Aerospace Measurement and Experimental System Development Characterization

Ray D. Rhew, Peter A. Parker
National Aeronautics and Space Administration
Langley Research Center

April 13, 2016
Knowledge Exchange Workshop
Crystal City, Virginia
Overview

• Aerospace measurement and experimental system development characterization for research and development presents opportunities for
 – innovative applications of existing statistical methods
 – impetus for statistical research

Highlighted Methods
• Inverse Regression
• Response Surface Methodology for Characterization
• Iterative, Inverse Prediction and Prediction Intervals
• Process optimization
Aerospace R&D Characterization vs. Classical Calibration

<table>
<thead>
<tr>
<th>Aerospace R&D</th>
<th>Calibration</th>
</tr>
</thead>
<tbody>
<tr>
<td>One-of-a-kind, application specific measurement system</td>
<td>Common, off-the-shelf instrument</td>
</tr>
<tr>
<td>Tested in a unique environmental simulation facility, used in flight or flight-like conditions</td>
<td>Tested in laboratory controlled conditions, used in secondary controlled laboratory</td>
</tr>
<tr>
<td>Known, traceable standards are often not available</td>
<td>Physical, NIST traceable standards</td>
</tr>
<tr>
<td>Multiple-sensing device</td>
<td>Element, measuring one property</td>
</tr>
<tr>
<td>Multi-dimensional response surface</td>
<td>Simple linear regression</td>
</tr>
<tr>
<td>Inverse regression broadly used by engineers due to simplicity</td>
<td>Classical regression, inverse solution</td>
</tr>
</tbody>
</table>
Simple Linear, Single Measurement
1 Factor, 1 Response, 1st-Order

- Airborne Subscale Transport Aircraft Research (AirSTAR)
- Dynamically scaled, commercial aircraft to
 - study control-upset conditions
 - improve pilot training

- Pressure measurement system for altitude and airspeed on wing tips of vehicle
- System testing performed in laboratory, used in open-air flight

\[V = b_0 + b_1P + e \]
Classical and Inverse Regression
1 Factor, 1 Response, 1st-Order

Classical Regression Model

\[y = \beta_0 + \beta_1 x + e \]

Inverse Application

\[\hat{x} = \frac{y - \hat{\beta}_0}{\hat{\beta}_1} \]

Inverse Regression Model

\[x = \beta_0 + \beta_1 y + e \]

- Reversing the role of the \(x \) and \(y \) is commonly done in practice
- Both approaches lead to biased predictions, classical is slightly better
- Prediction intervals have essentially correct coverage probabilities
- Inverse interval width is slightly smaller and less variable

Multi-dimensional Response Surface
3 Factors, 1 Response, 2nd-Order

- Pressure measurement system is sensitive to temperature
- Signal (V) as a function of pressure and two temperatures
- Second-order Response Surface

\[V = f(P, T_1, T_2) + e \]

- Reduce uncertainty in pre-flight landing ellipse estimation through measurements during Mars entry
- Pressure measurements during extreme atmospheric entry temperature conditions

Response Surface for Characterization
3 Factors, 1 Response, 2nd-Order

- Response Surface Methods for a non-traditional application
 - Characterization, not optimization
 - Efficiency in achieving absolute predication variance, not per point
 - Mathematical model delivered, not optimized factor settings
 - Confirmation points to test the model over the entire design space, not sensitivity to the location of optimum performance

- Inverse Prediction of Second-Order Response Surface
 - Iterative procedure employed, (direct, quadratic formula issues)
 \[\hat{P} = \hat{f}(V, T_1, T_2) = f_{\hat{b}}, V, T_1, T_2, \quad \frac{11}{\hat{P}^2}, \quad \frac{12}{\hat{P}xT_1}, \quad \div \]
 - Approximate inverse prediction intervals from the Delta Method
 \[\left(\hat{P}(\hat{x}) \right)^T \left(X' \hat{X} \right)^{-1} \left(\hat{P}(\hat{x}) \right) \]

Multi-input, Multi-output, Higher Order
6 Factors, 6 Responses, 2nd and higher

- Multi-component force transducers used in aerospace research and development
- Sensing 3 forces and 3 moments, simultaneously
- No system calibration standards

Modeling

\[
y_i = f_i ([x_1 \cdots x_6]) + \epsilon_i
\]

\[
\hat{x}_1 \cdots \hat{x}_6 = \hat{F} ([y_1 \cdots y_6])
\]

Multivariable Response Surface

6 Factors, 6 Responses, 2nd and higher

- Internationally, some use inverse regression
 - simplified, direct solution – properties are not well-defined
- Multivariate version of Delta Method, inverse prediction intervals

\[
\begin{bmatrix}
\text{var}(\hat{x}_1) & \cdots & \text{var}(\hat{x}_6)
\end{bmatrix}^T = \begin{bmatrix}
\text{var}(\hat{y}_1(\hat{x})) & \cdots & \text{var}(\hat{y}_6(\hat{x}))
\end{bmatrix}^T \frac{\hat{F}(\hat{x})}{x}
\]

Response surfaces of cubic or higher are feasible

- Cubic designs based on combining two second-order designs
- Design, modeling, inverse prediction extended to higher order

Experimental System Development

Example: Rapid Test of Aeronautics Concepts (RapidTAC)
- Process optimization with unique experiments
- Quantification of research value and complexity
Concluding Remarks

• Aerospace measurement and experimental system development characterization for research and development
 – similar to classical calibration in concept
 – requires adaption and extension of existing statistical methods

• Methods highlighted
 – Inverse Regression
 – RSM for Characterization
 – Inverse Prediction and Intervals
 – Process optimization