
A gaseous mixture of oxygen and carbon dioxide was passed through substance X and 1 substance Y. Dry oxygen was obtained at the end of the setup.

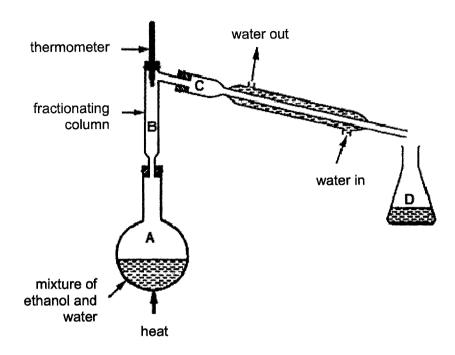
Which of the following shows the correct identities of substances X and Y?

	substance X	substance Y
A	water	concentrated sulfuric acid
В	limewater	aqueous sodium hydroxide
С	water	aqueous sodium hydroxide
D	limewater	concentrated sulfuric acid

2 The table shows some information about the solubilities of three solids.

solid	solubility in water	solubility in ethanol
K	soluble	insoluble
L	insoluble	soluble
М	insoluble	insoluble

The following steps could be carried out to obtain pure K from a mixture K, L and M.

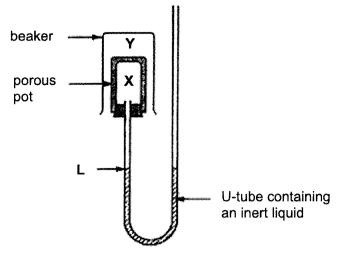

- filter
- 2 evaporate filtrate to dryness
- 3 add water
- add ethanol

What is the correct order of steps to be carried out?

- 4, 1, 2 Α
- В 3, 1, 2
- C 3, 2, 4, 1
- D 4, 1, 3, 2

A mixture containing equal volumes of two miscible liquids is placed in the apparatus shown in 3 the diagram and heated until the thermometer first shows a steady reading.

At which point, A, B, C or D will there be the highest proportion of the liquid with the higher boiling point?


4 When pink cobalt(II) chloride crystals are heated, they form steam and a blue solid.

When water is added to the blue solid, it turns pink and becomes hot.

Which terms describe the pink cobalt(II) chloride crystals and the reactions?

	pink cobalt(II) chloride	reactions
A	anhydrous	reversible
В	anhydrous	irreversible
С	hydrated	irreversible
D	hydrated	reversible

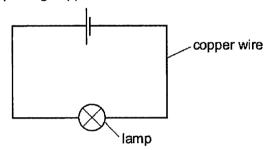
The apparatus consists of a porous pot containing a gas X which is then surrounded by a gas Y 5 in a beaker.

Which of the following pairs of gases would cause an upward movement of the liquid in the U-tube at the point labelled L?

	gas X	gas Y
Α	H ₂	NH ₃
В	CO ₂	N ₂
С	O ₂	H ₂
D	NH₃	Ne

The atmosphere of Venus contains mainly oxygen, argon and nitrogen. The melting and boiling 6 points of these gases are shown in the table.

gas	melting point / °C	boiling point/ ºC
oxygen	-219	-183
argon	-189	-186
nitrogen	-210	-196


What temperature should the sample of air be in order to obtain two of the gases as liquids?

- Α -180 °C
- -184 °C
- C -190 °C
- -198 °C

Which row gives a possible correct number of neutrons and electrons in an ion of chlorine-35? 7

	neutrons	electrons
Α	18	17
В	17	17
С	18	18
D	17	18

8 An electrical circuit is set up using copper wire.

Which process takes place in the copper wire?

- Α Cations stay in position and electrons move to the positive terminal of the battery.
- В Cations and electrons move to the negative terminal of the battery.
- C Anions move to the positive terminal and cations move to the negative terminal of the battery.
- Cations stay in position and anions move to the positive terminal of the battery. D
- 9 How many covalent bonds are there in the molecule with the formula CH₂CHCH₃?
 - 7 Α
 - В 8
 - C 9
 - D 10

- Which of the following agueous solutions contains the highest number of ions? 10
 - Α 1 dm3 of 0.1 mol/dm3 Al(NO3)3
 - В 1 dm3 of 0.2 mol/dm3 H2SO4
 - C 1 dm 3 of 0.3 mol/dm 3 MgC l_2
 - 1 dm3 of 0.4 mol/dm3 HNO3 D
- 11 The formula of an oxide of element Y is Y2O. 9.4 g of Y2O contains 7.8 g of Y.

How many moles of Y does 7.8 g of the element contain?

 $\frac{1.6}{16}$ x 2

 $\frac{1.6}{16} \times \frac{1}{2}$

 $\frac{9.4}{16} \times 2$

- $\frac{9.4}{16} \times \frac{1}{2}$
- 12 Hydrogen reacts with oxygen according to the following equation.

$$2H_2(g) + O_2(g) \rightarrow 2H_2O(l)$$

What is the total volume of gas left in the mixture when 30 cm3 of hydrogen reacts with 30 cm3 of oxygen? (All volumes measured at room temperature and pressure)

- Α 15 cm³
- В 30 cm³
- C 45 cm³
- D 60 cm³
- 13 Tin is extracted from its ore, SnO₂, by reducing it with coal in a blast furnace.

$$SnO_2 + 2C \rightarrow Sn + 2CO$$

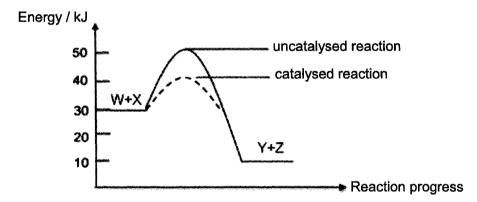
What is the percentage purity of the tin ore if 900 g of SnO₂ produces 102 g of tin?

 $\frac{119}{102} \times \frac{900}{151} \times 100\%$

 $\frac{119}{102}$ X $\frac{900}{151}$ x 100%

 $\frac{102}{119} \times \frac{151}{900} \times 100\%$

 $\frac{102}{119} \times \frac{900}{151} \times 100\%$


50.0 cm³ of 0.10 mol/dm³ of silver nitrate, AgNO₃, is added to 150.0 cm³ of 0.05 mol/dm³ sodium 14 iodide, Nal, in a beaker. After the reaction, solid silver iodide settles to the bottom of the beaker.

What are the ions are present in solution?

- Α sodium ions and iodide ions
- В sodium ions and nitrate ions
- C sodium ions, nitrate ions and iodide ions
- D sodium ions, silver ions and nitrate ions
- A reversible reaction is represented by the equation shown. 15

$$W + X \leftrightarrow Y + Z$$

The energy profiles for the reversible reaction under catalysed and uncatalysed conditions are shown.

What is the activation energy of the reverse catalysed reaction?

- Α -40 kJ
- В -10 kJ
- +30 kJ
- D +40 kJ

16 The table shows the chemical formula of some carbon-containing compounds.

chemical name	chemical formula
sodium carbide	Na₂C₂
carbon dioxide	CO ₂
iron(II) carbide	Fe ₂ C
carbonate ion	CO ₃ ²⁻

Which two compounds contain carbon with the same oxidation state?

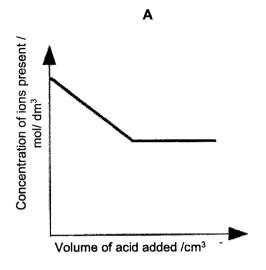
- A carbon dioxide and carbonate ion
- B sodium carbide and carbonate ion
- C carbon dioxide and iron(II) carbide
- **D** sodium carbide and iron(II) carbide
- 17 Which reaction does not involve oxidation or reduction?
 - A $Fe^{2+} \rightarrow Fe^{3+} + e^{-}$
 - $\mathbf{B} \qquad 2H_2 + O_2 \rightarrow 2H_2O$
 - C CuO + $H_2 \rightarrow Cu + H_2O$
 - **D** $2H^+ + CO_3^{2-} \rightarrow H_2O + CO_2$
- 18 Solid calcium carbonate reacts with dilute hydrochloric acid to produce calcium chloride salt, carbon dioxide gas and water.

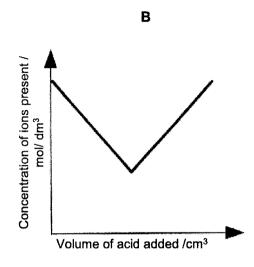
Which row shows the correct effect on the rate of the reaction when a factor is changed?

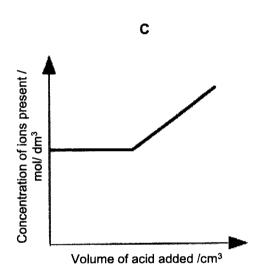
	factor changed	effect on rate of reaction
A	particle size of calcium carbonate increased	decrease
В	concentration of hydrochloric acid increased	decrease
С	pressure of surrounding increased	increase
D	temperature increased	decrease

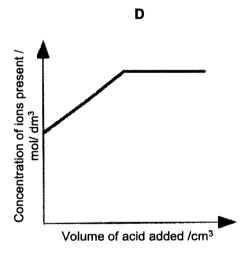
19 A white solid reacted with both hydrochloric acid and aqueous sodium hydroxide solution separately.

What could be the identity of the solid?

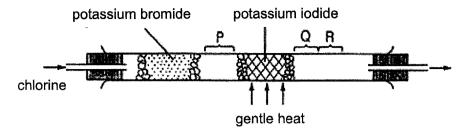

- lithium oxide Α
- В calcium oxide
- C phosphorus oxide
- D zinc oxide
- Which method(s) is/are suitable to distinguish between 1.00 mol/dm3 of hydrochloric acid and 20 1.00 mol/dm3 of ethanoic acid?
 - using a pH meter
 - 2 determining the volume of 1.00 mol/dm³ of sodium hydroxide solution used to neutralise 25.0 cm³ of the acids separately
 - 3 measuring the total volume of hydrogen gas formed when excess magnesium is added to the acids separately
 - Α 1 only
 - В 1 and 3 only
 - 2 and 3 only C
 - D 1, 2 and 3
- 21 A salt is prepared by titrating a carbonate with an acid.

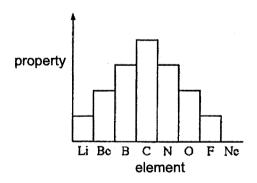

What are the solubilities of the carbonate and the salt?


	carbonate	salt
A	soluble	insoluble
В	insoluble	soluble
С	soluble	soluble
D	insoluble	insoluble


22 Dilute sulfuric acid was added to aqueous barium hydroxide until the acid was in excess.

Which graph best represents the variation in the concentration of ions in the solution?

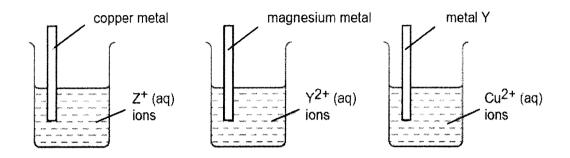



Using the apparatus shown, chlorine was passed through the tube. After a short time, coloured 23 substances were at P, Q and R.

Identify the colours expected at P, Q and R.

	Р	Q	R
Α	yellow-green gas	reddish brown vapour	violet vapour
В	reddish brown vapour	violet vapour	black solid
С	yellow-green gas	violet vapour	black solid
D	reddish brown vapour	black vapour	violet vapour

24 The chart shows a property of elements from lithium to neon.

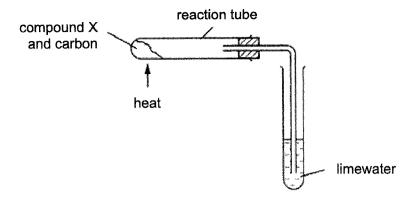

Which property of these elements is shown on the chart?

- Α number of electrons used in bonding
- В relative atomic mass of the element
- C number of electrons shells in an atom
- D number of valence electrons

Refer to the information below for questions 25 and 26.

Three experiments were conducted to compare the reactivities of four different metals - copper, magnesium, metal Y and metal Z.

A deposit was observed on the metal strip for each experiment.



- 25 How many metals that were investigated will be able to react with aqueous hydrochloric acid?
 - **A** 1
 - **B** 2
 - **C** 3
 - D 4
- 26 If a simple cell was set up between two of the metals above, which pair of electrodes will give the largest voltmeter reading?
 - A magnesium and Z
 - B copper and Y
 - C magnesium and copper
 - D Z and Y
- 27 A large volume of copper(II) sulfate solution is left in an iron container overnight.

Which statement describes the effect observed in the morning?

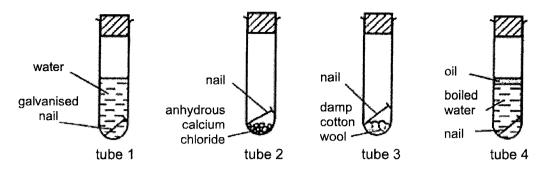
- A Atmospheric oxygen reacts with the copper(II) sulfate and crystals are left behind.
- **B** The part of the container in contact with the solution is coated with copper.
- **C** The solution evaporates completely and some copper(II) sulfate crystals are left behind.
- **D** Some fine iron particles are formed in the solution.


28 Compound X is heated with carbon using the apparatus shown.

A brown solid is formed in the reaction tube and a white precipitate forms in limewater.

What is compound X?

- Α calcium oxide
- В copper(II) oxide
- C magnesium oxide
- D sodium oxide
- 29 The diagram shows apparatus used in an attempt to electroplate a metal ring with copper.

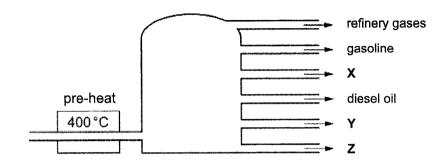


The experiment did not work.

Which change is needed to make the experiment work?

- A add solid copper(II) sulfate to the electrolyte
- В increase the temperature of the electrolyte
- C replace the copper electrode with a carbon electrode.
- D reverse the connections to the battery

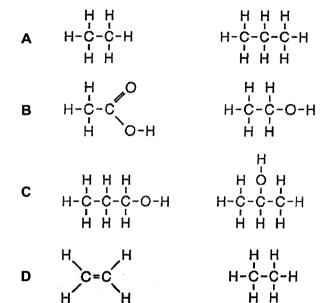
30 A student set up four test tubes to investigate rusting in iron nails.


After leaving the tubes for a week, which tube(s) would show evidence of rusting?

- 2 only
- В 3 only
- C 1 and 2 only
- D 3 and 4 only
- 31 Which molecule present in car exhaust fumes is not a pollutant?
 - Α nitrogen monoxide
 - В sulfur dioxide
 - C carbon dioxide
 - D carbon monoxide
- A catalytic converter is a device used to reduce the emissions from an internal combustion engine 32 used in most modern day vehicles. However, they may also have negative impacts on the environment.

Which of the following describes the negative impact that catalytic convertors cause?

- A They contribute to poisonous gases in air that cause breathing difficulties.
- They emit by-products which lead to the depletion of the ozone. В
- C They increase the amount of carbon particles in the air which leads to smog.
- They contribute the greenhouse gases which leads to global warming. D


33 The diagram shows a fractionating column used in the separation of petroleum.

Which row about X, Y and Z are correct?

- A Y has higher viscosity than X.
- B Y has higher density compared to Z.
- C Y has higher average molecular mass compared Z.
- **D** Z has higher flammability compared to X.
- 34 Which of the following mixtures could **not** be produced when heptane, C₇H₁₆ is cracked?
 - A propene + butane
 - B propane + butene
 - C propane + butane + hydrogen
 - D butene + propene + hydrogen

35 Which pair of compounds are isomers of each other?

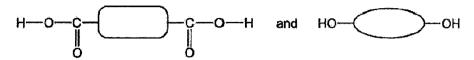
36 The structural formula of the amino acid, glutamine, is shown.

$$\begin{array}{c|c}
 O & NH_2 \\
 \| & | & | \\
 H_2N - C - CH_2 - CH_2 - C - COOH \\
 | & | & | \\
 | & H
 \end{array}$$

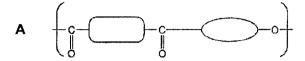
Which of the following statements about the amino acid are correct?

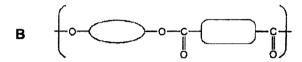
- 1 It undergoes addition polymerisation.
- 2 It reacts with magnesium to produce hydrogen gas.
- 3 It forms a polymer with the same linkage as nylon.
- 4 It decolourises acidified potassium manganate(VII) solution readily.
- A 1 and 3
- **B** 1 and 4
- C 2 and 3
- **D** 3 and 4

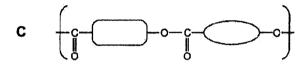
- The number of C=C bonds in a vegetable oil can be found by reacting the oil with aqueous 37 bromine.
 - 0.02 moles of vegetable oil was found to react completely with 19.2 g of aqueous bromine.


How many C=C bonds are there in one molecule of vegetable oil?

- 2 Α
- 6 В
- 8
- D 12
- 38 An organic compound M is known to have the following properties.
 - 1 It does not decolourise bromine solution.
 - 2 It does not react with aqueous sodium hydroxide.
 - 3 It does not produce a sweet-smelling substance when warmed with a mixture of ethanoic acid and concentrated sulfuric acid.


What could be the chemical formula of compound M?


- Α CH=CHCOOH
- В CH₃CH₂CH₂OH
- C CH₂=CHCOOCH₃
- D CH3CH2CH2Cl
- 39 Which property does not change when ethene undergoes polymerisation to form poly(ethene)?
 - Α boiling point
 - В empirical formula
 - C molecular mass
 - D molecular formula


40 A condensation polymer is made from the two monomers shown.

What is the repeat unit of the polymer?

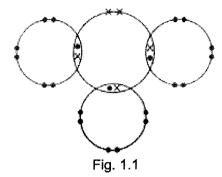
END OF PAPER 1

The Periodic Table of Elements

	0	7	£	nelium 4	9	Se	neon	2	<u>~</u>	¥	argon	40	36	호	rrypton	84	54	×e	xenon	131	98	돈	radon	1				
	NI						luorine 10	+							_	-								-		•		
							oxygen fi	- 1			•				_					l			••	- 1	116		ermorium	-
	>						nitrogen c	-					-							\dashv				\dashv			<u>**</u>	
	<u></u>				-		carbon	+					-											-	114	 /-	erovium	_
	=						poron	+					-		Ō													-
					<u> </u>						TO .	···	-						_						112	ర్	copernicium	-
													29	రె	copper	- 49	47	Ag	silver	108	79	Αn	gold	197	111		Ε	
Q													-				-				-	_			110		흔	\dashv
Group													27	රි	cobalt	29	45	돈	rhodium	103	11	Ħ	iridium	192	109	₹	neitnerium da	-
		-	I	hydrogen 1									26	Fe	iron	26	44	Z	ruthenium	101	92	ő	osmium	190	108	Hs	hassium	
	-				J								25	Ā	nanganese	55	43	ည	technetium		75	æ	rhenium	186	107	8	pohrium	-
					mper	0		nass					24	ర	chromium r	52	42	ŝ	nolybdenum	96	74	≥	tungsten	184	106	Sg	seaborgium	- 1
				Key	(atomic) n	mic symb	name	e atomic n						>			1								105			
					proton	ato		relativ					22	F	titanium	48	64	Z	zirconium	9	72	Ï	hafnium	178	104	¥	Rutherfordium	_
						-							21	လွ	scandium	45	33	>	vttrium	83	57 - 71	lanthanoids			89 - 103	actinoids	<u></u>	
	=				4	Be	beryllium	מכ	12	Ma	magnesium	24	20	ပ္ပ	calcium	40	38	ഗ്	strontium	88	56	Ba	barium	137	88	Ra	radium	ı
					3		lithium	_	-	Z	Sodium	23	19	¥	potassium	33	37	Rb	rubidium	85	55	ပိ	caesium	133	87	<u>i</u>	francium	ı

7	7	lutetium	175	103	ڐ	lawrenciun	ı
20	χ	ytterbium	173	102	2	nobelium	ı
69	Ē	thulium	169	101	PΩ	mendelevium	1
89	ய்	erbium	167	100	F	fermium	1
29	운	holmium	165	66	Es	einsteinium	-
99	δ	dysprosium	163	86	రా	californium	1
				97			ı
64	B	gadolinium	157	96	S	curium	1
63	Ш	europium	152	95	Am	americíum	ı
62	Sm	samarium	150	98	Pu	plutonium	ŀ
61	Pa	promethium	ı	93	Š	neptunium	1
	2	neodymium	144	92	>	uranium	238
59	ď	praseodymium	141	9	Ба	protactinium	231
58	ථ	cerium	140	06	£	thorium	232
57	2	lanthanum	139	68	Ac	actinium	ı

lanthanoids


actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Section A

Answer **all** questions in this section in the spaces provided. The total mark for this section is 50.

A1 Fig. 1.1 shows how the outer shell electrons are arranged in a compound.

(a) Put a tick $(\sqrt{})$ in **one** box in each row to show which statement(s) about the compound is/are **true** and which is/are **false**.

	true	false
It is a saturated hydrocarbon.		
It could be ammonia.		
It is a halogen compound.		
It is an ionic compound.		

[2]

(b) Draw a similar diagram to show the arrangement of electrons in a molecule of carbon dioxide, CO₂.

You only need to show outer shell electrons.

[2]

[Total: 4]

A2	A small piece of sodium metal is heated until it melts. It is then placed into chlorine gas where
	sodium burns quickly with a bright intense flame to form solid sodium chloride.

 Cl_2

 \rightarrow

2 NaCl

2 Na +

Explain, in terms of electron transfer, why the reaction is a redox reaction. (a) [3] Predict how sodium would react with fluorine. State all the observations and explain your (b) answer. [2]

Calculate the percentage yield of sodium chloride, if 40 g of sodium produces 65 g of

percentage yield = % [2]

[Total: 7]

sodium chloride.

A3 Ammonia is produced in the Haber process. The volume of gases in the reaction chamber is monitored throughout the reaction and the results are plotted in the graph shown in Fig. 3.1.

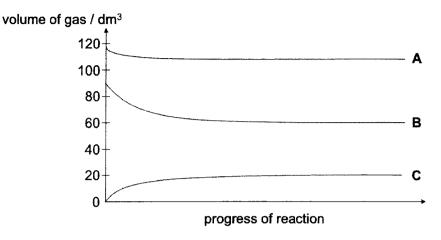


Fig. 3.1

(a) Complete the table below to show the source and method used to obtain hydrogen and nitrogen for Haber process.

	source	method	
hydrogen gas			
nitrogen gas			[2]

(b) Identify the graph (A, B or C) in Fig. 3.1 that represents the following gases in the Haber process.

nitrogen:....

hydrogen:....

ammonia: [1]

(c) Suggest a reason why Fig. 3.1 shows that the production of ammonia in the Haber process is a reversible reaction.

[Total: 4]

- Graphene is a 2-dimensional single sheet of carbon atoms arranged in a hexagonal network. **A4** Due to graphene's physical and chemical properties, it is a promising new advanced material that has been used in several key applications such as batteries, energy storage, and as catalyst.
 - Fig. 4.1 shows the structure of a single sheet of graphene.

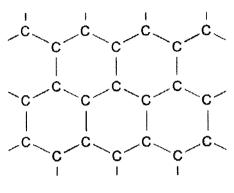
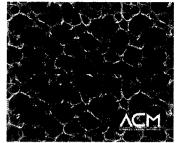


Fig 4.1

Graphene and graphite have similar physical properties.

of bonding and structure, why these physical properties are similar.	
Property 1	
Property 2	
······································	[3]
Diamond and graphite have very different physical properties.	
State one such physical property and explain why.	

Give two physical properties of graphene that are similar to graphite. Explain, in terms


(b)

[2]

(c) A recent development in graphene chemistry is the creation of graphene sponges. Graphene sponges (shown in Fig. 4.2) are three dimensional foam-like structures that has high surface area at extremely low density.

A piece of graphene sponge placed on a flower.

Microscopic view of the graphene sponge

Fig. 4.2

Because of its foam-like structure, graphene foam is able to capture gases. One possible use of graphene sponges is in flue gas desulfurisation in fossil fuel powerplants. Traditionally, calcium carbonate is used in the process of flue gas desulfurisation.

i)	Explain why calcium carbonate can be used in flue gas desulfurisation.	
		[1]
ii)	Describe the environmental impact if flue gas is not desulfurised.	
		[1]
	مالا	tal: 71

A5 Group I and Group VII elements show trends in their melting points and boiling points.

	element	melting point / °C	boiling point / °C
	lithium	180	1330
Group I	sodium	97.8	890
	potassium	64	774
	chlorine	-101	- 35
Group VII	bromine	-7	59
	iodine	114	184

(a)	(i)	The trends in melting points and boiling points for elements in Group I differ from those of Group VII.
		Describe the trends down each group.
		[2]
	(ii)	The melting point and boiling point of sodium is higher than that of chlorine. Use
,		ideas about bonding to explain why.

[3]

(b) The table shows the densities of chlorine and bromine at room temperature and pressure.

element	density / g/cm ³
chlorine	0.03
bromine	3.12

A student makes a comment about the densities.

"The difference in molecular mass of chlorine and bromine is not enough to account for the difference in densities."

	(1)	Explain why the student is correct.	
			[2]
	(ii)	What is the main reason that the densities of chlorine and bromine are so different	nt?
			.
			[1]
(c)	All t	he elements in Group VII are diatomic.	
	Ехр	lain the meaning of the term diatomic.	
			[1]
		[Tota	l: 9]

A6 Some information about four elements, P, Q, R and S are shown in Table 6.1.

Table 6.1

	····			<u> </u>
Element	P	Q	R	S
Density in g/dm ³	2.22	8.9	0.9	7.9
Melting point /ºC	3720	1083	64	1538
Atomic radius /pm	77	135	203	126
Charge on the ion(s)	Usually 4– and 4+	Usually 1+ and 2+	1+	Usually 2+ and 3+
Colour of the element	Black	Reddish Brown	Silvery	Silver Grey
Formulae and appearance of the chlorides at room temperature	PCI ₄ is a colourless liquid	QCl is a white solid QCl ₂ is a bluegreen solid	RC <i>l</i> is a white solid	SCl ₂ is a greenish white solid SCl ₃ is an orange solid

The four elements can be arranged in decreasing order in the reactivity series as such:

R > P > S >hydrogen > Q

(a)	Which of the following, P, Q, R and S are transition elements?
	Using information from Table 6.1, give two pieces of evidence to support your answer.
	1
	2
	[2]

react	cribe what would be observed and write the balanced chemical equation for tion that occurred.
Whic	ch of the following, P, Q, R or S is not a metal?
Use	evidence from Table 6.1 to support your answer.
In the	e construction industry, elements P and S are found in alloys that are used to r support pillars for buildings.
(i)	Give the meaning of the term alloy.
(ii)	Draw a labelled diagram showing the arrangement of atoms in an alloy contain P and S .
(ii)	•
(iii) (iii)	P and S.
	P and S. With reference to the arrangement of atoms drawn in (d)(ii), explain why alloy

A7 Ethanoic acid is a colourless liquid and organic compound. The global demand for ethanoic acid is about 6.5 million tons per year. While the common use of ethanoic acid at home is as the main component of vinegar, 90% of ethanoic acid produced globally is used as a chemical feedstock to produce ethanoate esters and metal ethanoate salts.

(a)	Describe why ethanoic acid is considered a weak acid.					
		[1]				

All metal ethanoate salts are soluble in water. Copper(II) ethanoate is a dark green crystalline solid and has been used as fungicides and coloured pigments. Fig. 7.1 shows the chemical formula of copper(II) ethanoate.

Cu
$$\begin{bmatrix} H & O \\ I & || & || \\ H - C - C - O \\ I & || \\ H \end{bmatrix}_2$$

Fig. 7.1

Copper(II) ethanoate is commonly prepared industrially using the steps below.

Step 1 – Add an excess of **substance X** to ethanoic acid in a reaction chamber. Heat reaction gently. Open the cover of the reaction chamber to ensure that the pressure within the reaction chamber does not increase due to gas production during the reaction.

Step 2 – When effervescence stops, the reaction mixture is filtered and the filtrate is collected in another container.

(b) Draw a 'dot-and-cross' diagram for the **ethanoate ion** found in copper(II) ethanoate. Show outer electrons only.

(c)	(i)	Identify substance X.
		[1]
	(ii)	Either evaporation to dryness or crystallisation will produce pure and dry copper(II) ethanoate from the solution obtained in Step 2.
		Describe an advantage and a disadvantage evaporation to dryness have over crystallisation.
		advantage
		disadvantage
		[2]
		hanoate is a ethanoate ester with a pleasant smell that is similar to nail polish Commonly used as a solvent, it is highly volatile and flammable.
(d)	(i)	Deduce and draw the structural formula for methyl ethanoate.
		[1]
	(ii)	Explain, in terms of bonding, why copper(II) ethanoate exists as crystals while methyl ethanoate exists as a volatile liquid at room temperature.
		[2]
		[Total: 9]

Section B

Answer all three questions in this section.

The last question is in the form of an either/or and only one of the alternatives should be attempted.

B8 Plastic Recycling

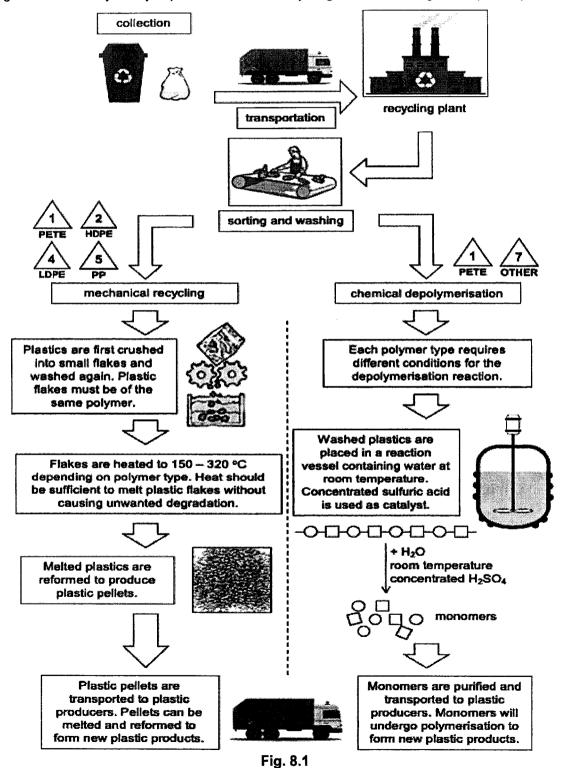
Plastic recycling is the processing of plastic waste into new and useful products. Although plastic recycling is essential to prevent further harm on our environment, Singapore's recycling rate of plastics in 2021 was only 6%. Each plastic polymer has its own unique chemical structure and properties. In order to ensure the quality and value of the recycled plastic, plastics of different polymer types have to be sorted out before they can be recycled. The Resin Identification Code (RIC) was introduced so that plastic item can be labelled for easier sorting.

Table 8.1 shows the names of the polymers that fall under the 7 different RIC as well as their proportion in global plastic waste. Plastics usually consist of polymer chains of varying lengths. Table 8.1 shows the general range of molar masses of the different plastics.

Table 8.1

RIC	polymer name	chemical structure	molar mass / g/mol	% of all plastic waste
1 PETE	poly(ethylene terephthalate)		8 000 – 31 000	18.8
2 HDPE	high density poly(ethene)		100 000 – 250 000	19.8
3 V	poly(vinyl chloride)	H C/ 	50 000 – 120 000	5.3
LDPE	low density poly(ethene)	- H H - C - C - H H - H - H - H - H - H	100 000 – 250 000	13.9
5 PP	poly(propene)	H CH ₃	75 000 – 700 000	19.1
6 PS	poly(styrene)	where R represents a hydrocarbon branch	100 000 – 400 000	5.9
7 OTHER	Other plastics (such as polycarbonates, polyamides.	poly(lactic acid) nylon o-c-c-c-c-c-c-h-n-n-n-n-n-n-n-n-n-n-n-n-n	_	17.2

(a)


(b)

	monome	r(s) of p	oly(prope	ne)		
			ure, why th	e melting	point of a	polym
				••••••		
hortest chain of poly (styrene) found that less.	y(styrene) c t the polyme	onsists c er contail	of 962 repe ns 92.3% c	ating units of carbon a	s. Elemen and 7.7% o	tal ana of hydro
	formula of	R in poly	(styrene).			
	nortest chain of poly(styrene) found thats.	Explain, in terms of bonding are always higher than its monome mortest chain of poly(styrene) contest chain of that the polymers.	Explain, in terms of bonding and structual always higher than its monomer(s). nortest chain of poly(styrene) consists of (styrene) found that the polymer containess.	Explain, in terms of bonding and structure, why the always higher than its monomer(s). nortest chain of poly(styrene) consists of 962 repertence of the polymer contains 92.3% or the structure.	nortest chain of poly(styrene) consists of 962 repeating units (styrene) found that the polymer contains 92.3% of carbon ass.	Explain, in terms of bonding and structure, why the melting point of a always higher than its monomer(s). nortest chain of poly(styrene) consists of 962 repeating units. Element (styrene) found that the polymer contains 92.3% of carbon and 7.7% of ss.

Mechanical recycling and depolymerisation

There are two methods that are commonly used to recycle plastics. Mechanical recycling is a physical method that melts plastics of the same polymer before making them into small pellets to be used again. Depolymerisation is a chemical method that uses either heat or chemical reactions to convert the polymers back into its monomers. Since each polymer has its own unique chemical properties, machinery and methods are specific to one particular plastic.

Fig. 8.1 shows the journey of plastic trash from recycling bin to becoming a new plastic product.

(c)	A student looks at the data in Table 8.1 and Fig. 8.1 and suggests that mechanical recycling can only recycle addition polymers while depolymerisation only recycles condensation polymers.
	Do you agree with the student? Use the data to support your answer.
	[1]
(d)	Most recycling companies find that it is more cost-effective to develop mechanical recycling methods as compared to depolymerisation recycling methods.
	By referring to Table 8.1 and/or Fig. 8.1, suggest a reason why this is so.
	[1]
(e)	Based on Fig. 8.1, give two reasons why recycling plastic is not entirely environmentally friendly.
	1
	2
	[2]
(f)	Fig. 8.2 shows how poly(lactic acid) is depolymerised to form its monomer.
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

$$\begin{array}{c|c}
 & CH_3 O \\
 & C & C \\
 & H & \end{array}$$

$$\begin{array}{c|c}
 & CH_3 O \\
 & H & \end{array}$$

$$\begin{array}{c|c}
 & CH_3 O \\
 & H & \end{array}$$

$$\begin{array}{c|c}
 & CH_3 O \\
 & H & \end{array}$$

$$\begin{array}{c|c}
 & CH_3 O \\
 & H & \end{array}$$

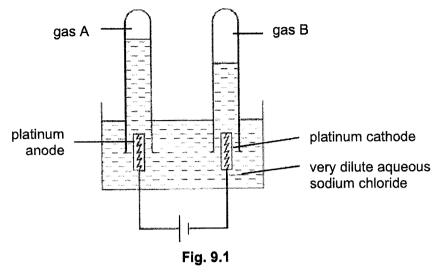
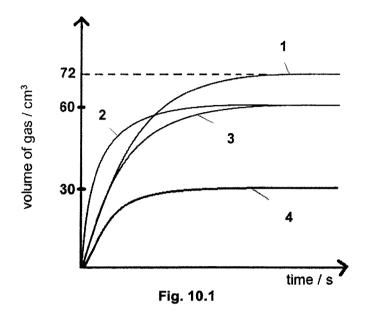

$$\begin{array}{c|c}
 & H & \end{array}$$

Fig. 8.2

Is poly(lactic acid) a condensation polymer or addition polymer? Give two evidence from Fig. 8.2 that supports your answer. [2]

[Total: 12]


An experiment is carried out to electrolyse dilute aqueous sodium chloride. **B9**

(a)	(i)	Identify all the ions present in the solution.					
			[1]				
	(ii)	Write an ionic equation for each reaction that happens at the anode and catho	de.				
		anode:					
		cathode:	[2]				
	(iii)	Describe a simple test and its result that would identify the gas given off at th anode.	е				
			••••				
			[2]				
(b)	After the electrolysis has been running for some time, the solution becomes more concentrated.						
	What are the products of the electrolysis when the solution becomes concentrated? Give your reasoning.						
			••••				
	*****		• • • • •				
			[3]				
		[Tota	l: 8]				

EITHER

B10 Fig. 10.1 shows the volume of gas produced with time for four experiments **1 to 4** where a metal carbonate, **M**CO₃ is reacted with different concentrations and volumes of hydrochloric acid.

(a) Give the identity of the gas produced in the experiments.

......[1]

(b) With reference to Fig. 10.1, complete the table below.

experiment number	concentration of acid in mol/dm ³	volume of acid /cm³
	0.125	20
	0.200	30
	0.250	
3	0.200	

[3]

(c)	hydr	orms an ion with a $2+$ charge in the reaction between the metal carbonate and ochloric acid. The mass of M CO ₃ used in each experiment is $0.375 \mathrm{g}$. chemical equation of the reaction is as shown below.
		$MCO_3 + 2 HCl \rightarrow MCl_2 + CO_2 + H_2O$
	(i)	Only experiment 1 has no excess of either reactants at the end of the reaction, while the rest of the experiments (2, 3, 4) have an excess of metal carbonate MCO ₃ .
		Calculate the number of moles of hydrochloric acid used in experiment 1.
		number of moles = mol [1]
	(ii)	Hence or otherwise, calculate the relative molecular mass of ${\bf M}$ and identify metal ${\bf M}$.
		identity of metal M is[3]
(d)	Usir expe	ng ideas on collisions between particles, explain why the speed of reaction in eriment 2 is faster than experiment 3 .

......[2]

[Total: 10]

OR

B10 Displacement reactions can be used for the extraction of metals.

In the 19th century, Frederich Wohler obtained aluminium metal by reacting potassium with aluminium chloride at a high temperature to form potassium chloride and aluminium. Wohler also observed that the temperature increased during the reaction.

 $AlCl_3 + 3K \rightarrow Al + 3KCl$

	(ii)	Explain, using oxidation states, which substance is reduced.	
		·	[1]
(a)	(i)	Write an ionic equation for the reaction.	

(iii) Determine the mass of aluminium chloride needed to produce 0.81 kg of aluminium metal.

mass of aluminium chloride g [2]

(b)	(i)	Is the reaction between potassium and aluminium chloride exothermic or endothermic? Give a reason to support your answer.
		[1]
	(ii)	Draw the energy profile diagram for this reaction.
		Your diagram should include labels for the reaction enthalpy change, activation energy, and formulae of reactants and products.
		enthalpy
		progress of reaction
/a\	Dom	[3]
(c)	_	Ilium is less reactive than potassium and more reactive than aluminium.
		uce whether Wohler's technique can be used to obtain beryllium from beryllium ride. Suggest one reason why.
		[1]
		[Total: 10]

END OF PAPER 2

The Periodic Table of Elements

	0	7	He	elium	4	10	Ne	neon	20	18	٩٢	rgon	40	36	호 -	ypton	84	54	×e	enon	131	98	돈	adon	1	,			
																									-				
	⋝							_								_		23							_			E	
	>					80	0	oxygen	16	16	တ	sulfur	32	34	Se	seleniur	79	52	_ e	telluriun	128	8	S.	poloniur	I	116		livermoriu	1
	>					7	z	nitrogen	7	15	۵.	hosphorus	31	33	As	arsenic	75	51	Sp	antimony	122	83	ã	bismuth	508				
	2					9	ပ	carbon	12	14	Ö	silicon	78	32	Ge	rmanium	73	20	S	ţį	119	82	<u>а</u>	lead	207	114	Ħ	erovium	ı
	Ш					-				-				-				49										=	
								<u>م</u>			_	alun						-		_					-			ica En	
														30	Zu	zinc	65	48	පි	cadmin	112	80	Ê	mercul	201	112	<u>ნ</u>	n copernicium	1
														53	ਹ	copper	4	47	Ag	silver	108	79	Ρ'n	gold	197	111	S.	oentgeniun	1
g														28	Z	nickel	23	46	P	palladium	106	78	缸	platinum	195	110	Ds	larmstadtium	_
Group														27	රි	cobalt	29	45	듄	rhodium	103	11	=	iridium	192	109	¥	meitneríum d	ı
		-	I	hydrogen	_									26	Pe	iron	26	4	忍	ruthenium	5	9/	SO	osmium	190	108	£	hassium	ı
					-	1								25	M	anganese	22	43	ည	echnetium	,	75	æ	rhenium	186	107	듄	pohrium	1
						mber	~		lass					24	ပ်	chromium n	25	42	Ŷ	lolybdenum t	96	74	>	tungsten	2	106	Sg	eaborgium	1
					Key	proton (atomic) number	nic symb	name	relative atomic mass					$\overline{}$				41											
						proton (ator		relative					22	F	titanium	48	40	7	zirconium	9	72	士	hafnium	178	104	ž	tutherfordium	1
						L]				21	တွ	candium	45	39	>	yttrium ,	. 88	57 – 71	nthanoids			89 – 103	actinoids	ď.	
	-					4	Be	eryllium	, O	12	Ma	gnesium	24			_		38								-		adium	1
Transcription of the Parket State of the Parke						 				-		_		├		_		37				_				<u> </u>			
		<u>_</u>						E		-	<i>z</i>	pos	2		<u>.x.</u>	potas		3	~	Zbic	80	3	ن	caes	7	80	ц_	francium	•

	E C						
	χp	_	-			=	1
69	E	thuliun	169	101	Σ	mendelev	1
89	ш	erbium	167	100	Fa	fermium	ł
29	웃	holmium	165	66	Ë	einsteinium	l
99	<u>ک</u>	dysprosium	163	86	ರ	californium	1
	2					_	ı
25	g	gadolinium	157	96	క్ర	carium	1
63	ш	europium	152	92	Am	americium	I
62	Sm	samarium	150	94	2	plutonium	1
61	Pa	promethium	ı	93	운	neptunium	ı
09	2	neodymium	144	92	>	uranium	238
59	Ā	praseodymium	141	91	Ра	protactinium	231
28	ပီ	cerium	140	06	두	thorium	232
22	La	lanthanum	139	88	Ac	actinium	ļ
lanthanoids				actinoids			

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Secondary 4E Chemistry **Preliminary Examination 2022**

Mark Scheme

Paper 1 (40 marks)

2	3	4	5	6	7	8	9	10
В	Α	D	A	D	С	Α	С	С
12	13	14	15	16	17	18	19	20
Α	С	С	С	A	D	Α	D	Α
22	23	24	25	26	27	28	29	30
В	В	Α	В	Α	В	В	D	В
32	33	34	35	36	37	38	39	40
D	Α	С	C	G	В	2	В	В
	2 B 12 A 22 B	2 3 B A 12 13 A C 22 23 B B	2 3 4 B A D 12 13 14 A C C 22 23 24 B B A 32 33 34	2 3 4 5 B A D A 12 13 14 15 A C C C 22 23 24 25 B B A B 32 33 34 35	2 3 4 5 6 B A D A D 12 13 14 15 16 A C C C A 22 23 24 25 26 B B A B A 32 33 34 35 36	2 3 4 5 6 7 B A D A D C 12 13 14 15 16 17 A C C C A D 22 23 24 25 26 27 B B A B A B 32 33 34 35 36 37	2 3 4 5 6 7 8 B A D A D C A 12 13 14 15 16 17 18 A C C C A D A 22 23 24 25 26 27 28 B B A B A B B 32 33 34 35 36 37 38	2 3 4 5 6 7 8 9 B A D A D C A C 12 13 14 15 16 17 18 19 A C C C A D A D 22 23 24 25 26 27 28 29 B B A B A B B D 32 33 34 35 36 37 38 39

A-11, B-10, C-11, D-8

Paper 2 Section A (50 marks)

A1(a)		true	false	2						
	It is a saturated hydrocarbon.		7							
	It could be ammonia.									
	It is a halogen compound. √									
	It is an ionic compound.									
	4 pt → 2m, 3 - 2 pt → 1.m, 1 - 0 → 1m									
(b)				2						
	carbon diexide, CO ₂ correct number of sharing electron correct number of sharing electron									
A2(a)	Codium in auditred on it lance on	-lastran ta fun	er andisen iam kint	[Total: 4]						
welai	Sodium is <u>oxidized</u> as it <u>loses an oxidized</u> as it <u>loses an oxidized</u> as it pains an			1						
	Chlorine is reduced as it gains an electron to form chloride ion, CI Since oxidation and reduction occurs concurrently/simultaneously/at the same time.									
	Hence it is a redox reaction									
(b)	Sodium will explode into flames/W white solid of sodium fluoride (obs what is given in question stem, rej	ervation shou	ld be more vigorous than	1						
	Fluorine is above chlorine in Grou			1						

(c)	Mole of sodium = 40/23 = Mole ratio of Na: NaCl = Mass of sodium chloride %yield = 65/101.74 x 100	1: 1 produced = 1.739	01 X 58.5 = 101.74 g	1
				Total: 7]
A3(a)	· ·			2
		source	method	
	hydrogen gas	Crude oil	cracking	
	nitrogen gas	liquid air	/Fractional distillation	
(b)	nitrogen: A hydrogen: B ammonia: C			1
(c)	reactants are not fully re	acted even when	reaction has stopped.	1
	(reject: reaction does no	t complete)		
				[Total: 4]
A4(a)	high melting point or stre	o /raioe nord e	trenuth and hardness is	3
	strong covalent bonds be require a lot of energy to leterical conduster 4		wns -2	
	une carbon atom bonded electrons in carbon used	n bonding		
	1 valence electron in each	*	lved in bonding/delocalised -5	
	6 – 5 points → 3 m , 4 – 3	pt \rightarrow 2m, 2 pt \rightarrow		
	(reject: soft (all ppery, the	<u> </u>		
(b)	hard	, the second	of conduct electricity	
	strong covalent bonds be carbon atoms	etween <u>all va</u> bondi	lence electrons used in ng	
	require a lot of <u>energy</u> to	`	obile electrons/charged les present	
		(if par	rt (a) did not mention)	
	<u></u>			<u> </u>

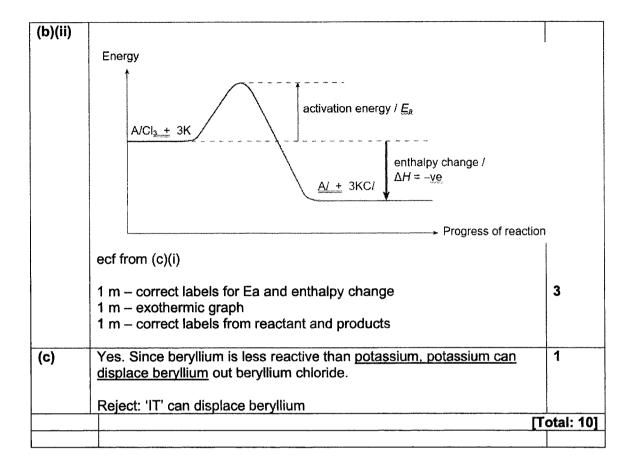
	The second of the second of	4 volence electron in each carbon	1					
	as compared to the weak	1 valence electron in each carbon	1					
	intermolecular forces of	not involved in						
	attraction between graphite	bonding/delocalised						
	layers.	mobile electron present						
(c) (i)	sulfur dioxide is an <u>acidic oxide</u> and carbonate. (not a marking point but students an neutralisation reaction and calcium	re reminded that this is not a	1					
(c) (ii)	sulfur dioxide causes • respiratory problems OR		1					
	 lead to the <u>formation of 'acid</u> corrodes metal and stone st ecf if (c)(i) mentions a different poll 							
			Total: 7]					
			1					
A5 (a)(i)	In group I, melting point and boiling point <u>decreases</u> down the group. In group VII, melting point and boiling point <u>increases</u> down the group.							
(a)(ii)	Students need to be clearer with the different bonding present in different substances. Common mistakes include 1) not knowing the particles found in each structures (e.g. mistaking atoms with molecules, atoms with ions). 2) Students must also remember that forces are overcome and bonds are broken.							
	Sodium is a metal with strong elect bond between the cations and the		1					
	Whereas, chlorine exists as diatom forces of attraction between the mo	ic molecules with weak intermolecular plecules.	1					
	Hence, lots of energy required to overcome the strong electrostatic forces of attraction in sodium. Hence higher melting point. <u>Little energy</u> needed to overcome weak intermolecular forces of attraction in chlorine gas. Hence low melting point.							
(b)(i)	Students answered this question badly. Many students did not answer the question which should involve students explaining why the difference in molecular mass does not account for the difference in density. Many students instead explain what should account for density without accounting for the molecular mass.							
	The molecular mass of chlorine is 1 is 160. Even though bromine is slightly mobut the density of bromine is at least (show the difference in density is molecular mass)	st a 100 times that of chlorine.	1					

		-
	Accept: volume needs to be considered as well (1 m)	
(ii)	Chlorine is a gas and bromine is a liquid at room temperature.	1
	Reject: students mention states without specifying	
(c)	Question is badly done. While we accepted a range of answers, the definition of diatomic should be as follows.	
	Diatomic means molecules with two atoms covalently bonded together.	1
	Accept: students answer must include both concept of two atoms and being bonded.	
		 [Total: 9]
A6(a)	Students must remember that evidence from the data provided should be given clearly.	
	Transition elements are Q (1) and S(2) - variable oxidation states (3) - formed coloured compounds (4) 4 pt → 2m, 3 - 2 pt → 1 m	2
(b)	Bubbles of gas produced/gas extinguishes burning splint with pop sound	1
	Colour of water changes from green to dark blue/purple.	1
	Remind students that Group I alkali should turn universal indicator purple 2R + 2H ₂ O Remind students that Group I alkali should turn universal indicator purple 2R + 2H ₂ O	1
(c)	P because it forms a chloride that is a liquid at room temperature/low	1
	melting point The chloride is a covalent compound/simple molecule hence P is a non- metal OR	1
	P is from Group IV Q,R,S are from Group I and II which are all metals Reject: if students explain that P is a non-metal because the rest are metals. OR	
	P is black in colour Metals are usually grey/shiny	
(d)	This question was surprisingly badly done. disappointing	
	Alloy is a mixture of a metal with another element.	1
(ii)	Alloy September 1997	1
	must be labelled, P must be smaller than S,	
	i muot so diffusio di	

20224E_PRELIM_Chem PartnerInLearning

	Can only have two sizes of particles		
	Quantity does not matter.		
(iii)	disruption of the regular arrangement for the layers to slide hence making a	t of layers of atoms makes it <u>hard</u> alloys harder and stronger	1
		ОТ]	TAL:10]
A7(a)	dissociates/ionises (reject: dissolve hydrogen ions and ethanoate ions	es) <u>partially</u> in <u>water</u> forming	1
(b)	Students either forget that atoms for valence shell of electrons or they for and forget to include the charge HCCCC Im for charge, 1m for dot and cross electrons are the same)	orget that they are drawing an ion	2
(c)(i)	Students did not read the passage has to react with an acid to produc	nate (reject: copper oxide as gas is carefully to realise that substance X e a gas. There are also many showing their lack of understanding	1
(ii)	need heat. Some students did not understand described the advantages of crysta dryness.	at evaporation to dryness does not the phrasing of the question and allisation over evaporation to	2
	advantage - higher yield of solute / crystallisation does not crystallise all solute - faster - with heat, will be dryer	disadvantage - heat sensitive compounds will decompose/solute might decompose - impurities in the solution will also be obtained - solute obtained is less pure	

(d)(i)	HOHUMAN HOME HOME HOME HOME HOME HOME HOME HOME	1
(ii)	copper(II) ethanoate has <u>strong electrostatic forces</u> of attraction (a) methyl ethanoate has <u>weak intermolecular forces</u> of attraction (b) more <u>energy</u> required to <u>overcome</u> All – 2m, (a) or (b) – 1m	2
		Total: 9]


Sectio	n B (30 marks)			
B8(a)	H H H H - C - C = C - F H			1
(ii)	Macromolecule (polymer) has a higher molar mass/relative molecular mass than the monomer stronger intermolecular forces between polymer molecules more energy required to overcome the forces between polymer molecules			1
(b)		100 000 / 962 = <u>103.95</u>	etween polymer molecules	1
	element	С	Н	
	%composition	92.3	7.7	
	Ar	12	1	
	mole	92.3/12 = 7.691	7.7 / 1 = 7.7	
	ratio	1	1	
	Empirical formula CH			1
	Molecular formula of repeating unit			
	103.95 / 13 = 8 (C ₈ H ₈)			1
	R - C ₆ H ₅			
(c)	Disagree, PETE is a <u>condensation polymer</u> so mechanical recycling can recycle condensation polymers.			1
	OR			

20224E_PRELIM_Chem PartnerInLearning

	Agree, PETE and polymers under others are <u>condensation polymers</u> can be recycled using chemical depolymerisation	
(d)	mechanical recycling recycles <u>more types</u> of plastics as compared to chemical depolymerisation OR	1
	mechanical recycling recycles <u>a higher percentage of</u> plastic waste as compared to chemical depolymerisation	
(e)	 transportation requires fossil fuels to be burnt mechanical recycling requires plastic to be heated and that requires fossil fuels to be burnt to provide the energy Chemical depolymerisation requires concentrated sulfuric acid which will harm the environment when released. Washing of the plastic requires water to be used which will deplete the world's water supply 	2
(f)	 Monomer has a higher molar mass than the repeating unit monomers are joined together by an ester linkage when monomers combine to form the polymer, a small molecule of water is released. when polymer is broken down to the monomer, a small molecule of water is added. ANY TWO 	2
	[Total	al: 12]
B9 (a)(i)	Hydrogen, hydroxide, sodium and chloride ion OR H ⁺ , OH- , Na ⁺ , Cl ⁻	1
(ii)	Anode: $4OH- \rightarrow O_2 + 2H_2O + 4e-$	1
()	Cathode: 2H ⁺ + 2e ⁻ → H ₂	1
(iii)	Place a glowing splint at the gas;	1
	Splint relights	1
(b)	At cathode, <u>hydrogen gas is produced</u> , as <u>sodium ion (reject: sodium)</u> <u>cannot be discharged</u> .	1
	At anode, <u>chlorine gas is produced</u> .	1
	When solution is concentrated sodium chloride, <u>chloride ions are</u> <u>preferentially discharged</u> over hydroxide ions.	1
	По	tal: 8]
Either		
B10 (a)	carbon dioxide	1

(b)	experiment	concentration of acid in mol/dm³	volume of acid /cm³	
	4	0.125	20	3
	1	0.200	30	
	2	0.250	20	
	3	0.200	25	
	5 points \rightarrow 3 m, 4 pt	\rightarrow 2m, 3 - 2 pt \rightarrow 1 m, 1 pt \rightarrow 0	m	
(c)	(i) No. of moles of HCl = 0.200 x 0.03 = 0.006 mol			1
	(ii) Mole ratio HCl:MCO ₃ is 2:1 No. of moles of MCO ₃ = 0.003 Molar mass of MCO ₃ = $0.375/0.003$ = 125 g/mol Atomic mass of M = $125 - M_r$ CO ₃ = $125 - 60 = 65$			1 1 1
	OR Mole ratio CO_2 :M CO_3 is 1:1 No. of moles of M CO_3 = 0.003 Molar mass of M CO_3 = 0.375/0.003 = 125 g/mol Atomic mass of M = 125 - M _r CO_3 = 125 - 60 = 65 Hence M is Zinc			
(d)	There is greater num	rease of concentration of acid, ber of reacting particles per unit ncy of effective collisions and hi	t volume. gher speed of reaction.	1 1
			[To	tal: 10

Or	,	
B10 (a)(i)	$3K(s) + A^{\beta+}(I) \rightarrow 3K^{+}(I) + AI(s)$	1
(ii)	Aluminium is reduced as its oxidation state of +3 in $A^{\beta+}$ ions decreased to 0 in AI atoms	2
	1m – decrease	
	1m – oxidation states	
(iii)	M_r of $A/Cl_3 = 27 + 3(35.5) = 133.5$	
	From equation, no of moles of A/C/ ₃ = no. of moles of A/ = 810/27 = <u>30 mol</u>	1
	Mass of aluminium chloride = $30 \times 133.5 = 4000 \text{ g}$	1
	Award 1 m if never convert kg to grams.	
(b)(i)	(i) reaction is exothermic as temperature increased during the reaction.	1

