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Overview

« Examples of Reliability Disasters
o Analysis of Field/Warranty Data

Solving a reliability problem with statistics: jet engine bleed system
failure

Using prior information to strengthen data: bearing cage field failure data

Correct analysis of data with multiple failure modes: Device-G field-
tracking and Shock Absorber data

Other examples

o Accelerated Testing

Accelerated life tests (Insulating structure)

Accelerated repeated-measures degradation tests (LEDS)
Accelerated destructive degradation tests (adhesive bond)
Other examples



Reliability Disasters

The general problem

Some well known classic examples
Less well known examples

Causes



Reliability

Probability that a system, vehicle, machine,
device, and so on, will perform its intended
function under encountered operating conditions,
for a specified period of time (Meeker and
Escobar 1998)

Quality over time (Condra 1993)

A highly quantitative engineering discipline, often
requiring complicated statistical and probabilistic
analyses

Customers expect high reliability



A Common Problem

A product has been introduced in the field.

A small number of failures are detected. The
“failure mode” is usually unanticipated.

Do we have a serious problem? What fraction of
the product population is susceptible to the failure
mode? How fast will they fail?

What Is the risk (cost of future failures)?

How can we fix the problem?

How can we avoid similar problems in the future?
Common element: multiple mistakes



Examples of
Reliability Disasters

e These are the kind of things all companies want to
avoid

e Some Well Known Classic Examples:
— Challenger and Columbia Space Shuttle failures
— United Airlines 232 (aka Sioux City accident)
— Automobile clear-coat failures (early 1990’s)
— Ford Explorer/Firestone tires
— GE refrigerator compressor
— Sony laptop battery design defect
— Toyota gas pedal
— BP Blowout-protector



Some Lesser Known Examples

 Failing electrolytic capacitor PC mother
boards

e ATT Bell Cells

« Appliance and other environmental
problems

e Medical device recalls



Sony Battery Problem




Chilling Tale

This 1s the kind of thing we are trying to avoid
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Chilling Tale

GE Refnigerator Woes
[llustrate the Hazards
- |In Changing a Product

Firm Pushed Develoi)ment
Of Compressor Too Fast,
Failed to Test Adequately
Missing: the "Magical Balance’
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GE Refrigerator Compressor

Early 1980s, GE was losing market share to competitors---
Jack Welch was unhappy

1983-1986 GE designed, tested, and began to produce a
new lower cost “rotary” compressor

Stopped accelerated testing after one year and no failures
One million + in service by 1987

First failure after 1.5 years; virtually all would have
eventually failed prematurely

GE replaced all compressors in refrigerators that it could
find. Total cost was more than $450 Million
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Fallmg and Failed PC Electrolytlc Capamtors
s ﬂ




AT&T Round Cells
(aka “Bell Cells™)

Radical new design of a lead-acid battery in 1972

Longer life predicted (70 years based on
accelerated test)

_ower maintenance cost (epoxy post seal)
Hundreds of thousands installed during the 1970s
Problems started in 1978

A large proportion of the batteries had to be
replaced.
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F-22 Reliability Problems

Premier U.S. Fighter Jet Has Major Shortcomings
F-22's Maintenance Demands Growing

By R. Jeffrey Smith
Washington Post Staff Writer
Friday, July 10, 2009

The United States' top fighter jet, the Lockheed
Martin F-22, has recently required more than 30
hours of maintenance for every hour in the skies,

pushing its hourly cost of flying to more than
$44,000,....
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Analysis of Field Data

o \Warranty data
e Maintenance data
 Field-tracking data
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Jet Engine Bleed System Failure

Data from the Weibull Handbook (1984)

Field data from 2256 systems in the field;
staggered entry--multiple censoring

Unexpected failures
What Is going on??
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|_essons Learned

A shift in slope of a probability plot often
Indicates a different fatlure mode

» Look for explanatory variables to help
better understand data sources
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Bearing Cage Field Failure Data

Data from the Weibull Handbook (1984)

1703 units had been introduced into the field over
time; oldest unit at 2220 hours of operation.

6 units had failed

Design life specification was B10 = 8000 hours of
operation

Do we have a serious problem? Re-design
needed?

How many spares needed?
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Bearing Cage Data

Count
Row
1 288
2 148
3 —X
4 —— 124
5
6 111
7 >K
8 106
9 99
10 110
11 114
12 119
13 127
14 K
15 X
16 123
17 93
18 47
19 41
20 27
21 2
22 11
23 6
24
25 2

| T T T | T T | T T | T
500 1000 1500 2000



Bearing Cage Data
with Weibull ML Estimate and Pointwise 95% Confidence Intervals
Weibull Probability Plot
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Bearing Cage Data

Weibull Distribution Joint Confidence Region
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Bearing Cage Data

Profile Likelihood and 95% Confidence Interval
for 0.1 Quantile Hours from the Weibull Distribution
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Bearing Cage Data
with Weibull ML Estimate and Pointwise 95% Confidence Intervals
Weibull Probability Plot
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Bearing Cage Data
with Weibull ML Estimate and Pointwise 95% Confidence Intervals
Weibull Probability Plot
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Bearing Cage Data
with Weibull ML Estimate and Pointwise 95% Confidence Intervals
Weibull Probability Plot
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beta

Weibull Model Prior Distribution for Bearing Cage Data
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beta

Weibull Model Prior Distribution for Bearing Cage Data
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beta

Weibull Model Posterior Distribution for Bearing Cage Data
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f(t_ 0.1 | DATA)

Weibull Model Posterior Distribution for Bearing Cage Data
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Bearing Cage Data
Profile Likelihood and 95% Confidence Interval
for 0.1 Quantile Hours from the Weibull Distribution
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|_essons Learned

* When data are not sufficient to answer the
question, it Is important to seek external
Information from past experience or

engineering/physical/chemical knowledge about
failure mechanisms

« Sensitivity analysis provides insight and
assessment of uncertainty

» Bayesian methods provide a convenient
summarization of the effects of using “prior”
Information
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Rocket Motor Field Data Analysis

Data from Olwell and Sorell (2001) RAMS
proceedings

Rocket motor 1s one of five critical missile
components

20,000 missiles in inventory

2,000 firings over the life of the missile;
catastrophic motor failures for three older missiles

Concern about a possible wearout failure mode
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RocketMotor data

Count
Row
1 — 105
2 — 164
3 153
4 236
5 250
6 197
7 230
8 211
9 124
10 90
11 72
12 53
13 30
14 14
15 5
16 3
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RocketMotor data

Weibull Distribution Joint Confidence Region
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RocketMotor data
Profile Likelihood and 95% Confidence Interval
for 0.1 Quantile Years from the Weibull Distribution
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RocketMotor data
Profile Likelihood and 95% Confidence Interval
for beta from the Weibull Distribution
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Weibull Model Prior Distribution for RocketMotor data
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beta

Weibull Model Posterior Distribution for RocketMotor data
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f(t 0.1 | DATA)

Weibull Model Posterior Distribution for RocketMotor data
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Profile Likelihood and 95% Confidence Interval

RocketMotor data

for 0.1 Quantile from the Weibull Distribution

Profile Likelihood
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|_essons Learned

* Even with very limited data, useful
Inferences on reliability may be possible.

* |t Is Important to use external (prior)
Information, when available

e The shapes of the likelithood (and posterior
distribution) are important

46



Using Simulation and Graphics
to Gain Experience in Assessing
Probability Plots

* Motivated by Hahn and Shapiro (1968)

« Dangers of over interpretation of random
variability in graphics
« Useful tool for separating signal from noise
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Normal Probability Plot with Simulated Normal Data
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Normal Probability Plot with Simulated Normal Data
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Normal Probability Plot with Simulated Normal Data
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Normal Probability Plot with Simulated Exponential Data
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Normal Probability Plot with Simulated Exponential Data
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Normal Probability Plot with Simulated Exponential Data

Sample Size= 10
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|_essons Learned

* Probability plots are an important took for
(reliability) data analysis

« Simulation can rapidly provide useful
experiences and insights for dealing with
the Interpretation of statistical variability
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Alloy T7987 Fatigue Data

Data from Meeker and Escobar (1998)
Dogbone shaped specimens

Test run until 300 thousand cycles.
— 67 failures;
— 5 right-censored observations

Need to estimate cycles-to-failure distribution.

Primary interest in the lower tail of the
distribution.
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|_essons Learned

o Fitting a three-parameter Weibull or Lognormal
distribution might provide a better fit

* In some cases the use of a three-parameter
distribution can be justified because it is known
that there is an initial period where the probability
of a failure is 0

 Fitting a three-parameter distribution can lead to
anti-conservative inferences
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Device-G Field-Tracking Data

Data from Meeker and Escobar (1998)
Design life of 300 thousand cycles

Units were failing in the field more rapidly
than had been expected.

Needs: information on how to improve
reliability and an estimate of device MTTF.

Two failure modes: surge and wear
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Shock Absorber Field Data

e Data from O’Connor (1985)

» Two failure modes (identified as Mode 1
and Mode 2)

 Need to estimate the failure-time
distribution for the shock absorbers
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|_essons Learned

o |f there i1s more than one failure mode, it is
Important to separate and analyze failure
modes separately when
— Shape parameters are very different

— There Is need to assess the impact of
eliminating a failure mode
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Estimating the Distribution of
“Customer Life”

Data available on all customer transactions for 12
years

Need to estimate the distribution of remaining life
for all current customers on January 1, 2001

Beginning of “customer life” is the date of the first
transaction.

End of “customer life” is defined at the date of the
last transaction preceded by a two-year gap.
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|_essons Learned

o It will not always be easy to find a
distributions that “fits” the data

o A parametric model is generally needed to
extrapolate in time

* Properly segmenting data in an appropriate
manner may provide a path toward a good
model
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Bearing-A Bench Test Results

Data from student i1n 1999 FTC short course

Continuous-run test for a newly designed
bearing

Sample of 12 units put on test; one early
removal; 3 failures.

est terminated at 1100 thousand cycles
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Simulation to Compare ML and MRR

o Subset of results from Genschel and Meeker
(2010) in Quality Engineering
o Simulation mimicking staggered entry and

analysis at a fixed point in time (Type 1
censoring Is a special case)

 Evaluated relative efficiency for various
guantile estimators
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Comparison of ML and MRR estimates Type 1 Censoring with 10 failures
Weibull Probability Plot
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|_essons Learned

In the analysis of censored data, maximum
likelihood Is more trustworthy than ordinary least

squares
Understand your failure modes

ML and MR estimators are, in general, biased, but
bias Is insignificant relative to spread in the data

ML estimators are more efficient than MRR
estimators
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|C Device Accelerated Life Test

Data from Meeker (1987)
4156 units tested for 1370 hours
28 failures: last fallure at 593 hours

Needed information: fraction failing at
20,000 hours
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|_essons Learned

 Leveling of a probability plot usually
Implies a “limited failure population” (a.k.a
“defective subpopulation model.”

* |f you do not wait long enough

— You cannot decide If you have many units
failing slowly or a small fraction failing early.

— Conclusions will depend strongly on the
assumed distribution model

102



Analysis of Recurrence Data

Recurrence data arise in many applications
Involving systems that are repaired over time
(fleets of automobiles, aircraft, machinery, etc.)

Events of interest could include failures,
maintenance actions, replacements, etc.

Interest centers on such metrics as
— Mean cumulative cost
— Rate of cost accumulation

See Nelson (2003) and Cook and Lawless (2007)
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Valve Seat Replacement Times
(Nelson and Doganaksoy 1989)

Data collected from valve seats from a fleet of 41 diesel
engines operated in and around Beijing, China (days of
operation).

Each engine has 16 valves.

Most failures caused by operating in a dusty environment.
Does the replacement rate increase with age?

How many replacement valves will be needed in the
future?

Can valve life in these systems be modeled as a renewal
process?
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Mean Cumulative Function

Mean Cumulative Function for ValveSeat data
with 95%Confidence Intervals
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Earth Moving Machine Maintenance Actions
(Meeker and Escobar 1998)

Fleet of 23 earth-moving machines put into
service over time

Preventive maintenance ever 300-400 hours
of operation

Major overhaul every 2000-3000 hours of
operation

Many unscheduled maintenance actions
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Mean Cumulative Function for MachineH
with 95%Confidence Intervals
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Mean Cumulative Function for MachineH
with 95%Nonparametric Confidence Intervals and Power Rule NHPP ML estimate
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Locomotive Braking Grid
Replacement Freqguency Comparison
(Doganaksoy and Nelson 1991)

A particular type of locomotive has six braking
grids.

Data available on locomotive age when a braking
grid is replaced and the age at the end of the
observation period.

There seemed to be a problem with Batch 2.

A statistical comparison between two different
production batches of braking grids is desired.
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Mean Cumulative Function

Mean Cumulative Function for Gridsl Replacement Data
with 95%Confidence Intervals
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Mean Cumulative Function

Mean Cumulative Function for Grids2 Replacement Data
with 95%Confidence Intervals
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Difference in Mean Cumulative Failures

Comparison of Mean Cumulative Functions
Gridsl Replacement Data MCF minus Grids2 Replacement Data MCF
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|_essons Learned

e Simple nonparametric statistical methods provide
powerful tool for drawing conclusions from
complicated data with minimum assumptions

» Parametric methods and methods for censored
recurrence data are also available (but more
complicated to implement)

|t is often a mistake to try to revert to “failure-time
analysis” when data are recurrence data.
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Motivation for Accelerated Testing

Today manufactures need to develop newer, higher
technology products in record time while
Improving productivity, reliability, and quality.

Rapid product development.

Changing technologies/new materials

More complicated products with more components
Higher customer expectations for better reliability
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Levels of Accelerated Testing

o Materials

e Components
e Subsystem
* Full system

Usually testing at higher levels of integration will
result in less acceleration

Most accelerated tests are run at lower levels of a
product
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Voltage-Accelerated Life Test of a
Mylar-Polyurethane Laminated Direct
Current High Voltage Insulating Structure

« Data from Kalkanis and Rosso (1989)

 Time to dielectric breakdown of units tested at 100.3,
122.4,157.1, 219.0, and 361.4 k\V//mm.

e Needed to evaluate the reliability of the insulating
structure and to estimate the life distribution at
system design voltages (e.g. 50 k\V/mm).
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Mylar-Polyurethane Laminated Direct Current High
Voltage Insulating Structure

Cross Plot on Log-Log Paper
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The Inverse Power Law/Lognormal Model
for Insulation Lifetimes

- Life=CV”#
e The probability of failure as a function of time is
Pr[T (temp) <t] = @, {'Og(t)'“(x)}
o

X = log(Voltage Stress) u(x) = fy + B

e [, Is negative because life is shorter at higher levels of voltage
stress
e o IS assumed not to depend on voltage stress

o Similar relationships used for pressure and cycling rate
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Mylar Polyurethane Insulating Structure Data

Inverse Power Regression Model All Data
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Mylar Polyurethane Insulating Structure Data

Inverse Power Regression Model Good Data
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Mylar Polyurethane Insulating Structure Data

Inverse Power Regression Model Good Data
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Mylar Polyurethane Insulating Structure Data

Inverse Power Regression Model All Data
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|_essons Learned

Transformation of data can simplify modeling

The inverse power relationship (log life is linear In
log(Voltage Stress) may be useful for modeling
dielectric life

Testing at a voltage stress that Is too high can
cause new failure modes

New failure modes at the higher levels of stress, If
unrecognized, leads to incorrectly optimistic
conclusions

Structure on a data plot can hide important
Information
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New Technology IC Device ALT

Data from Meeker and Escobar (1998)

50 devices tested at each of 150, 175, 200,
250, and 300 degrees C

Interval censoring (inspection of devices
approximately every four days)

Fallures seen only at 250 and 300 degrees C

Need to estimate the life distribution at 100
degrees C
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New Technology Device ALT
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The Arrhenius/Lognormal Model
for Temperature Acceleration

* Log life is inversely proportional to reciprocal Kelvin
temperature

e The probability of failure as a function of time is

log(t)- (X
PI[T (temp) <t] = D, { 9(0)-4( )}
O
H1(X) = B, + BX
o X =11605/(Degrees C + 273.15)
» [, Isthe “effective activation energy”

e ¢ does not depend on temperature
o Widely used in the evaluation of electronic components
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New Technology Device ALT
DegreesCArrhenius , Dist:Lognormal
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Fraction Failing
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Fraction Failing
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|_essons Learned

Maximum likelihood can easily deal with interval-
censored data

A change In the distribution slope parameter
iImplies that simple acceleration models are not
appropriate

Too much stress can cause new failure modes

Statistical error is greatly amplified when
extrapolating

Engineering information is important in
accelerated life testing
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GaAs Laser Repeated Measures
Degradation Data Analysis

e | asers used In telecommunications
applications

 Lasers tested at 80 degrees C to accelerate
life

* Few failures expected even In the
accelerated life test
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GaAsLaser.CurrentF15C8000.XLinear.YLinear.ld
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Fraction Failing
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with Lognormal ML Estimate and Pointwise 95% Confidence Intervals
Lognormal Probability Plot
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Accelerated Repeated Measures
Degradation Test of LEDs

o Tests run with 50 LEDs at each of six
combinations of temperature and current
(two accelerating variables)

* Measured light output on each unit
periodically

e Data are messy
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LED Relative Change in Light Output (Zero Start)
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Relative Change in Light Output from 138 Hours

X axis: linear
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DevicelL Pseudo Failures FO0.6C5000.XSquareroot.YLinear Model MLE
JtempArrhenius, CurrentLog, Dist:Lognormal
Lognormal Probability Plot
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Devicel Pseudo Failures FO.6C5000.XSquareroot.YLinear Model MLE
JtempArrhenius, CurrentLog, Dist:Lognormal
Lognormal Probability Plot
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Fixed Devicel Pseudo Failures FO.6C5000.XSquareroot.YLinear Model MLE
JtempArrhenius, CurrentLog, Dist:Lognormal
Lognormal Probability Plot
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|_essons Learned

Repeated measures degradation data can provide
much more information that failure-time data

Early part of degradation path may be
complicated, but can be ignored.

Testing at stress levels that are too high can cause
new failure modes

Modeling and extrapolation in two dimensions
(two accelerating variables) can be more
complicated and more risky
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Accelerated Destructive Degradation Test to
Evaluate the Lifetime of an Adhesive Bond

Some baseline units tested without aging

Samples of units placed into chambers operating at
50, 60, and 70 degrees C

Some units removed at specific times and
destructively evaluated for strength

Units with adhesive strength below 35 Newtons are
considered to be failures
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Newtons

AdhesiveBondB data
Destructive Degradation Scatter Plot
Resp:Log, Time:Square root
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AdhesiveBondB data
Destructive Degradation Individual Regression Analyses
Resp:Log, Time:Square root, Dist:Normal

100 72

7))
c
S
=
(D)
Z
A
A
20 7
] o — 50DegreesC A
+ — 60DegreesC
| 70DegreesC
10
| ' ' ¢ | ‘v ¢ & U | U U v U [ U U U U]
0 5 10 15 20

161



Degradation rate versus DegreesC on Arrhenius Scale for
AdhesiveBondB data
Resp:Log, Time:Square root,x:Arrhenius, Dist:Normal
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AdhesiveBondB data
Destructive Degradation Regression Analyses
Resp:Log, Time:Square root,DegreesC:Arrhenius, Dist:Normal
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Model plot for AdhesiveBondB data
Resp:Log, Time:Square root,DegreesC:Arrhenius, Dist:Normal
Failure-time distribution for degradation failure level of 35 Newtons
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Standardized Residuals

AdhesiveBondB data
Destructive Degradation Residuals versus Fitted Values
Resp:Log, Time:Square root,DegreesC:Arrhenius, Dist:Normal
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|_essons Learned

 Destructive degradation data are also useful,
but more units need to be tested

e Transformations of variables can sometimes
simplify model assumptions

e One need to understand the reason for
anomalous observations before acting on

them
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Experiment to Estimate the
Fatigue Life of a New Spring

Data from Meeker, Escobar, and Zayac (2003)

Large factorial accelerated test experiment. Three
factors, 12 combinations of levels, 9 reps at each
combination.

108 springs tested until 5000 k-cycles

Goals:
» Compare New and Old processing methods
» BO1 life > 5000 k-cycles?
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Spring Fatigue Data
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Spring Fatigue Data
With Individual Weibull Distribution ML Estimates
Weibull Probability Plot
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Fraction Failing

.98

.05

.03

Spring Fatigue Data
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Spring Fatigue Data Model MLE
StrokelLog, TempLinear, MethodClass, Dist:Weibull
Weibull Probability Plot
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Spring Fatigue Data StrokeLog, TempLinear, MethodClass, Dist:Weibull
Fixed values of Temp=600, Method=New
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0.01 Quantile of Kilocycles Distribution

Spring Fatigue Data
with Weibull Stroke:log, Temp:linear, Method:class at 20,600,New
Power Transformation Sensitivity Analysis on Stroke

10’\1545 —— ML estimate of the 0.01 quantile
10M4: Approximate 95% Pointwise confidence intervals

Stroke Box-Cox Transformation Power



Spring Fatigue Data
Approximate Profile Likelihood and 95% Confidence Interval

for Stroke Box-Cox Transformation Power from the Weibull Distribution
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Planning a Life Test for a Metal Spring

Sample size tool Is a generalization of Stat
101 formula

Simulation and graphics provide more
Insight

Illustrated here for single distribution---can
be applied to any other kind of model

Goal: Decide how many units to test and
how long to test them
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Sample Size Tool --- Censoring at 50 kilocycles

Needed sample size giving approximately a 50% chance of having
a confidence interval factor for the 0.1 quantile that is less than R
weibull Distribution with eta= 123 and beta= 2
Test censored at 50 Thousands of Cycles with 15.2 expected percent failing
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Simulated life test with sample size =45
Weibull Distribution with eta= 123 and beta= 2
Weibull Probability Plot

n = 45, censor at 30 kilocycles
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Weibull Distribution with eta= 123 and beta= 2
Weibull Probability Plot
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Weibull Distribution with eta= 123 and beta= 2 with E(r)= 2.59
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Simulated life test with sample size =45
Weibull Distribution with eta= 123 and beta= 2
Weibull Probability Plot
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Weibull Distribution with eta= 123 and beta= 2

Weibull Probability Plot

n = 45, censor at 50 kilocycles
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Simulated life test with sample size =45
Weibull Distribution with eta= 123 and beta= 2
Weibull Probability Plot
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Weibull Distribution with eta= 123 and beta= 2 with E(r)= 6.83

Weibull Probability Plot
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2000 simulated life tests with sample size = 45 censored at 30 Thousands of Cycles

Weibull Distribution with eta= 123 and beta= 2 with E(r)= 2.59
Weibull Probability Plot

n = 45, censor at 30 kilocycles
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Simulated life test with sample size =45
Weibull Distribution with eta= 123 and beta= 2
Weibull Probability Plot

n =45, censor at 120 kilocycles
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Simulated life test with sample size =45

W eibull Distribution with eta= 123 and beta= 2
Weibull Probability Plot

n =45, censor at 120 kilocycles
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Simulated life test with sample size =45

W eibull Distribution with eta= 123 and beta= 2
Weibull Probability Plot
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Simulated life test with sample size =45
Weibull Distribution with eta= 123 and beta= 2

Weibull Probability Plot

n =45, censor at 120 kilocycles
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Simulated life test with sample size =45

W eibull Distribution with eta= 123 and beta= 2
Weibull Probability Plot

n =45, censor at 120 kilocycles
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Weibull Distribution with eta= 123 and beta= 2 with E(r)= 27.6
Weibull Probability Plot
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2000 simulated life tests with sample size = 45 censored at 50 Thousands of Cycles
Weibull Distribution with eta= 123 and beta= 2 with E(r)= 6.83

Weibull Probability Plot

n = 45, censor at 50 kiloycles

Censor Time ->

1 samples out of 2000 with O failures

ditional geometric average 95% confidence
interval precision factor R fort_0.1 = 1.55
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Concluding Remarks

There are many Kkinds of reliability data: life, degradation,
recurrence

We often need to use available information outside of your
data, but recognize uncertainty in that information.

Divide and analyze (e.g., failure cause, stratification).

Do not ignore model uncertainty, especially In
extrapolation.

There 1s no magic in accelerated testing or statistics

Finding appropriate accelerating variables and a model
adequate for extrapolation are critical concerns.

Statistical methods allow one to plan efficient tests, fit
given models to data, and to quantify statistical uncertainty

Modern software can provide useful test-planning tools
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