to data, and to quantify statistical uncertainty
• Modern software can provide useful test-planning tools
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