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Statistical Power to Support 
Test Adequacy Decisions

Part 1: Power Analysis Concepts

Tom Johnson, Laura Freeman, Jim Simpson

Rigorous T&E Knowledge Exchange Workshop, 13 Apr 16
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Why a Power Tutorial?

• All T&E organizations need to test adequately (i.e. just right) 
and maximize the knowledge gained

• Power is an important metric of test adequacy

• Power is a simple concept, the equation not as simple and 
easy to misapply

• Many power values for a single project can confuse – one per 
factor, per response, per design

• DOE software packages
– Critical to obtaining power estimates
– The software platforms give different estimates for seemingly 

similar conditions!
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Outline for Today

• Power Concepts

• Power for 2-level Designs

• Power for Multi-level Categorical Factor Designs

• Power for Binary Response Designs
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POWER CONCEPTS
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DOEAnalyze
Statistically to Model 

Performance
Model, Predictions, Bounds

Plan
Sequentially for Discovery 

Factors, Responses and Levels

Design
with Confidence and Power to 

Span the Battlespace
N, α, Power, Test Matrices 

Execute
to Control Uncertainty

Randomize, Block, Replicate

DOE Process
Metrics of Note
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Power in Context – One Phase and One Metric

Design Phase Key
• Statistical power analysis is performed to ensure very high chance of 

declaring factors of interest are important, given they really are important

• Design approach changes all the relevant factors simultaneously, spans 
the factor level ranges, permits estimating factor effects and factor 
interactions

• The number of test events (points) gradually increases as more factors 
are added

• Test design developed to gain efficiencies in total test resources allocated

• Design for sequential testing to leverage insight gained early in testing –
ultimately maximizes knowledge gained for equal resources and flexes 
based on discovery – builds understanding in stages

• Provides the most potent allocation of test resources – by considering all 
relevant factors, coverage of the test space, right amount of replication
for noise estimation, and only feasible test combinations
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Power Analysis More Formally Defined

• Statistical Power is a probability associated with making a 
correct conclusion about the system under study

• Specifically, when factors have been prescribed for a test, power 
is the probability that we will conclude that a factor is important, 
given it is really important

• More specifically, there are 2 types of error (and complements)

α = Probability (the test conclusion is that a factor matters, given the factor has no effect)

β = Probability (the test conclusion is that a factor has no effect, given the factor matters)

1- β = Probability (the test conclusion is that a factor matters, given the factor matters)
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Power vs. Sample Size (N) Relation

23 design, replicated
3 factors, 2-levels each
SNR = δ/σ = 1

Marginal return
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a)
Test assumes variable data

c) 
Define H1 world using δ

b)
Set α: Probability wrongly conclude H1

d) 
Compute β: Probability wrongly conclude H0

 Example:  Does Clutter (High C vs. Low C) Degrade Missile Miss Distances (MD)? 
 Form hypotheses: two possible worlds

0

Clutter
no effect

Change in 
miss distance

α

Decision line – set by α

0

Clutter
no effect

Change in 
miss distance

δ

Clutter
matters

α

0

Clutter
no effect

Decision line – set by α

Change in 
miss distance

β

δ

Clutter
matters

α

0

Clutter
no effect

Decision line – set by α

Hypothesis Equation In Words
H0 MDHigh C – MDLow C = 0 Clutter no effect
H1 MDHigh C – MDLow C > 0 Clutter matters



4/18/2016-10

Decision Risks Illustrated

A: Humidity

B: Device

C: Agent

Test Factors Error

Truth Model: Detect Distance = Device + Agent

Hypotheses

H0: Humidity has no effect
H1:  Humidity matters

H0: Device has no effect
H1:  Device matters

H0: Agent has no effect
H1:  Agent matters

Possible Conclusion

Humidity matters

Device matters

Agent has no effect

α

None, 1−β

β

* Bold Blue reflects the truth

α = Probability (the test conclusion is that a factor matters, given the factor has no effect)
β = Probability (the test conclusion is that a factor has no effect, given the factor matters)

Example: Chemical agent detector
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A: Airspeed

E: Nacelle

C: SCP

B: Turn

D: Ride

Model

Deviation = 

Noise

Test Factors

Nacelle

SCP

Turn

Ride
Run Deviation

1 7.6
2 0.5
3 16.2
…
32 9.3

Airspeed 

Error

α

β

True Model: Deviation = Ride + Turn

Decision Risks Illustrated – Part II

Another perspective: CV-22 Terrain Following/Avoidance

None, 1 - β
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Parameter Description How Obtained Relevance in Planning

k: factors Number of factors in the 
experiment

Determined in process 
decomposition

Key finding from process 
decomposition

dferror: model 
error

Amount of data reserved for 
estimating system noise

Desired model order 
(e.g. interaction, 
quadratic)

Estimate of complexity of 
input-output relation

α: alpha Probability (declaring factor 
matters when it doesn’t)

Set by test team Fix and leave alone

δ: delta Size of response change 
expert wants to detect

Experts and 
management determine

Some ability to vary

σ: sigma System noise – run-to-run 
variability or repeatability

Historical data; pilot 
tests; expert judgment

System driven but can be 
improved by planning

1-β: power Probability of declaring a 
factor matters when it does

Lower bound set by test 
team

Primary goal is to set N to 
achieve high power

N: test size Usually computed based 
on all other parameters

Direct, should modify to 
satisfy power

Power Analysis 
Parameters
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Hypothesis Testing – Set the Alternative with δ

• Regardless of the distribution of the measure of performance, as N increases, 
the distribution of means becomes normal - CLT

• The means targeted in hypothesis testing have distributions

• The null hypothesis has a reference mean, but alternative has infinite means

• The δ is the difference between null and alternative means and is used to 
anchor the alternative

• Computing both α and β is possible with δ

• Example:  µ ≥0 : 30TLEH

µ <1 : 30TLEH

30

0H

δ = 5 25

1H
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Sensitivity to dferror

• As a design N approaches the number of model degrees of 
freedom, p, power drops drastically

25-1 design
ME + 2FI model

p

0
1

k

i i ij i j
i i j

Y x x xβ β β ε
= <

= + + +∑ ∑

p = 1    +   5     +    10  =  16

Error degrees 
of freedom



4/18/2016-15

N = 3 N = 20 N = 100

Constant α levels 

β

Adapted from:  Osborne, Ken, Busby, Deborah, Schroeder, Kurt, Managing Test Risk During Design: 
Bushmaster II Testing, Eglin Technical Document, 2 Apr 2009.

α α αβ β

Sensitivity to N
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Power Terminology in Software

• Terminology in Software to Request or Report Delta (δ ) and 
Sigma (σ ) Estimates for Power Analysis

Software Delta Sigma Delta/Sigma

Design Expert 
8, 9, 10

Delta, Diff. to detect, 
“Signal”

Sigma, Est. Std. 
Dev., “Noise”

Delta/Sigma, 
Signal/Noise Ratio*

JMP 9 Implied, as Signal but can’t 
enter directly

Implied, as Noise but 
can’t enter directly

Signal to Noise 
Ratio

JMP 10 Implied, as Signal but can’t 
enter directly

Implied, as Noise but 
can’t enter directly

Signal to Noise 
Ratio

JMP 11, 12 Indirectly either using 
Anticipated Responses or 
Anticipated Coefficients, or 
directly using Delta under 
Advanced Options)

Anticipated RMSE If using Advanced 
Options, and Power 
Analysis interface, 
then delta/RMSE, 
assuming RMSE = 1

* Note: In Design Evaluation, several default delta/sigma ratios (0.5, 1.0, 2.0) are shown as e.g. 2 Std. Dev.
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Power Is Only ONE Design Metric

Design  Characteristics Design Characteristic
Descriptions and Notes

Design Metrics

Design Name Some names will not match any academic term since they 
are test specific.  

D – Optimal
(GA)

I – Optimal
(GA)

Non-Orthogonal
CCD
(GA)

etc.

Design Size (N) The total amount of data points (N) in the design.  14

Design Cost Cost of running the design. $11d M

# Factors Analyzed Number of factors covered in the design 7

Resolution/Aliasing An indication of how difficult it will be to separate effects 
from one another

Bad
Partial

Aliasing

α Error
The risk of declaring the M4E1 worse than the M4 or ICAD 
when in reality it is not (an incorrect fail.)

?

(1 - α) Decided by 
Requirements

(1 - β) Power The risk of declaring the M4E1 as good or better than the 
M4 or ICAD when in reality it is not (an incorrect fielding.)

?
Decided by 
Test Team

VIF (Average) Variance Inflation Factor.  Measures how much the 
variance of the model is inflated by a particular factor due 
to its lack of orthogonality.VIF (Max)

Leverage (Average) The potential for a design point to influence the fit of the 
model.  Leverage (Max)

FDS (@ 50%) Fraction of the Design Space.  The rank order of the change 
in prediction variance across the design space.  A low flat 
curve is desired.FDS (@ 90%)

Potential Model The prediction model the design is capable of estimating.
ME + 2FI + 
Quadratics
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General Power Procedure – Stage 1

Plan and Start 
Design Build

Determine objective, responses, factors, levels

From objective (screen, characterize, optimize), determine design type and the general model

Y

N

Y

Set α, determine δ, estimate σ, compute δ/σ (SNR)

Binary response? Use Excel to compute binary 
response δ/σ (SNR binary)

A
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General Power Procedure – Stage 2

Set/reset model to general model
Build/revise multi-level design

Compute δ/σ, and choose main 
effects only model (k model df) to 
compute power

JMP 9/10, DX: standard approach

JMP 11: set delta for power
If binary response, use SNRbinary to 
set coefficients

Power > threshold?

Design Complete.  Report power

Compute δ/σ, and set model to main effects only, 
plus a key interaction if error df available
DX, JMP 9/10: use δ/σ (SNR)
JMP 11: set coefficients for conservative power
If binary response, use SNRbinary to set coefficients

2-level design?
Response surface 

design?

Power monitored but not 
primary metricSet/reset model to general model

Build/revise design

N

Y

N

Y

Y

N N

A

Part 2 Part 3
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Power Demonstration

• Using Monte Carlo simulation, we can illustrate the result of 
insufficient power – Monte Carlo can also be used to 
estimate power

• Consider three factors, 2-levels each, 1 replicate design

• For the design for δ /σ = 2, 1 - β = 0.57

• Truth Model  y = 50 + 4.5A - 5B, so effects are A = 9, B = 10

• Error standard deviation σ = 5

Risk Probability Outcome from a DOE
α P(conclude effect | no effect) Effect significant but not 

in truth model
β P(conclude no effect | effect) Effect insignificant but in 

truth model
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Power Concepts Summary

• The two test risks are probabilities associated with incorrect 
conclusions based on a pair of complementary hypotheses 
conjectured prior to test.

• Of the two risks, the α risk is set up front.  Standard α = 0.05. 

• The β risk is usually computed then iterated on by changing N until 
β is sufficiently small. 

• Power is a probability (1- β) and is the complement of the β risk 
associated with test.

• Because of the way we address the two risks, power becomes the 
final risk typically addressed in design construction.
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POWER FOR 2-LEVEL DESIGNS
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Introduction to Power for 2-level Designs

• 2-level Designs and Statistical Models
– Encourage these designs whenever practical
– Designs ultra-efficient
– Variables analyzed the same whether the factors are numeric or 

categorical
– df concept vary simple too – all effects have 1 df
– Model and effect interpretation very simple
– Higher power designs

• Statistical software tend to agree on power
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2-level Designs

Attributes
Single Replicate 
Corners

Center points

Orthogonal

Variance Optimal

Efficient

0
1

k

i i ij i j
i i j

Y x x xβ β β ε
= <

= + + +∑ ∑

Attributes
Aliased terms –
degree depends on 
resolution

Curvature estimate

Independent β
estimates

Design

Model

Assumptions
Randomized

Numeric or 
Categorical

2 level

Assumptions
Errors NID (0, σ2)

Model is adequate

Y well behaved
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2k-p Fractions
Statistical Power for Continuous Response

Power

Power

16 runs

32 runs

Factors

δ/σ = 2

δ/σ = 1

δ/σ = 2

δ/σ = 1
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2-LEVEL DESIGN POWER 
CALCULATIONS
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-1.00 -0.50 0.00 0.50 1.00

8

9

10

11

12

A: A

R
1

One Factor

Factorial Design – Power
23 Full Factorial ∆=2 and σ=1, 2 Reps N=16

  -1.00

  -0.50

  0.00

  0.50

  1.00

-1.00  

-0.50  

0.00  

0.50  

1.00  

8  

9  

10  

11  

12  

  R
1 

 

  A: A    B: B  

∆

The following 6 slides are from “Sizing Mixture (RSM) Designs, Pat Whitcomb, Stat-ease
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Factorial Design – Power
Two Replicates of 23 Full Factorial ∆=2 and σ=1

Power is reported at a 5.0% alpha level to detect the specified signal/noise 
ratio.
Recommended power is at least 80%.

R1
Signal (delta) = 2.00 Noise (sigma) = 1.00 Signal/Noise (delta/sigma) = 2.00

A                    B                    C
95.6 %           95.6 %            95.6 %

Sizing Mixture (RSM) Designs
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Factorial Design – Power
Two Replicates of 23 Full Factorial ∆=2 and σ=1

Sizing Mixture (RSM) Designs

Source Degrees of 
Freedom (df)

Model 3
Error 12
Total 15 + 1 Intercept

Assume a main effects 
model to estimate about the 
right number of significant 
model terms

So, dferror = 12 used to draw 
H1 distribution

All df accounted for in budget
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Two Replicates of 23 Full Factorial
C = (XTX)-1 matrix

( ) ( )
i i i

i 2 2
i ii

t-value  = 
SE c ˆ 0.0625 ˆ

β β β
= =

β σ σ

Sizing Mixture (RSM) Designs

The design determines the standard error of the coefficient:

C

0.0625

0

0

0

0

0

0

0

0

0.0625

0

0

0

0

0

0

0

0

0.0625

0

0

0

0

0

0

0

0

0.0625

0

0

0

0

0

0

0

0

0.0625

0

0

0

0

0

0

0

0

0.0625

0

0

0

0

0

0

0

0

0.0625

0

0

0

0

0

0

0

0

0.0625

























=
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NonCentrality Parameter
Two Replicates of 23 Full Factorial ∆=2 and σ=1

( )( )

i
i

i 2 2
ii ii

2

2noncentrality  = 
c ˆ c ˆ

1

0.0625 1

1 4.0
0.25

∆
β

=
σ σ

=

= =

Sizing Mixture (RSM) Designs
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Factorial Design – Power
Two Replicates of 23 Full Factorial ∆=2 and σ=1

Power = 95.6%

noncentral tα=0.05,df=12 with noncentrality parameter of 4.0

Sizing Mixture (RSM) Designs

4.0
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POWER FOR MULTI-LEVEL 
CATEGORICAL FACTOR 
DESIGNS
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Multi-level Designs

Attributes
Replication

Target Model
Variances

Single Criterion 
Designs

Efficient

Attributes
Some terms 
correlated

Pure error + LOF

Awkward ANOVA 
model

Design

Model

Assumptions
Randomized

Some Categorical

Categorical > 2 level

Computer Generated

Assumptions
Errors NID (0, σ2)

Model is adequate

Y well behaved
0 3311 11 21 21 22 22 33

1121 11 1122 11

2133

21 22 1133 11 33

321 22333 322 3

β β β β

β β β
β

β

εβ

= + +

+ + +

+ +

+ + +
ijk x x x x

x x x x x x
x x x x

y
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Multi-level Categorical Factor Analysis

• Consider a factorial design dominated by categorical factors or containing 
at least one categorical factor requiring more than 2 levels

• Consider a sensor  assessment study considering two factors that may 
impact electronic attack (EA, also known as electronic countermeasures)

Target 
Maneuver

EA 
Technique

1

2

3

None Turn
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Regression Indicator Variable Model

0 21 1 2 2 1 2 1

1, 2,..., ( 1)
1,2,..., ( 1)
1,2,..., ( 1)( 1)

i i j j i jij
m

j
i

k i
j

x x
i a

y j bx
m b

x
a

β β ββ ε+ + +
= −

= + = −
 = − −

∑ ∑ ∑

Grand Mean

Main Effect A 
or X1

Main Effect B 
or X2

Interaction AB 
or X1*X2

Error
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ANOVA Model Contrasts

• As you know the coding of 2-level factors is -1, +1

• This coding is actually a contrast, a method for comparing different 
combinations of factor settings

• Contrasts are not unique, and some are better than others. Contrast 
coefficients must sum to 0

• Software: contrasts different for 2-level vs ≥ 3-level

3-Level 
Factor B

β21 or B[1] 
or X2 1

β22 or B[2] 
or X2 2

1 +1 0
2 0 +1
3 −1 −1

2-Level 
Factor A

β11 or A or X1 

1 −1
2 +1
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Analysis – Signal: Grand Mean or Intercept

β ==

= + + +
=

∑
1

0
ˆ

( 29 42 12 ...30) / 6
29.2

N

i
i

y

N

EA test detection ranges

Target 
Maneuver

EA Tech

1

2

3

None Turn

31, 27

29

y

y

08, 16

12

31, 21

26

40, 44

42

38, 34

36

32, 28

30

11 11 21 21 22 22

1121 1

0

21 221 1122 11

ijk xy x x
x x x x

β β β

β β

β

ε

= + + +

+ + +
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Analysis – 3-Level Main Effect

Target 
Maneuver

EA Tech

1

2

3

None Turn

29

12

26

42

36

30
• Factor has 3 levels and 2 parameters
• Each parameter estimate, 
• The level estimates from the parameters

β= 0
ˆ29.2

35.5

β µ µ µ β

β

β β β

= − = − = − =

= + − = −

= − + = − − = −



6.3
5.2

21 1 1 0

22

23 1 2

ˆ ˆˆ ˆ ˆ 35.5 29.2
ˆ {(12 36) / 2} 29.2

ˆ ˆ ˆ* 1* [ ] [6.3 5.2] 1.1

28

EA 2

β21
ˆ

EA 1 EA 3

β22
ˆ β23

ˆ
24

µ µ β

µ µ β

µ µ β β

= +

= +

= − −

1 21

2 22

3 21 22

ˆˆ ˆ
ˆˆ ˆ
ˆ ˆˆ ˆ

β µ µ= −2
ˆ ˆ ˆi i

Last level found using all coefficients

* not in the model!
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Design-Expert® Software
Factor Coding: Actual
Untitled

Design points above predicted value
Design points below predicted value

X1 = A: Target Maneuver
X2 = B: EA Technique

1  

2  

3  

  None

  Turn

0  

10  

20  

30  

40  

50  

  U
nt

itl
ed

  

  A: Target Maneuver    B: EA Technique  

Statistical Model

Response Plot

General Model

Note:  All the parameter estimation complexity 
here is due to a categorical model – spikes in 
the battlespace.   With continuous X variables 
we have first and second order slopes.  Not 
required – preferred…

β

β

β

β

β

β

=

=

=

= −

= −

=

0

11

21

22

1121

1122

ˆ 29.2
ˆ 6.8
ˆ 6.3
ˆ 5.2
ˆ 0.3
ˆ 5.2

11 11 21 21 22 22

1121 1

0

21 221 1122 11

ijk xy x x
x x x x

β β β

β β

β

ε

= + + +

+ + +Coefficient Estimates
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MULTI-LEVEL CATEGORICAL 
POWER
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Categorical to Numeric Factors

• Urge the planning team to consider numeric instead of 
categorical factors

Factor Categorical 
Levels

Numeric 
Factor

Numeric
Levels

Weapon GBU-10, GBU -
16, GBU-12 Weapon Weight 500, 1000, 2000

Delivery Loft, Level, Dive Release Angle +10, 0, -30 deg

Location Eglin, Nellis Visibility 5, 9 nm

Target Type Car, Tractor 
Trailer Target Size 60, 568 sq ft

Target Motion Stationary, 
Moving Target Speed 0, 30 mph

Time of Day Day, Dusk, Night Ambient Light 100, 500, 800 
lumens

Range Edge of LAR, 
Center of LAR Range 5, 10 nm
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Issue with Multi-level Categorical Factors

• Information is lost as the number of levels (q) 
increases

Factor Levels
Obs per 
level 
(N=20)

Obs per 
level 
(N=40)

Obs per 
level 
(N=60)

A 2 10 20 30
B 4 5 10 15
C 5 4 8 12
D 10 2 4 6
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Power vs. Number of Levels

• As the number of levels increases, power falls
• Less information per level for the same number of runs

1 factor designs, N = 16 and δ/σ=2

JMP 11/12 Effect

JMP 11/12 Parameter

DX 8, 9, 10
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Power Calculations

• Similar to the 2-level case, in the more general multi-level 
categorical case, power is measured as an area under a 
non-central F-distribution
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How Power is Calculated

• F-distribution based on a ratio of variances; two F-
distributions here one for the null (no effect), other for the 
alternative.

• F-distribution for the null is central F, one for the alternative 
is non-central with parameter λ, which offsets the F

• The larger the non-centrality parameter, the more the 
alternative is offset, the larger the area to the right of the 
critical value = power probability

• The non-centrality parameter is used to define the alternative 
F, so that the area under this alternative distribution to the 
right of the critical value (based on a area to the right of that 
value under the null hypothesis F) is the power 
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Power Calculations - Equation

• Power for the 𝑖𝑖th effect (𝑃𝑃𝑖𝑖) is 𝑃𝑃𝑖𝑖 = 1 − �𝐹𝐹 𝐹́𝐹𝑖𝑖 ,𝑔𝑔𝑖𝑖 ,𝑁𝑁 − 𝑝𝑝, 𝜆𝜆𝑖𝑖

• Non-centrality parameter: 𝜆𝜆 = 𝑳𝑳𝑳𝑳 𝑇𝑇 𝑳𝑳 𝑿𝑿𝑇𝑇𝑿𝑿 −1𝑳𝑳𝑇𝑇 −1𝑳𝑳𝑳𝑳
– where 𝑳𝑳 is a matrix used to isolate the subset of coefficients 

under test 
– 𝒃𝒃 is the coefficient vector of size 𝑝𝑝 𝑥𝑥 1
– 𝑿𝑿 is the design matrix of size 𝑁𝑁 𝑥𝑥 𝑝𝑝, 𝑁𝑁 is the number of runs, 𝑝𝑝 is 

the number of parameters in the model
– 𝑳𝑳 and 𝒃𝒃 are used to generate the effect size specified by the 

anticipated coefficients

• 𝑳𝑳 𝑿𝑿𝑇𝑇𝑿𝑿 −1𝑳𝑳𝑇𝑇contains the variances of the effect estimates. This 
is important because the design orthogonality affects power

• So multicollinearity adversely affects power, such that 𝜆𝜆 ≅ 0 
even if the effect size is truly large, giving power ≅ 0
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Power Example

• A 5-level, 1-factor design with 3 replicates, or 15 runs

Level JMP Parameter Coefficient 
Estimate

1 X1 1 1
2 X1 2 1
3 X1 3 -1.5
4 X1 4 1
5 -1.5*

• The non-centrality parameter 𝜆𝜆 = 𝑳𝑳𝑳𝑳 𝑇𝑇 𝑳𝑳 𝑿𝑿𝑇𝑇𝑿𝑿 −1𝑳𝑳𝑇𝑇 −1𝑳𝑳𝑳𝑳 = 22.5

– 𝑳𝑳 =

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

, 𝒃𝒃 = 1 1 1 −1.5 1 𝑻𝑻

– critical F value is calculated as 𝐹́𝐹 = 𝐹𝐹−1 1 − 𝛼𝛼, 𝑞𝑞 − 1,𝑛𝑛 − 𝑝𝑝 =
𝐹𝐹−1 1 − 0.05, 4, 15 − 5 = 3.48

– Power is then computed as 𝑃𝑃 = 1 − �𝐹𝐹 𝐹́𝐹, 𝑞𝑞 − 1,𝑛𝑛 − 𝑝𝑝, 𝜆𝜆 = 1 −
�𝐹𝐹 3.48, 4, 15 − 5, 22.5 = 𝟎𝟎.𝟖𝟖𝟖𝟖
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Multi-level Categorical Example

• Example: Integrated Defense 
Electronic Counter Measure (IDECM)

– on board jammer system and an
ALE-55 towed decoy

• Factors

• Responses: Miss Distance, Miss/Hit

A: Aircraft Type Countermeasure
(Maneuver)

Threat

F/A-18 E/F Dry AA1

F-15E Wet (none) AA2

B-1B Wet (M1) SA1

Wet (M2) SA2

SA3

SA4
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Step-by-step Power Analysis

• We will perform step-by-step Power Analysis using
– Design Expert
– JMP 12

• Stages of Power Analysis
– Power Parameter Estimates
– Build Initial Design
– Power Assessment
– Design Modification and Re-assessment
– Reporting Power

• Also learn some capabilities of the software
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Power Parameters

Parameter Description IDECM Example

k: factors
Number of factors in the 

experiment
3; 31 x 41 x 61

dferror: model error
Amount of data reserved for 

estimating system noise
2 PE df

Desired Model: ME + 2FI

α: alpha
Probability (declaring factor 

matters when it doesn’t)
0.05

δ: delta
Size of response change 
expert wants to detect

20.0 ft

σ: sigma
System noise – run-to-run 
variability or repeatability

13.33 ft

1-β: power
Probability of declaring a 

factor matters when it does solve

N: test size 31 initially
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Design Expert

• Initial Design Build – Optimal Factorial
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Specify Design Parameters

• Customize the Design – Intended Model and Runs



4/18/2016-54

Power Parameters

• Enter prescribed delta (δ) and estimated sigma (σ)

• Specify main effects model - default
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Power Report

• Power reported per main effect

• Recall each factor has different number of levels (q)
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Initial Design

• Design Runs
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Modify Design for Increased Power

• Based on the 31 run design, consider 2 alternatives: 46, 62 run

• For 46 run, choose ME + 2FI model, 2 LoF, 2 replicate runs

• For 62 run, choose ME + 2FI model, 18 LoF, 2 replicate runs

ME + 2FI model

Improved Power!
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Design Alternative Comparison

• Power is not the only metric, but is important

• Considering test objective, B (dry/wet) is the primary factor of 
interest, along with interaction BC (ECM success robust to threats)

Metric Design 1 Design 2 Design 3
Model
Supported

ME + some 
2FI

ME + 2FI ME + 2FI

LoF df n/a 2 18
PE df 2 2 2
Std error:    B

BC
0.34
2.80

0.27
0.73

0.23
0.54

Power:   3-lvl
4-lvl
6-lvl

78
56
30

93
80
47

99
93
67

Runs 31 46 62
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JMP 12

• Initial Design Build – Custom Design
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JMP 12 Design Creation

• Customize the Design – Intended Model and Runs
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JMP 12 Default Power

• Set model for power • Default power
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Default JMP 11/12 Power and Another Option

• Clearly the power estimates differ depending on your choice

• JMP 11 Conservative Power agrees with other software

1 factor design q = 8, δ/σ=2
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JMP 11 Conservative Power

• Set Delta for Power
• Edit Anticipated Coefficients

Report Effect Power

2 minimum

1 minimum

2 minimum
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JMP 11 Conservative Power – Process Flow

Begin JMP 
Power

Insert factors and levels
Add 2-factor interactions 

to model

Number of 
runs (N) 

plentiful?

Set N > 2FI model + 5

Set N such that 
ME model < N < 2FI model

Make Design

Model: remove 
2FI terms

Apply Changes to 
Anticipated Coefficients

Study default parameter 
power for each factor

Factor have only 
one parameter 

with min power?

Set that Coefficient = 1, and 0 
elsewhere

With 2 equal 
min power 

parameters, set 
coefficients as 
+1, -1, and 0 
elsewhere

C

B

A

B

A
B’

Y

N

Y

N

JMP 11

JMP 10

JMP 11
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• Continued

Apply Changes to 
Anticipated 
Coefficients

Report Effect Power 
for each factor

C

B’
Edit df for error to

N – ppower

Re-open Design 
Evaluation, Power

Report Effect Power 
for each factor

JMP 10

JMP 11 Conservative Power – Process Flow
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AFOTEC Script for JMP 11/12

• Conservative Power Script for JMP
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Power Summary - Multi-level Categorical

• Statistical power for categorical factors with > 2 levels 
requires an additional decision or assumption be made 
regarding the nature of the factor effect.

• Because each of the factor levels can be thought to stand on 
their own, a common modeling approach used is indicator 
variables.

• For a factor of this type, one must decide how many levels 
are active, assuming that the effect is real.

• Standard approaches historically (and currently in JMP 9/10 
and DX) for active levels is to assume the most conservative 
scenario with only a pair of levels different by d.   

• Conservative power is reported by default in JMP 9/10 and 
DX, whereas JMP 11/12 allows the user to specify the factor 
level effects.
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Summary - Multi-level Categorical (cont’d)

• JMP 11/12 power analysis is purposefully adapted to provide 
the user flexibility in tailoring effect power for categorical 
factors with more than 2 levels.

• JMP 11/12 default anticipated coefficients make all factor 
levels active (with coefficient δ /2), except the last level for 
factors with odd numbered levels.

• JMP 11/12 anticipated coefficients can be structured fairly 
easily for most conservative effect power.

• It is highly recommended, that for consistent reporting 
across software platforms, that users of JMP 11/12 configure 
the anticipated coefficients for most conservative power.
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POWER FOR BINARY 
RESPONSES
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Converting Binary Response to SNR

• Binary response are 0, 1 outcomes, like pass/fail or detect/no-detect

• Use a binomial underlying distribution as the number of detects of 
n, so a proportion p is used

• Binomial power requires we specify nominal p, p1, and δ is how big 
of a change we wish to detect, p2

• Three methods, logistic (logit) shown here

• Model

• Delta in transformed scale

• Sigma

𝑦𝑦∗ = ln
𝜋𝜋

1 − 𝜋𝜋
= 𝐗𝐗𝐗𝐗

𝜎𝜎 = 𝑛𝑛𝑝̅𝑝 1 − 𝑝̅𝑝 = 𝑝̅𝑝 1 − 𝑝̅𝑝

𝛿𝛿 = 𝑙𝑙𝑙𝑙
𝑝𝑝1

1 − 𝑝𝑝1
− 𝑙𝑙𝑙𝑙

𝑝𝑝2
1 − 𝑝𝑝2
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SNR Method Comparison

• Results similar, but Normal or Arcsin more conservative
p D SNR (arcsin) SNR (logit) SNR (normal)

0.9 0.100 0.3444 0.3630 0.3333
0.85 0.100 0.2838 0.2896 0.2801
0.8 0.100 0.2518 0.2544 0.2500

0.75 0.100 0.2320 0.2334 0.2309
0.7 0.100 0.2189 0.2198 0.2182

0.65 0.100 0.2102 0.2107 0.2097
0.6 0.100 0.2045 0.2050 0.2041

0.55 0.100 0.2014 0.2017 0.2010
0.5 0.100 0.2003 0.2007 0.2000

0.45 0.100 0.2014 0.2017 0.2010
0.4 0.100 0.2045 0.2050 0.2041

0.35 0.100 0.2102 0.2107 0.2097
0.3 0.100 0.2189 0.2198 0.2182

0.25 0.100 0.2320 0.2334 0.2309
0.2 0.100 0.2518 0.2544 0.2500

0.15 0.100 0.2838 0.2896 0.2801
0.1 0.100 0.3444 0.3630 0.3333

• Note the difference in magnitude compared to SNR of 1 or 2
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Binary Response Power

• If a response has two possible outcomes (e.g. miss/hit) it is a 
binary response and must be addressed separately to find 
the δ/σ or SNR

• The process involves finding SNR using Excel

From objective (screen, characterize, optimize), determine design type and the general model

N

Y

Set α, determine δ, estimate σ, compute δ/σ (SNR)

Binary response? Use Excel to compute binary 
response δ/σ (SNR binary)
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Binary Response Calculation

• Assume a nominal success probability = 0.90 or 90% and a 
desire to detect a difference of 0.10 or 10%, and use 
confidence and power thresholds = 0.90 or 90%
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Design Build for Binary Response

• Iterate on the design size (using number of complete 
replicates) until desired power achieved

Reps N (hit/miss) Aircraft ECM Threat
1 72 16 11 8
3 216 41 27 15
5 360 63 44 24
7 504 78 59 34

10 720 91 76 47
15 1080 99 92 67

Power (%)

Runs for equivalent power if miss distance response

N (miss dist)

46
62
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Power Analysis Summary

• Power is only one of the design goodness metrics, albeit important in 
characterization

• Both risks of wrong conclusions are handled directly, first set α then 
iterate on β

• Both risks are prior probabilities – assessments made before the test 
is conducted.  After the test, it is difficult to retrospectively determine 
whether incorrect conclusions have been drawn

• Power is computed using area under H1 using a non-central t- or F-
reference distribution
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Power Summary – cont’d

• Power depends on N, α risk, δ, σ, k, dferror

• Higher power values are desired, and while designs can be 
under-powered, right-sized or over-powered, we usually strive 
to right-size a test, left alone would be under-powered

• Continuous responses are vastly more informative than 
categorical responses, especially binary responses

• Power is only one of many design metrics, but one of the 
more important indicators of test design sufficiency

• Because many parameters need to be estimated in a power 
analysis, reported precision is usually at the decile level (e.g. 
90% vs. 80%)

• Suggested Reference:  Freeman, L. J., Johnson, T. H., and 
Simpson, J. R., “Power Analysis Tutorial for Experimental 
Design Software,” IDA Technical Document D-5205, Nov 2014
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