Statistical Methods for Combining Information: Stryker Family of Vehicles Reliability Case Study

Rebecca Dickinson, Laura Freeman, Alyson Wilson, Bruce Simpson

April 13, 2016
Outline

• **Motivation for Using All Information**

• **Background Information**
 – The Stryker Family of Vehicles (FoV)
 – Operational Testing (OT) and Developmental Testing (DT)

• **Methods**
 – The current DoD reliability analysis using OT data only
 – Frequentist and Bayesian models for combining DT and OT data

• **Results / Conclusions**
 – Tighter confidence intervals and better reliability estimates
 – Benefits are greatest for vehicles with only 0-2 reported failures in OT

• **Continuing Work**
 – Joint Light Tactical Vehicle (JLTV)
Motivation For Using All Information

• **What is the Current Practice?**
 – DOT&E in most cases uses only operational test data for reliability analyses
 » Stryker Beyond Low Rate Initial Production (BLRIP) Report
 » Benefit: ensures data is representative of operational test conditions
 » Drawback: discards expensive information from previous testing that provides information on system reliability

• **National Research Council Studies**
 – *Statistics, Testing and Defense Acquisition, 1998*
 » Emphasizes that all relevant information be examined for possible use in both the design and evaluation of operational tests …
 » State-of-the-art statistical methods for combining information should be used, when appropriate, to make tests and their associated evaluations as cost-efficient as possible

 – *Improved Operational Testing and Evaluation, 2004*
 » Focuses specifically on methods of combining information for the Stryker family of vehicles
The Stryker Family of Vehicles

Infantry Carrier Vehicle (ICV)

• Antitank Guided Missile Vehicle (ATGMV)
• Reconnaissance Vehicle (RV)
• Fire Support Vehicle (FSV)
• Commander’s Vehicle (CV)
• Medical Evacuation Vehicle (MEV)
• NBC Reconnaissance Vehicle (NBCRV)*

Engineer Squad Vehicle (ESV)

Mortar Carrier Vehicle (MCV)

* The NBC RV was excluded from the study because of its different acquisition timeline.
There are four essential functions
- Move
- Shoot
- Command and Control, Communications, Computers, Intelligence, Surveillance and Reconnaissance (C4ISR)
- Survive

A failure is an event in which the vehicle or a subsystem of the vehicle does not perform as it should

The Army failure definition scoring criteria (FDSC) categorizes the severity of failures
- System Abort Failure
 » The vehicle is unable to complete the mission
- Essential Function Failure
- Non-essential Function Failure

Army Reliability requirement:
- Mean Miles Between System Aborts (MMBSA) = 1,000 miles
Developmental and Operational Testing

Developmental Testing
- **Primary Purpose:** Verification
- **Controlled Conditions**
- **Experienced Technicians operating the vehicles.**
 - They have done this for years and they know the courses really well
- **Courses**
 - Use courses that are designed to replicate the primary roads, secondary roads, and trail like conditions

Operational Testing
- **Primary Purpose:** Validation
- **Operational Conditions**
- **An army unit comes in to do this testing**
- **Courses**
 - OT data set comes from testing that was done at Fort Knox
 - Most of the testing was done using secondary road type conditions
- **Limited amount of Time**
 - Due to operator availability and range availability
 - Operational testing may be too short to discover many reliability deficiencies

DT and OT are Different!
- Environments
- Operators
- Test Durations
The Stryker FoV Data Set

Developmental Testing

- DT Estimate was 2197 MMBSA

Operational Testing

- OT Estimate was 8494 MMBSA, because of limited miles on each vehicle and only one failure

Very limited information available for the MEV in both DT and OT
A Traditional Analysis - Using OT Data Only

- The table below is similar to that which was included in the report written for DOT&E when considering this data set.

- These results serve as the reference when comparing the new methods that look at combining information across the developmental and operational test phases.

Stryker Reliability by Variant using Operational Test Data

<table>
<thead>
<tr>
<th>Vehicle Variant</th>
<th>Total Miles Driven</th>
<th>System Aborts</th>
<th>MMBSA</th>
<th>MMBSA 95% LCL</th>
<th>MMBSA 95% UCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATGMV</td>
<td>10334</td>
<td>12</td>
<td>861</td>
<td>492.9971</td>
<td>1666.62</td>
</tr>
<tr>
<td>CV</td>
<td>8494</td>
<td>1</td>
<td>8494</td>
<td>1524.505</td>
<td>335495.1</td>
</tr>
<tr>
<td>ESV</td>
<td>3771</td>
<td>13</td>
<td>290</td>
<td>169.6326</td>
<td>544.7885</td>
</tr>
<tr>
<td>FSV</td>
<td>2306</td>
<td>1</td>
<td>2306</td>
<td>413.8815</td>
<td>91082.13</td>
</tr>
<tr>
<td>ICV</td>
<td>29982</td>
<td>35</td>
<td>857</td>
<td>615.9437</td>
<td>1229.84</td>
</tr>
<tr>
<td>MCV</td>
<td>4521</td>
<td>4</td>
<td>1130</td>
<td>441.4354</td>
<td>4148.219</td>
</tr>
<tr>
<td>MEV</td>
<td>1967</td>
<td>0</td>
<td>-</td>
<td>656.6007</td>
<td>-</td>
</tr>
<tr>
<td>RV</td>
<td>5374</td>
<td>2</td>
<td>2687</td>
<td>743.8384</td>
<td>22187.42</td>
</tr>
<tr>
<td>Total</td>
<td>66749</td>
<td>68</td>
<td>982</td>
<td>774.2946</td>
<td>1264.074</td>
</tr>
</tbody>
</table>

Mean Miles Before a System Abort (MMBSA) = \(\frac{\text{Total Miles Driven}}{\# \text{System Aborts}} \)
Failure-Time Regression Models

We can use the exponential distribution to model the miles before a system abort

\[t_{ijk} \sim \text{exponential}(\lambda_{ij}) \]

\(i = 1,2 \) (test phase)
\(j = 1,2,...,7 \) (vehicle variant)
\(k = 1,2,...,n_{ij} \) (miles)

We can express rate parameter, \(\lambda \), as a function of explanatory variables to find estimates for the MMBSA

Model 1: Average over vehicle type (assumes vehicle type does not matter)

\[\lambda_i = \gamma_0 + \gamma_1 \text{Test Phase} \]

Model 2: Average over test phase (assumes vehicle type does not matter)

\[\lambda_j = \gamma_0 + \gamma_1 \text{ATGMV} + ... + \gamma_6 \text{MCV} \]

Yes, we combine information – but we completely ignore the test phase!

Model 3: Look at differences based on Test Phase & Vehicle Type

\[\lambda_{ij} = \gamma_0 + \gamma_1 \text{Test Phase} + \gamma_2 \text{ATGMV} + ... + \gamma_7 \text{MCV} \]
Exponential Regression Results

MMBSA Estimates from Model 3 for DT and OT
(95% Confidence Intervals)

This model estimates a 37% degradation in the MMBSA moving from DT To OT
Comparing Confidence Intervals

Operational Test MMBSA Estimates
(95% Confidence Intervals)

- Traditional Analysis
- Exponential Regression

Tighter confidence intervals & better estimates for MMBSA
A Bayesian Analysis: Incorporating More Information

- Bayesian model is specified by:
 - Parametric statistical model (just as before) and a prior distribution

- Informative Priors
 - Based on subject matter expertise

- A Hierarchical Model
 - Assumes the parameters are related, the data tells us how closely related
 - Allow us to estimate the MEV reliability based on other data

\[
t_{DT} \sim \exp(\lambda_i) \quad t_{OT} \sim \exp(\lambda_i/\eta)
\]

\[
i = 1, 2, \ldots, 8 \text{ (vehicle variants including the MEV)}
\]

\[
\lambda_i \sim \text{gamma}(a, b) \\
\eta \sim \text{beta}(1, 1) \\
a \sim \text{gamma}(0.001, 0.001) \\
b \sim \text{gamma}(0.001, 0.001)
\]
Comparing the Results of the Three Analyses

Operational Test MMBSA Estimates
(95% Confidence Intervals)

- Traditional Analysis
- Exponential Regression
- Bayesian Analysis

MMBSA

ATGMV CV ESV FSV ICV MCV RV MEV
Stryker Case Study Conclusions

• We can use basic statistical models to incorporate information from multiple testing phases into OT assessments

• The results are:
 – Tighter confidence intervals (an average of a **60%** reduction in the interval width)
 – Better estimates for MMBSA
 » Commander’s Vehicle estimates were optimistically high before incorporating information from DT
 – Benefits are greatest for vehicles with only 0-2 reported failures in OT

• Bayesian techniques provide:
 – Ability to incorporate more information than is contained in the data
 » Subject matter expertise
 » Historical information not directly contained in data

• Analysis requires more statistical knowledge than the Traditional OT analyses
 – Information gained is worth the effort
Continuing Work: The JLTV Family of Vehicles

• Family of Vehicles designed to replace the Legacy Humvee Fleet.

Mission: System should provide ground mobility that is deployable worldwide and capable of operating across the range of military roles (i.e. combat, sustainment, police action, peace-keeping, and security patrol), in all weather and terrain conditions.

Analysis based on notional data
Continuing Work: Leveraging Additional Failure Information

• Three phases of developmental testing (DT1, DT2, DT3)
 – For every vehicle, each failure encountered during testing was recorded and attributed to a specific failure mode (brakes, steering,…).
 » There are 26 observed failure modes across the three phases of testing.

• Incorporating all failures in the analysis (i.e. System Aborts and Essential Function Failures)
 – Across all eight vehicles tested and the three test phases, there are 91 SAs and 1,321 EFFs.
 – EFFs include a large portion of the failure modes that drive maintenance costs and reduce system availability

\[
t_{DT1} \sim \exp(\lambda_{ij}), \quad t_{DT2} \sim \exp(\lambda_{ij}\rho_{1j}), \quad t_{DT3} \sim \exp(\lambda_{ij}\rho_{1j}\rho_{2j})
\]

\[
i = 1,2,\ldots,8 \text{ (vehicles)} \quad j = 1,2,\ldots,26 \text{ (failure modes)}
\]

\[
\lambda_{ij} \sim \text{gamma}(a, b)
\]

\[
\rho_{1} \sim \text{gamma}(c, d) \quad \rho_{2} \sim \text{gamma}(c, d)
\]

\[
a \sim \text{gamma}(0.001, 0.001) \quad b \sim \text{gamma}(0.001, 0.001)
\]

\[
c \sim \text{gamma}(0.001, 0.001) \quad d \sim \text{gamma}(0.001, 0.001)
\]

*Analysis based on notional data
Continuing Work: A Few Results

Operational Test MMBF Estimate
(95% Credible Intervals)

Mean Miles Between Failure

CCWC GP2 HGC UV2

*Analysis based on notional data
Objective

– Scope an appropriately sized Operational Test (OT) using the demonstrated reliability and growth of the FoV in the three DT phases.
– If our reliability-quantity of interest is mean miles between failures (MMBF) then
 » How many miles do we need to drive?
 » And how many failures are allowable for a successful test?

Demonstration Test (Operational Characteristic Curve)

– A classical hypothesis test, which uses only data from the test to assess whether reliability requirements are met - often requires an exorbitant amount of testing!

Assurance Test

– Leverages information from various sources to reduce the amount of testing required to meet a requirement.
References

