Name: () Class: Sec 4A

Queenstown Secondary School

Preliminary Examination 2021 Secondary Four Express Chemistry 6092/01

1 September 2021 Wednesday

Time: 1200 - 1300h

Duration: 1 hour

Additional Materials: Multiple Choice Answer Sheet

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

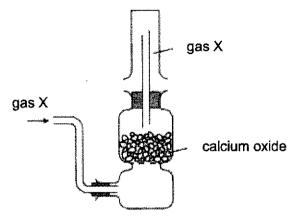
Do not use staples, paper clips, glue or correction fluid.

Write your name, class and index number on the Answer Sheet in the spaces provided.

There are forty questions on this paper. Answer all questions. For each question there are four possible answers A, B, C and D.

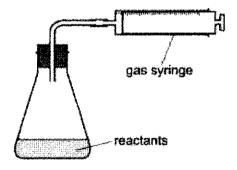
Choose the one you consider correct and record your choice in soft pencil on the separate Answer Sheet.

Read the instructions on the Answer Sheet very carefully.


Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any rough working should be done in this booklet.

A copy of the Periodic Table is printed on page 20.

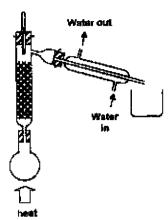
The use of an approved scientific calculator is expected, where appropriate.


This document consists of 20 printed pages.

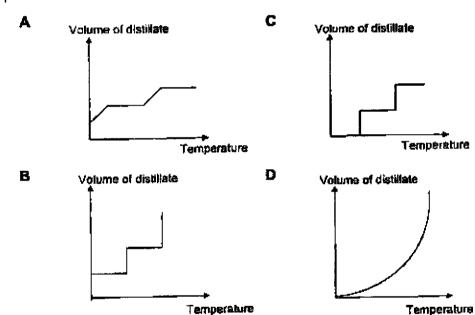
The experimental set-up below is used to collect a clean, dry sample of gas X. Gas X was given off after ammonium chloride and calcium hydroxide was mixed together and heated in a test-tube.

What can be deduced about gas X?

- It is soluble in water.
- 2 It is less dense than air.
- 3 It can also be dried using concentrated sulfuric acid.
- A 1 and 2 only
- **B** 1 and 3 only
- C 2 and 3 only
- **D** 1, 2 and 3
- 2 The apparatus shown is used to measure the rate of a reaction.



Which of the following reaction rate can be measured using this apparatus?


- A calcium with dilute hydrochloric acid
- B copper with dilute nitric acid
- C aqueous sodium carbonate with aqueous silver nitrate
- D chlorine with aqueous potassium bromide

Queenstown Secondary School

The diagram shows the apparatus used to separate liquid R (boiling point 70°C) and ethanol (boiling point 98°C).

Which graph would be obtained if volume of distillate collected was plotted against temperature?

PartnerInLearning

Queenstown Secondary School

- Three separations are listed below.
 - 1 Obtaining oil from a mixture of oil and water.
 - 2 Obtaining ammonium chloride from a mixture of ammonium chloride and sodium chloride.
 - 3 Obtaining solid copper(II) sulfate from copper(II) sulfate solution

Which techniques would be involved in separation 1, 2 and 3 respectively?

	1	2	3
Α	simple distillation	sublimation	crystallisation
В	simple distillation	crystallisation	filtration
С	separating funnel	sublimation	crystallisation
D	separating funnel	crystallisation	filtration

- The following observations were recorded after various tests were carried out on a areen solid.
 - A blue precipitate was observed when aqueous ammonia was added to an aqueous solution of the green solid.
 - Effervescence was formed when dilute nitric acid was added to the green solid. Upon adding aqueous barium nitrate to the resultant mixture, no visible reaction was seen.

What could be the identity of the green solid?

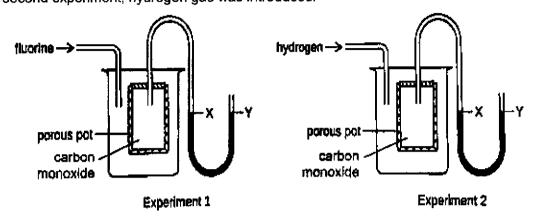
A iron(II) nitrate C copper(II) sulfate

B iron(II) sulfate D copper(II) carbonate

In an experiment, 4.0cm³ of 1.0mol/dm³ iron(III) sulfate solution is mixed with 4.0cm³ of 1.0mol/dm3 sodium hydroxide solution.

What does the reaction vessel now contain?

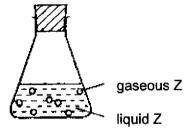
A a green precipitate and an colourless solution


B a green precipitate and an orange solution

C a red-brown precipitate and a colourless solution

D a red-brown precipitate and an orange solution

Queenstown Secondary School


7 Two experimental set-ups used to demonstrate the diffusion of gases are shown in the diagrams below. In each porous pot is carbon monoxide. In the first experiment, the gas introduced into the beaker is fluorine gas, while in the second experiment, hydrogen gas was introduced.

What changes, if any, to the water levels X and Y would you expect to see in both experiments?

-	experiment 1	experiment 2
Α	Y is higher than X	X is higher than Y
В	X is higher than Y	Y is higher than X
С	X and Y remain the same	Y is higher than X
D	X and Y remain the same	X and Y remain the same
ט	A and it remain the same	A and i temain the same

The conical flask contains compound Z which is present in liquid and gaseous states. 8

Which statement is correct?

- A The molecules in gaseous Z slide over each other.
- **B** Energy is lost when compound Z changes from gas to liquid.

Partnerini earning

- C Compound Z sublimed from liquid Z to form gaseous Z.
- D Compound Z has a range of boiling points.

Queenstown Secondary School

The table gives some statements about atoms and explanations for these statements. Which row shows both a correct statement and a correct explanation for the statement?

	statement	explanation
A	atoms are electrically neutral	same number of electrons and neutrons
В	atoms of metals tend to gain electrons	to achieve a full valence shell
С	the mass of an atom is concentrated in its nucleus	presence of protons and neutrons in nucleus
D	the nucleus and electrons repel each other	nucleus and electrons have opposite charges

The table shows information about particles R and S.

particle	number of			
particle	protons	neutrons	electrons	
R	11	12	10	
S	19	20	18	

Which of the following statement is correct for both R and S?

- A Both are atoms in the same Group.
- **B** Both are isotopes of the same element.
- C Both are positive ions in the same Group.
- **D** Both are positive ions in different Groups.

11 Some properties of substances P, Q, R and S are given in the table.

	percentage	solid	
substance	composition by	conducts	changes on heating
	mass	electricity	
Р	varies	no	solid burns to form carbon dioxide
ľ	varies	110	and water
Q	constant	yes	solid burns in air to form an oxide
R	varies	no	solid melts
s	constant	yes	solid decomposes

Which classification of substances is correct?

_	element	mixture	compound
Α	S, Q	P	R
В	Q	P, R	S
С	s	Р	Q, R
D	R	P, Q	S

12 Lithium and fluorine react to form lithium fluoride.

A student writes three statements about the reaction.

- 1 Lithium atoms lose an electron when they react.
- 2 Each fluoride ion has one more electron than a fluorine atom.
- 3 Lithium fluoride consists of strong electrostatic forces between atoms.

Which statements are correct?

A 1 and 2 only

B 1 and 3 only **C** 2 and 3 only **D** 1, 2 and 3

Queenstown Secondary School

[Turn over

PartnerInLearning

13 The compound below is made up of hydrogen and the elements X, Y and Z.

Which statement is incorrect?

- A Element Z is most likely from Group VII.
- B Element X is most likely from Group IV.
- **C** The compound is formed by the losing and gaining of electrons.
- **D** The compound has the molecular formula X₅H₉YZ.
- 14 Carbon and silicon are both in Group IV of the Periodic Table.

At room temperature, CO2 is a gas whereas SiO2 is a solid.

Which statement explains this?

- A Covalent bonding is weaker in CO₂.
- **B** Covalent bonds in CO₂ are double bonds and in SiO₂ the covalent bonds are single bonds.
- C CO₂ is a covalent compound and SiO₂ is an ionic compound.
- D CO₂ is a simple covalent molecule and SiO₂ is a giant covalent molecule.

15	Below	are	four	statements	about	metals.
----	-------	-----	------	------------	-------	---------

- 1 Metals can conduct electricity.
- 2 Metals have high melting points, except some metals.
- 3 Metals contain a lattice of positive ions in the presence of delocalised electrons.
- 4 Metals require a large amount of energy to overcome the strong covalent bonds between the atoms.

Which of the following statements is correct?

- A Statement 1 is correct and statement 3 explains statement 1.
- **B** Statement 2 is correct and statement 4 explains statement 2.
- **C** Statement 3 is incorrect and statement 4 is correct.
- D All statements are correct but statement 1 does not explain statement 2.
- 16 Two moles of X decompose rapidly at room temperature to give one mole of oxygen and two moles of bromine.

What is the molecular formula of X?

- A BrO₂
- B Br₂O
- C Br₂O₂
- D Br₄O₂
- 17 All ammonium salts produce ammonia gas on heating with sodium hydroxide. Which ammonium salt has the greatest percentage mass of nitrogen?
 - A NH₄C/
- **B** NH₄NO₃ **C** (NH₄)₂SO₄
- **D** (NH₄)₃PO₄
- 18 12.0 g of anhydrous magnesium sulfate combines with 12.6 g of water to form hydrated magnesium sulfate.

What is the formula of the hydrated magnesium sulfate?

- A MgSO₄.9H₂O
- B MgSO₄.7H₂O
- C MgSO₄.5H₂O
- D MgSO₄.3H₂O

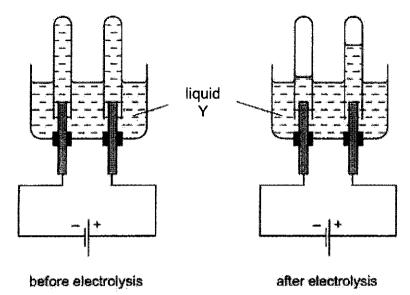
Queenstown Secondary School

Upon strong heating, a metal nitrate compound undergoes decomposition according to the following equation:

$$2XNO_3(s) \rightarrow 2X(s) + 2NO_2(g) + O_2(g)$$

Complete decomposition of 6.80g of the nitrate gives 480cm³ of oxygen, measured at room temperature and pressure. What is the relative atomic mass of X?

- **A** 108
- **B** 170
- C 216
- D 340
- 20 0.5mol/dm³ sulfuric acid is added gradually to a flask containing 20cm³ of 2.0mol/dm³ sodium hydroxide solution.


What is the total volume of the mixture in the flask when the solution is just neutral?

- A 20cm³
- **B** 40cm³
- **C** 60cm³
- **D** 80cm³
- 21 Magnesium can be produced by electrolysis of molten magnesium chloride, MgCl₂. What are the equations for the reactions that occur at the positive electrode and at the negative electrode?

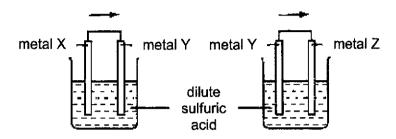
	positive electrode	negative electrode
Α	$2Cl^- \rightarrow Cl_2 + 2e^-$	Mg ²⁺ + 2e ⁻ → Mg
В	$4OH^- \rightarrow 2H_2O + O_2 + 4e^-$	$2H^+ + 2e^- \rightarrow H_2$
С	$2Cl^- + 2e^- \rightarrow Cl_2$	$Mg + 2e^- \rightarrow Mg^{2+}$
D	Mg ²⁺ + 2e ⁻ → Mg	$2Cl^- \rightarrow Cl_2 + 2e^-$

Queenstown Secondary School

The diagrams show an electrolysis set-up using inert electrodes. 22

Which could be liquid Y?

- aqueous magnesium nitrate
- 2 aqueous copper(II) sulfate
- 3 concentrated hydrochloric acid
- 4 dilute sulfuric acid


A 1 and 4 only B 2 and 4 only C 1, 2 and 4 only D 1, 3 and 4 only

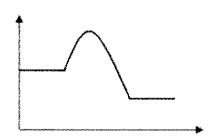
PartnerInLearning

Queenstown Secondary School

23 Two cells were set up as shown in the diagram.

The arrows show the direction of electron flow in the external circuits.

Which set of metals would give the electron flows in the directions shown?

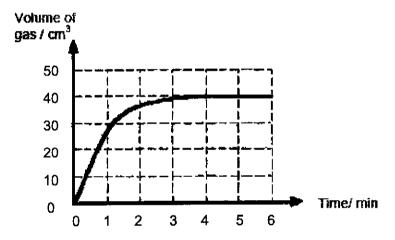

	metal X	metal Y	metal Z
Α	Ag	Cu	Zn
В	Ag	Zn	Cu
С	Cu	Zn	Ag
D	Zn	Cu	Ag
וטו	ZII	Cu	Ag

24 The reaction between P and Q to produce R is a reversible reaction. The activation energy for the forward reaction is +345 kJ/mol and can be represented as

$$P + Q \Rightarrow R \qquad \Delta H = -45 \text{ kJ/mol}$$

$$\Delta H = -45 \text{ kJ/mol}$$

The energy profile diagram is shown below.



Which of the following options correctly describes the reverse reaction?

	type of reaction	activation energy (in kJ/mol)	ΔH (in kJ/mol)
Α	exothermic	+345	-45
В	endothermic	+390	+45
С	exothermic	-345	-45
D	endothermic	-390	+45

Queenstown Secondary School

- 25 Which of the following statements best describes the mechanism of a hydrogenoxygen fuel cell?
 - A Electricity is used to provide heat energy.
 - **B** Electricity is used to generate hydrogen and oxygen.
 - C Hydrogen ions react with hydroxide ions to generate electricity.
 - D Hydrogen and oxygen undergo redox reactions to generate electricity.
- The rate of reaction between pieces of zinc and 1.0mol/dm³ hydrochloric acid was investigated. The total volume of gas produced every minute was recorded over a period of time. The zinc had completely reacted in the reaction and the results are shown in the graph below.

What would be expected if the experiment was repeated using the same mass of zinc and the same volume of 0.5mol/dm³ hydrochloric acid?

	maximum volume of gas produced	time at which maximum volume is obtained
A	40cm ³	less than 4 minutes
В	40cm³	longer than 4 minutes
С	20cm ³	less than 4 minutes
D	20cm³	longer than 4 minutes

PartnerInLearning

Queenstown Secondary School

27 A household bleach contains sodium chlorate(I), NaClO, as its active ingredient. When sodium chlorate(I) is stirred into excess aqueous hydrogen peroxide, the reaction that occurs is represented by the following equation.

$$NaClO(aq) + H_2O_2(aq) \rightarrow NaCl(aq) + O_2(g) + H_2O(l)$$

Which of the following can be deduced from the reaction?

- Hydrogen peroxide acts as a reducing agent in this reaction.
- 2 Hydrogen peroxide acts as an oxidising agent in this reaction.
- 3 The final solution gives a white precipitate with acidified silver nitrate.
- The final solution bleaches damp litmus paper.
- A 1 only
- B 2 only
- C 1 and 3
- D 2 and 4
- 28 Which of the following statements about sulfuric acid is/are true?
 - 1 It is used to make fertilisers.
 - 2 It causes Universal Indicator to turn orange due to the low amount of H⁺ ions.
 - 3 It reacts with sodium hydroxide to form a soluble salt and hydrogen gas.
 - It reacts with lead(II) carbonate to form an insoluble salt, carbon dioxide and water.
 - A 1 and 2 only
- B 1 and 4 only
- C 2 and 3 only
- D 3 and 4 only
- 29 Which of the following salts can be prepared using the same method?
 - A zinc chloride, calcium sulfate
 - B potassium iodide, lead(II) iodide
 - C copper(II) sulfate, lead(II) nitrate
 - D potassium nitrate, magnesium nitrate

Queenstown Secondary School

- Which of the following are true of Haber Process? 30
 - Nitrogen is obtained from the cracking of petroleum.
 - 1 mole of nitrogen reacts with 3 moles of hydrogen to form ammonia. 2
 - 3 Unreacted nitrogen and hydrogen are released into the atmosphere.
 - Finely divided iron provides an alternative pathway with lower activation energy.
 - A 1 and 2 only
- B 1 and 3 only
- C 2 and 4 only
- D 3 and 4 only
- The table below shows some information of three elements. 31

element	Р	Q	R
atomic number	10	11	7

Which of the following statements about the elements is correct?

- A P exists as a monatomic element and is used to fill up balloons.
- B P and R are in the same period as their atoms occupy two electron shells each.
- C The compound formed between P and Q has a high melting point.
- D Q and R form a compound that has a formula of QR₃.
- 32 Rubidium, Rb, is an element in the same group of the Periodic Table as lithium, sodium and potassium.

Which statement about rubidium is likely to be correct?

- A It forms a manganate with the formula RbMnO₄.
- B It forms an insoluble hydroxide.
- C It is obtained by the electrolysis of aqueous rubidium chloride.
- D It reacts slowly with cold water to form an alkaline solution.

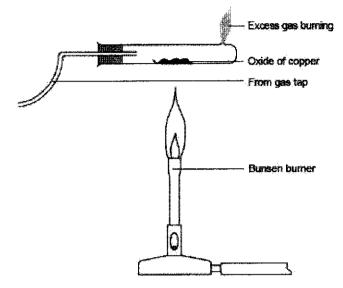
Queenstown Secondary School

33 The information below shows the percentage of carbon in two samples of steel, Q and R. Q consists of 60% carbon while R consists of 20% carbon.

Which statement is correct about the two samples of steel?

- A Q has higher strength and less brittle than R.
- **B** R has higher strength and more brittle than Q.
- C Q has lower strength and more brittle than R.
- D R has lower strength and less brittle than Q.
- 34 The table below provides information on the chemical properties of four metals and some of their compounds.

metal	metal + steam	metal oxide + coke	strong heating of metal carbonate
W	H ₂ evolved	oxide reduced	CO ₂ evolved
X	H₂ evolved	no visible reaction	no visible reaction
Y	no visible reaction	oxide reduced	CO ₂ evolved
Z	H ₂ evolved	no visible reaction	CO ₂ evolved

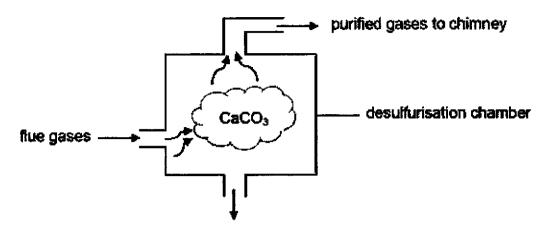

Which of the following shows the correct order of reactivity of the metals?

	most reactive	_	→	least reactive
Α	Y	W	Z	X
В	x	Z	w	Y
С	z	X	w	Y
D	w	x	Y	Z

35 The following set-up is used to study the reduction of an oxide of copper.

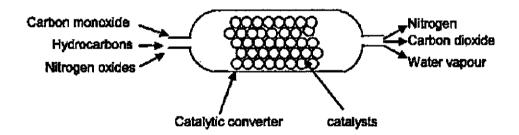
The oxide of copper is Cu₂O, which is a red solid.

What would be observed when the reaction has stopped, and what is the purpose of burning the excess gas?


	observation	purpose for burning excess gas
A		hydrogen gas used to reduce oxide is
	red solid turns brown	highly flammable
		carbon monoxide used to reduce oxide is
В	red solid remains unchanged	poisonous
С	red solid turns brown	carbon dioxide is a pollutant
_		nitrogen dioxide gas used to reduce oxide
D	red solid turns black	is a pollutant

36 Which of following reactions does **not** occur in a blast furnace during the extraction of iron?

C
$$CO_2 + C \rightarrow 2CO$$


D Fe₂O₃ + 3CO
$$\rightarrow$$
 2Fe + 3CO₂

37 The following diagram shows a simplified process of desulfurisation.

Which of the following correctly describes the process?

- A The purified gases give a white precipitate in limewater.
- B Carbon monoxide present in the flue gases reacts with CaCO₃.
- C The purified gases decolourise acidified aqueous potassium manganate(VII).
- **D** The desulfurisation process is a redox reaction.
- The diagram below shows the cross section of a catalytic converter in the exhaust system of a car.

Which process(es) take(s) place in the converter?

- 1 Hydrocarbons are reduced to form carbon dioxide and water vapour.
- 2 Carbon monoxide reacts with nitrogen oxides to form carbon dioxide and nitrogen.
- 3 Nitrogen oxides react with hydrocarbons to form water vapour and nitrogen.
- Redox reactions occur.
- A 1 and 2 only
- B 2 and 3 only C 2 and 4 only
- D 3 and 4 only

Queenstown Secondary School

- The average temperature of the Earth has been observed to be increasing gradually. 39
 - Depletion of ozone layer
 - 2 Increase in rate of growth of plants and animals
 - 3 Increase in droughts, wildfires and heavier rainfall
 - 4 Increase in melting of glaciers and ice caps, leading to increase in sea levels

Which of the above describe the environmental effects of an increase in Earth's temperature?

- A 1 and 2 only
- **B** 1, 2 and 3
- C 3 and 4 only
- **D** 2, 3 and 4
- Biodiesel, an alternative fuel made from vegetable oil, can be used as a fuel for vehicles. Although carbon dioxide is released during the combustion of biodiesel, scientists still claim that it is a carbon neutral fuel.

Which is the basis for this claim?

- A Biodiesel is not a carbon compound.
- B Biodiesel produces less carbon dioxide when it burns.
- C Plants release carbon dioxide during respiration.
- **D** Plants absorb carbon dioxide during photosynthesis.

Queenstown Secondary School

The Periodic Table of Elements

		ä,	E		ri s	e	I						8			ИŠ	<u> </u>	\$114			<u> </u>					
0	N	Ĭ	2 4		Ž	9 8	1 2		7 8	-	×	-	D KS	₩.	ম	×	xen	13	*	Õ.	žė.	1				
Ī,				6	i	Sucrime 45	2 5	C) d	100	ĸ	മ്	Oromine.	88	જ			127	92	*	SKIE FE	1		guina a		EA,P410
M				00	0	osygen Te	2 4	2 0) 5	8	ষ্ক	Š	Sec.	2	52	e H		128	8	8	DOMONIA	í	116	<u>></u>	**************************************	1
Λ				-	Z	negotin	ī ų	; a	i i	31	33	As	ANS GOOK	75	5.	හි	ardmeny	122	83	ñ	DSML	88				
N				ø	ပ	Carbon	4 2	t Ø	5 5	8	33	æ	HELLEN STREET	E.	8	స్	Spire.	<u></u>	83	C	D894	202	14	ũ.	flerowium	-
Market .				ιΩ.	a	Lasod **	2 4	2 3	7	23	33	ශී	godium)	2	64	<u>=</u>	irw Meern	15	š	<u> </u>	tremin.	ă			-Bara	
											8	5	ZipiC	8	84	පි	cadmium	<u>5</u>	8	몬	mercuy	Š	21	5	opemicium	1
											ମ	ਹੋ	copper	遨	47	Ag	Sie Col	8	62	Au	2	197	111	œ.	entgenum	i
											83		FRETTE	æ	94	2	mpeged	8	738	盂	platenum	₹ <u>3</u>	110	8	Served and American	,
											27	රි	Coppet	က္ဆ	45	듄	throllens	និ	11	<u></u>	MCKETH	2 3	801	*	methneram	,
		I	hydrogen *								8	Ę.	5	ક્ષ	44	₹	natherium	ē	192	ဝိ	CS-MARCO	8	108	£	Hassium	i
				-							53	S	asauegueu	路	43	ည	ec investions.	,	75	9. 9.	menum	98	107	£	DOMESTI	1
				an per	pq		3				Ä	ರ	Chromasm	젊	42	Ş.	потуровали	88	74	>	tungsten	18	106	8	reaborgium	1
			Key	(atomic) n	TIIC SYM	name					ខា	>	variadium	Ö	20	2	michicina	83	22	G5	(antiatum	6 0	\$65	සි	Chicken	1
				notorid	afo	4					ผ	j=	Manum	#	9	7	ZifeOrnum	ర్గా	22	Ī	hafreum	178	\$01	œ	Ruberfordum	1
											21	တ္တ	Sr. apptium	4	36	>	vitraen	80	57-71	tanthanoids			89 - 103	actinosits		
_				4	Be	muli (coo	, ç		N. H. C.	75	83	පී	Calcium	\$	88	ঠে	Strontum	88	#8	8	Coordinan	137	88	82		i
_				60	:5	SEPARTS -	*	<u>. (1</u>	S Table	ន	<u>6</u>	¥	massepd	क्ष	37	£	rational	83	58	ပိ	caestum	133	29	ů.	francium	•
		IIV I V V VI III		H IV V V V V V V V V V V V V V V V V V V							II	III IV V VI VII H H H H H H H H H	II	I	I	I I I I I I I I I I	I		I	I	I	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	I I I I I I I I I I	Harmon, House, House,

た3輩に	103 -
r Ç 🖁 E	NO NO MOSSEMEN
8E # 8	Md Moraletevalur
98 Erf erferm 167	Femilian I
57 Homen	98 ES ensternum
8 🖳 🕏	8.04 maria
8등활황	8 8 1
980 St 157	8 G g 1
8 <u>円</u> 第	Am amencium
<i>V</i>	Per Description
Pm rondhun	93 Np neplumum
SS mesodymism. 144	92 U Uranum 238
89 B	Pa Packenum 231
89 §	Th tronum 232
S7 Carthenum 139	Ac Ac actinisum

The volume of one mole of any gas is 24 dm3 at room temperature and pressure (r.t.p.)

Queenstown Secondary School

[Turn over

lanthanoids

Name:	() Class: Sec <u>4A</u>
-------	---	------------------------

Queenstown Secondary School

Preliminary Examination 2021 Secondary Four Express Chemistry 6092/02

Time: 1100 - 1245h 25 August 2021 Duration: 1 hour 45 minutes Wednesday

Candidates answer on the Question Paper. Additional Materials:

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number on all the work you hand in. Write in dark blue or black pen. You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid.

Section A

Answer all questions in the spaces provided.

Answer all three questions. The last question is in the form either/or. Answer all questions in the spaces provided.

At the end of the examination, fasten all your work securely together The number of marks is given in brackets [] at the end of each question or part question.

A copy of the Periodic Table is printed on page 21.

The use of an approved scientific calculator is expected, where appropriate.

Examiner's Us	е
Section A	/50
Section B	/30
B8	
В9	
B10	
TOTAL	/80

This document consists of 21 printed pages.

Section A

Answer all questions in this section in the spaces provided.

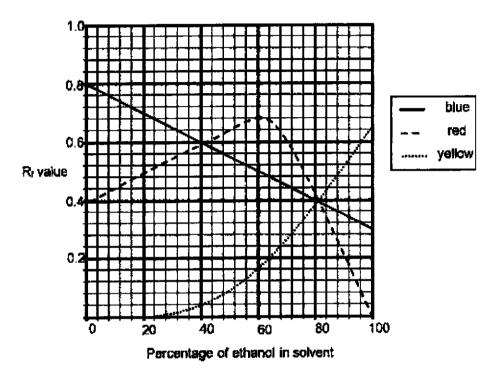
The total mark for this section is 50.

Α1 The diagram shows part of the Periodic Table.

ı	II								III	١٧	٧	VI	VII	VIII
Г]								C	N	0	F	
	Mg		 		 				Αl				Cl	Ar
ĸ	Ca			Сг	Fe		Cu	Zn					Br	
													I	
						Pt								

Answer the following questions using only the symbols of the elements in the diagram.

Each symbol may be used once, more than once or not at all.


Give the symbol of the element that:

(a)	forms a compound which is used to remove acidic impurities in iron		
	extraction,		[1]
(b)	consists of strong covalent bonds between its atoms arranged in a		
	tetrahedral manner,		[1]
(c)	forms an aqueous solution that undergoes complete ionisation to		
	produce a high concentration of hydroxide ions,	*******	[1]
(d)	forms an oxide that reacts with both dilute nitric acid and aqueous		
	sodium hydroxide,		[1]
(e)	is used to fill light bulbs,		[1]
(f)	has variable oxidation states.	**********	[1]

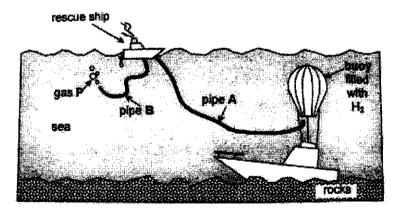
[Total: 6]

Queenstown Secondary School

A2 Black ink contains a mixture of red, blue and yellow dyes. To separate the dyes, the solvent used is a mixture of ethanol and water. Each of the coloured dyes have different R_f values in solvents with different percentages of ethanol in the solvent mixture.

(a) Deduce the R_f value of the yellow dye on the chromatogram when the solvent consists of 40cm³ of ethanol and 160cm³ of water.

(b) Using the information from the graph, justify if the black ink can be separated by using only water as the solvent for paper chromatography.

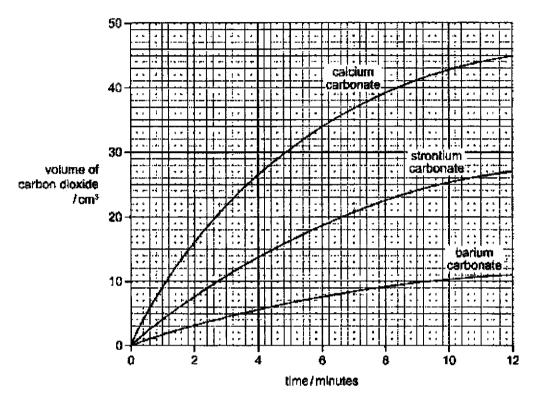

.....

.....[2]

Queenstown Secondary School

	[Total: 5]
	[2]
	black ink is a pure substance.
	Using evidence from the graph, explain why he cannot conclude that the
	forming on the resulting chromatogram.
	mixture of ethanol and water as the solvent. He discovered only one spot
c)	Wayne carried out paper chromatography on the black ink using a

A3 A ship sank after a collision with an iceberg in the sea. Scientists proposed to lift the ship by attaching inflatable buoys to it. The buoys are to be filled with hydrogen gas, which is formed by the electrolysis of seawater, which consists mainly of concentrated aqueous sodium chloride, as shown in the diagram below.


(a)	(1)	is pipe A connected to the cathode or anode? Explain your answer.	
			[1]

Queenstown Secondary School

	(ii)	Write the ionic equation for the reaction that produces hydrogen gas at	
		pipe A.	
			[1]
	(iii)	Identify gas P.	
			[1]
(b)	A sa	mple of the seawater was taken to the laboratory. Electrolysis of the	
	seav	vater was carried out using carbon electrodes.	
	Desc	cribe and explain how the pH of the electrolyte changes.	
			[2]
		[Tota	l: 5]

Queenstown Secondary School

The graph shows the volume of carbon dioxide released when the three granular metal carbonates were heated.

(a)	Which carbonate produced c	carbon dioxide at the highest rate?
-----	----------------------------	-------------------------------------

[1

(b)	How do the rates of the reactions of the three metal carbonates relate to the
	positions of calcium, strontium and barium in the Periodic Table?

			• • • • • • • • • • • • • • • • • • • •
			•••••••••••••••••••••••••••••••••••••••
	••••••	••••••	***************************************

• • • • • • • • • • • • • • • • • • • •			***************************************

Queenstown Secondary School

(c)	Stroi	ntium carbonate is used in electronic applications.	
	(i)	Describe a test to confirm the presence of carbonate ions.	
		test	
		result	[2]
	(ii)	Deduce the number of electrons, protons and neutrons in one strontium	
		ion.	
		number of electrons	
		number of protons	
		number of neutrons	[2]
	(iii)	Describe how strontium carbonate can be prepared in the laboratory.	
		•••••	
			[3]
(d)	Des	cribe the effect each of the following has on the rate of reaction, assuming	
	all of	ther conditions remain the same.	
	(i)	The temperature is increased.	
			[1]
	(ii)	Powdered carbonate is used.	
			[1]
		[Total:	12]

Queenstown Secondary School

A5 The table shows some properties of three halogens

melting point /°C	boiling point /°C
-220	-188
-7	59
114	184
	-220 -7

(a)	Besi	des the increase in melting and boiling points down the group, state	
	anot	her trend for the Group VII elements.	
			[1]
(b)	(i)	Deduce the physical state of bromine at 10°C.	
			[1]
	(ii)	Compare the differences in the arrangement and movement of fluorine	
		molecules below its melting point and above its boiling point.	
			[2]
(c)	(i)	Bromine reacts with 11.5g of sodium to form 30.9g of sodium bromide.	
		Calculate the percentage yield of sodium bromide.	

percentage yield =	=,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	% [2
L		

Queenstown Secondary School

(ii)	Fluorine was then added to the product sodium bromide.	
	Describe what would be observed from the reaction and explain your	
	answer.	
	,	
		[2]
(iii)	Sodium bromide has a melting point of 747°C, which is much higher	
	than bromine's melting point. This is because ionic bonds are much	
	stronger than covalent bonds.	
	Do you agree with this statement? Explain your answer.	
		[2]
	[Total:	10]

A6 Nitrogen and hydrogen react to form ammonia in the Haber process.

The table below shows some bond energies.

bond energy in kJ/mol
456
945
391
436

Queenstown Secondary School

[3]

(a) Using the information given in the table, calculate the enthalpy change when hydrogen and nitrogen react to form ammonia and hence, deduce if the reaction is an exothermic or endothermic reaction.

er process.
•••••••••••••••••••••••••••••••••••••••
[2]
e Haber process.
[1]
volume.
e an equation in your
•••••••••••••••••••••••••••••••••••••••
[2]

Queenstown Secondary School

[Turn over

[Total: 8]

A7	Alloy	s are usually used in our daily lives – kitchenware, infrastructures, automobile	
	parts	and so on. They are even used to electroplate metals. They improve the	
	mech	nanical properties of metals.	
	(a)	Explain how alloys can improve the mechanical properties of metals.	
			[2]
	(b)	Iron is a metal that rusts easily to form iron(III) oxide.	
		A block of magnesium can be placed near the iron metal to prevent iron from	
		rusting.	
		Explain how this prevents iron from rusting.	
			[2]
		[Total	: 4]

Queenstown Secondary School

Section B

Answer all three questions in this section.

The last guestion is in the form of an either/or and only one of the alternatives should be attempted.

B8 The information below shows some issues in the automobile industry.

As part of the Singapore Green Plan, the government will require all new car and taxi registration to be of cleaner-energy models from 2030 onwards. Currently, most of the internal combustion engine (ICE) vehicles in Singapore run on petrol or diesel, and this contributes to 6.4 million tonnes of CO₂-equivalent per year. However, if EV was used, the amount of CO₂ production would decrease to about 2 million tonnes per year.

Source: https://www.channelnewsasia.com/singapore/diesel-cars-taxis-newregistration-to-end-2025-ong-ve-kung-257916

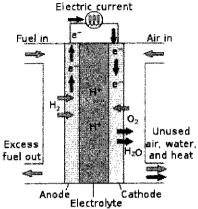
Comparison between ICE and EV

ICE vehicles are less fuel efficient, with 16-25% of energy from the fuel being converted to move the vehicle. The rest of the energy is either lost as heat, friction and etc. Octane, C₈H₁₈, is the fuel used to power ICE vehicles.

EV are more efficient, with 59-62% of the electrical energy used to power the energy, without the production of harmful pollutants. However, the life-cycle emissions of EVs, during the manufacture phase, harmful gases are produced from the mining of lithium which is used in the batteries to power the cars. Also, the electricity generated to power the EV also contributes to the high level of air pollutants.

Source: https://carro.sq/blog/internal-combustion-engine-vehicle-vs-electric/

Types of EVs


There are two types of EVs in the market now. One of them is the hydrogen fuel cell electric vehicles (FCEVs), and the other is the more common battery electric vehicle (BEVs).

FCEVs

A hydrogen fuel cell is an electrochemical device that works like a battery, which converts chemical energy from the fuel to electrical energy in a chemical reaction between hydrogen and oxygen.

The hydrogen fuel cell consists of two electrodes containing platinum catalyst, between which is an electrolyte. The catalyst enables the hydrogen molecules to be separated into electrons and ions. The polymer electrolyte membrane (PEM) allows positive ions to migrate through it, while blocking electrons. Oxygen in the air reacts at one electrode and the hydrogen fuel, on the other. The only product is water. Figure 8.1 below shows how a hydrogen fuel cell work.

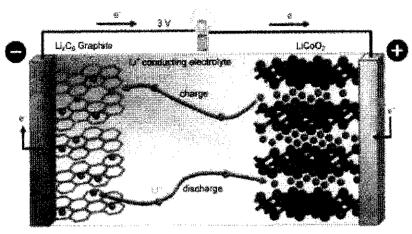
Queenstown Secondary School

Source: https://en.wikipedia.org/wiki/Proton-exchange membrane fuel cell

Figure 8.1

The table below shows some information about hydrogen and octane.

fuel	boiling point / °C	density at room temperature and pressure g/dm ³	volume of 1 mol of fuel at room temperature and pressure /dm³	enthalpy change when 1 mol of fuel is completely burned in kJ/mol	enthalpy change when 1 kg of fuel is completely burned in kJ/kg
hydrogen	-253	0.083	24		-143 000
octane C ₈ H ₁₈	125		0.162	-5075	


Table 8.2

BEVs

Lithium-ion batteries are most commonly used to power BEVs. It contains a graphite anode, a lithium metal oxide cathode and an electrolyte which is a mixture of a lithium salt and an organic solvent. When electricity is applied on the cell, the battery goes in a "charge" mode, where the lithium ions and electrons are separated from the lithium metal oxide cathode. The electrons will move towards the graphite anode through the wire, while the lithium ions move across the electrolyte and will be stored at the graphite anode. The cell is fully charged when all lithium ions and electrons are stored at the graphite anode.

When a battery is connected to power a load, e.g. lightbulb, the "discharge" phase occurs. Electrons and lithium ions will move back to the lithium metal oxide cathode. This creates an electrical current through the load. Figure 8.3 shows the electron flow when a load is applied.

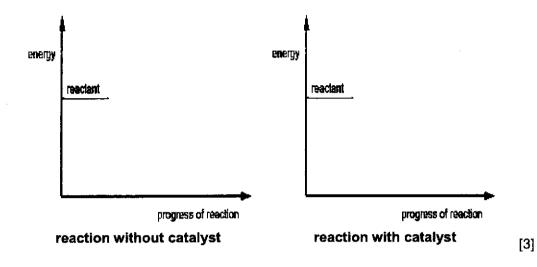
Queenstown Secondary School

Source: https://www.technology.matthey.com/article/59/1/4-13/

Figure 8.3

(a) Complete Table 8.2 on hydrogen and octane. Use the space below to show your working.

(b)	Using information from Table 8.2, evaluate the use of hydrogen and octane as				
	fuels. Your answer should consider the ease of storage or the energy content				
	of the fuels.				
	,,				
		[1]			
(c)	Write the half equations for the cathode and anode for the hydrogen fuel cell.				
	cathode				
	anode	[2]			


Queenstown Secondary School

[Turn over

[3]

The energy output of a fuel cell can be shown using an energy profile (d) diagram.

Complete and label the energy profile diagrams to show the effect of the catalyst on the energy changes in the hydrogen fuel cell.

(e) Lithium-ion battery is different from the conventional simple cell.

Compare and contrast the two types of cells.

[2]

"Oxidation occurs at the anode when the lithium-ion battery is charged." **(f)**

Comment on the validity of the statement.

[Total: 12]

Queenstown Secondary School

Turn over

[1]

People who suffer from kidney disease are encouraged not to consume starfruit **B9** because the fruit contains high levels of oxalic acid, which is dibasic. The formula of oxalic acid can be represented by H₂A.

The concentration of oxalic acid is approximately between 0.5mol/dm3 to 1.0mol/dm3. The concentration of the acid can be determined through performing an acid-base titration with aqueous sodium hydroxide.

Teluo suggested that 25.0cm³ of oxalic acid from the starfruit should be pipetted into a conical flask and titrated against 1.6mol/dm3 of aqueous sodium hydroxide using a burette.

He rinsed the pipette and conical flask with tap water, distilled water, followed by oxalic acid. He then rinsed the burette with tap water, distilled water, followed by aqueous sodium hydroxide.

(a)	State	the error made and explain how this error affects the results.	
			[1]
(b)	Assu	ming that the error was corrected, based on the information provided,	
	calcu	late the maximum volume of aqueous sodium hydroxide needed for	
	com	plete neutralisation.	
			[2]
(c)	Oxal	ic acid contains 2.20% of hydrogen and 26.7% of carbon by mass. The	
	rest i	s oxygen.	
	(i)	Determine the empirical formula of oxalic acid.	

Queenstown Secondary School

[Turn over

[2]

(ii) Given that the relative molecular mass is 90, determine the molecular formula of oxalic acid.

[1]

(iii) A patient was advised not to consume more than 0.05g of oxalic acid per day. If a serving of starfruit contains 0.00013227mol of oxalic acid, calculate the maximum number of servings of starfruit the patient can consume daily.

[2]

[Total: 8]

B10 EITHER

Titanium is a rare and expensive metal, and it is higher than carbon in the reactivity series. It is extracted from rutile, which is a mineral composed mainly of titanium dioxide, TiO₂. Figure 10.1 shows the extraction of titanium.

step 1	Titanium dioxide reacts with chlorine and coke at 1000°C to produce titanium tetrachloride, TiCl ₄ and carbon monoxide. Titanium tetrachloride is cooled and collected. TiCl ₄ exists as a colourless liquid at room temperature and pressure, and its boiling point is 136°C.
step 2	Titanium tetrachloride is then reacted with magnesium at a temperature of 1100°C in a sealed reactor for 3 days to obtain titanium.
step 3	The reactor is cooled and opened to obtain titanium and the other product is magnesium chloride.

Figure 10.1

Queenstown Secondary School

(a)	(i)	Based on the above information, deduce the structure and bonding	
		present in titanium tetrachloride, TiCl4. Explain your answer.	
			[2]
	(ii)	What is unusual about the bonding present in titanium tetrachloride,	
		TiCl ₄ ? Explain your answer.	
			[1]
	(iii)	Hence, suggest a reason why the electrolysis of titanium tetrachloride,	
	,	TiCl ₄ , is not used as a method to extract titanium.	
			[2]
(b)	(i)	Write the chemical equation to show the reaction that occurred in step 1 .	[J
(2)	(1)		[1]
	(ii)	Explain how the product(s) from step 1 affect the health of humans.	נין
	(11)	Explain now the product(s) from step 1 affect the fleath of fidinaris.	
			[4]
/a\	\.,v	Write the chamical equation to show the reaction that occurred in stan 2	[1]
(c)	(i)	Write the chemical equation to show the reaction that occurred in step 2.	[41
			[1]

Queenstown Secondary School

		(ii)	What can you deduce from the reaction in step 2 regarding the reactivity	
			of magnesium and titanium? Explain your answer.	
				[2]
B10	OR		[Total: 10]	
	Inter	_	en compounds are formed between atoms of different Group VII elements are very strong oxidising agents.	
	(a)	This	rine and chlorine react exothermically to form chlorine trifluoride, C/F ₃ . product is poisonous and extremely reactive and is used as part of ear fuel processing and reprocessing, by the fluorination of uranium metal.	
		(i)	Draw the 'dot-and-cross' diagram to show the outer electrons in the	
			bonding of chlorine trifluoride.	
				[2]
		(ii)	When chlorine trifluoride, CIF ₃ , is added to water, it reacts vigorously to produce three gases. One of the gases produced is hydrogen fluoride. Another gas turns damp blue litmus red and then bleaches it. The third gas relights a glowing splint.	
			Write the chemical equation for the reaction between chlorine trifluoride and water.	
				[2]
Queer	nstowi	n Seco	endary School [Turn over	

(b)	Chlorine trifluoride, C/F ₃ , reacts with uranium to produce uranium hexafluoride
	UF ₆ , in the following equation.

(i) Complete the table to show the oxidation states of uranium and fluorine.

element	oxidation state in reactants	oxidation state in products
uranium		+6
chlorine	+3	+1
fluorine	-1	
fluorine	-1	

[1]

(ii)	Using your answers in (b)(i), explain why this is a redox reaction.										
		[2]									

(c) Another interhalogen compound is BrF₃. The liquid of this compound is able to conduct electricity.

Complete the following equation and use it to explain why BrF3 can conduct electricity while bromine and fluorine are non-conductors of electricity.

$BrF_3 \rightarrow BrF_2^+ + \dots$	
	•••
	•••

[Total: 10]

Queenstown Secondary School

[Turn over

[3]

The Periodic Table of Elements

	0	6/1	皇	entra.	4	2	e Z	L COR	ผ	₩	₹	Line of	8	88	Ż	toods.	ಪ	荡	× G	ence	2	88	8	actors	ı				
		-		z:	+					┝								-										u	
	5				ŀ					_	Ö			ļ		1767								******	-				سس
	5					00	0	Cachaga	ά	9	ဟ	13 W 15	ĸ	Z	S,	Secritim	P.	S	<u>u</u>		23	200	<u>6</u>	DOMENTA	ı	116	2	WESTROPLET	1
	>					-	2	Managera	যু	ň.	Q.	asphone	m	ಜ	As	arsenic.	22	51	හි	mannority	122	83	Ö	Tames of	ŝ			- C- C-	
	≥									-	ζĵ	ra.		-		sst.		H			-		_		_		Œ	STOWELES:	1
					ŀ	-	1000 T 100 T 1	-	******	*****	₹	E E:				Ċ'n					-						•••••	**	******
	-				L					-		100					-									~		Citum	-
														8	5	E	8	8	ර 	E COURT	7	8	王'	merca	8	7	5	ni coperni	nanni
														প্র	ਟੋ	edda	2	47	5		8	ድ	₹	g G	197	**	œ	centerio	i
C														8	Z	THE PERSON	8	9	ď	parachan	106	æ.	ă	platinum	3 2	110	රී	Sarmstadeum	J
Circin	Ś													73	රි	1000	66	12	Ē	THOOM!	103	77	<u>.</u>	HICKORY	192	109	\$	methertum	í
		Alexander of the same of the s	I	mydrogen *	-									8	a)	6	8	**	2	autherium in	5	92	റ്	CSPIRE	8	108	ť	E CHOSE	ì
														ĸ	Ę	and arese	22	Q	٢	ectnoctum		24	8	Thenkan	3 8	107	65	Coference	1
					,		<u>তু</u>		mass					75	<u> </u>	Thromain III	25	¥	Ş	Chosena	8	Z.	3	hangstern	184	904	S	eaborgium	1
				K		7 00	atomic symb		relative atomic m					ន	>	emadeum .	Ö	**	2	THEOCHUM NO.	33	Ċ,	œ	antakum	<u>18</u>	305	S	Chibrien S	1
					4	proton (atomic)	atom		relative						j=				****									Ratedonaum	- 1
					L					ļ					ဟ္တ											88 - 103		<u>æ</u>	_
					-	4	.	aying a	6	Ç2		gresium	received.		deletarit.	-				_		and the last	Anti-	-	****		CLASSIC PROPERTY.	(Septem)	,
						~ >			-		æ	· A·A·a							Will work		_								~~~
			**********	managaring a				S		eters e	<u> </u>	S	divides	g-40-0	~~	8			et energy					***	τ-		- a-resi Moneratio	Ē	

												,		
ı	1	1	ı	١	_	l	ı	1	ı	*		23.1	232	1
Sawer Ca	nobelum	mendelevium	和新聞	ensterne	Cambarra	Servicina.	CLETLET	SERVICE HER	pheforeum	Decriment		procacaminat	HENRY.	active m
ت	2	Ž	£	Ŋ	5	Ť	5	A	ā .	2		<u>т</u>		3
8	102	\$	8	88	88	55	8	8	ቖ	88	83	ক ্	8	88
175	173	169	167	165	163	竪	157	152	8	ı		141	\$	8
	Menum	thus m	Erfairm	Polenium.	dysprosium	testern	gadelimin	elsopium	Samanum	(TOTAL PALET	neodymina	manus de sex	Certain	THE PROPERTY.
=	2	E	ŭ	£	<u>ਨ</u>	2	පි	置	<u>E</u>	٤	ž	à.	ප	<u>~</u>
<u>~</u>	e	89	83	6	88	8	35	139	29	19	8	郎	8	63

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.)

Queenstown Secondary School

[Turn over

lanthanoids

MARK SCHEME

1.	А	11.	В	21.	A	31.	В
2.	Α	12.	Α	22.	Α	32 .	Α
3.	С	13.	С	23.	D	33.	D
4.	С	14.	D	24.	В	34.	В
5.	D	15.	Α	25.	D	35.	Α
6.	D	16.	В	26.	В	36.	Α
7.	В	17.	В	27.	С	37.	Α
8.	В	18.	В	28.	В	38.	С
9.	С	19.	Α	29.	С	39.	С
10.	С	20.	С	30.	С	40.	D

Queenstown Secondary School

MARK SCHEME

Section A [50 m]

A1	(a) (d)	<u>Ca</u> Zn / <u>A/</u>	(b) <u>C</u> (e) <u>Ar</u>	(c) <u>K</u> (f) <u>Fe</u> / <u>Cu</u> / <u>Cr</u> / <u>Pt</u>	[3]
A2	(a)	<u>0</u> (20% e			[1]
	(b)	Yes. From the (i.e. the <u>b</u> ink), while insoluble	graph, the R _f values of the blue lue ink will <u>travels further up</u> the the R _f value of the yellow ink is at the original spot). Hence, all t	chromatogram than the <u>red</u> 5 <u>0</u> (i.e. <u>the yellow ink remains</u>	[1]
	(c)	From the had the s	e separated. graph, he must have used <u>80%</u> <u>ame R_t value</u> of <u>0.4</u> . (i.e. had the tance), hence appeared only as	e <u>same solubility</u> / travelled the	[1]
A3	(a)	(ii) 2H1	<u>hode,</u> as the <u>hydrogen ion</u> is <u>dis</u> (aq) + 2e⁻ → H₂(g) orine / C/₂	charged to form <u>hydrogen gas</u> .	[1] [1] [1]
	(b)	The pH o	f the electrolyte increases. e electrolysis, the H* and C/ ion		[1]
		behind <u>N</u> solution	a ⁺ and OH⁻ ions, forming sodium	n hydroxide, which is an <u>alkaline</u>	[1]
A4	(a) (b)	The <u>faste</u> the <u>less</u> r	carbonate or the rate of decomposition, the reactive the metal is, the <u>higher</u> t	less stable the metal carbonate, the position of the metal in	[1] [1]
		fastest w calcium o stable. H	graph, the rate of decomposition hile that of barium carbonate is the least stable while ence, calcium is the least reactive metal in Group II.	the slowest. This shows that le barium carbonate is the <u>most</u>	[1]
	(c)	(i) test	t: add dilute hydrochloric / nitric sult: effervescence is observed, googletate with limewater		[1] [1]
		(ii) <u>36</u> (iii) 1. <u>N</u>	electrons; <u>38</u> protons; <u>50</u> neutro <u>flix</u> aqueous solutions of strontiungether.		[2] [1]
		2. <u>F</u> 3. <u>V</u>	<u>filter</u> the mixture to obtain stronti <u>Vash</u> the residue with distilled w	ater.	[1] [1]
	(d)	(i) An rea	<u>Ory</u> the residue by pressing betw increase in temperature <u>increas</u> ctant particles gain kinetic energ	<u>es</u> the rate of reaction, as the gy and move faster, leading to	[1]
		(ii) The	re effective collisions between the use of powdered carbonate inc re is an increase in available sur	creases the rate of reaction, as	[1]

Queenstown Secondary School

		····· ·	reactant particles, leading to more effective collisions between the	1
			particles.	
			han nasa.	
A5	(a)	The	colour intensity increases / reactivity decreases down Group VII.	[1]
	(b)	(i)	<u>liquid</u>	[1]
	, .	(ii)	arrangement: Fluorine molecules are packed very closely together	[1]
			in an orderly manner below its melting point, while fluorine	
			molecules are <u>far apart</u> in a <u>random</u> arrangement above its boiling	
			point.	1
			movement: Fluorine molecules <u>vibrate</u> about a fixed position below	[1]
			its melting point, while fluorine molecules are free to move above its	
	1-1	/*>	boiling point.	
	(c)	(i)	2Na + Br₂ → 2NaBr Fr. Eqn : 2 2	
			Fr. Eqn.: 2 2 Given : 11.5g ?g	
			$A_c / M_r : 23$ 103	
			0.5mol 0.5mol	[1]
			theoretical mass of NaBr = 0.5 x 103 = 51.5g	1,,
			% yield = 30.9/51.5 x 100 = 60%	
		(ii)	The colourless solution turns red-brown.	[1]
			Fluorine, being more reactive than bromine, displaces bromine from	[1]
			sodium bromide.	[1]
		(iii)	No. [covalent bonds (strong) ≠ intermolecular forces (weak)]	
			Sodium bromide has a higher melting point, as a <u>larger</u> amount of	ra1
			heat energy is required to overcome the strong electrostatic forces	[1]
			of attraction between the oppositely charged ions.	
			Bromine has a lower melting point, as a <u>smaller</u> amount of heat	[1]
			energy is required to overcome the <u>weak intermolecular</u> forces of attraction between the molecules .	[[]
			attraction between the morecuses.	
A6	(a)	ener	gy absorbed for bond breaking = 945 + 3(436) = 2253 kJ	[1]
		,	gy released in bond forming = 6(391) = 2346 kJ	[1]
			alpy change = 2253 + (-2346) = <u>-93kJ</u>	[1]
			ce, the reaction is <u>exothermic</u> .	
	(b)		being a catalyst, provides an <u>alternative pathway</u> with a <u>lower</u>	[1]
			ation energy, allowing more reactant particles to possess the	
			<u>num energy</u> to react, leading to <u>more effective collisions</u> between articles, resulting in a <u>faster</u> rate of reaction increases.	[1]
	(c)		450°C and 200atm	[1]
	(d)		$0 + 3H_2(g) \rightleftharpoons 2NH_3(g)$	[1]
	(4)		the equation, 1 mole of nitrogen reacts with 3 moles of hydrogen to	[1]
			uce 2 moles of ammonia.	` *
		•		
A7	(a)		s can improve the mechanical properties of metals by increasing the	[1]
			ness and strength of the pure metals.	
			cys, the presence of atoms of a <u>different size disrupts the orderly</u>	[1]
			ngement of atoms, causing the layers of atoms to be unable to slide	
	/n. 5		each other easily.	141
	(b)		nesium prevents iron from rusting using the <u>sacrificial protection</u>	[1]
			od. Magnesium, being more reactive than iron, corrodes in place of	[1]
		iron.		1

Queenstown Secondary School

Section B [30 m]

B8	(a)	1mol = 0.162dm ³	
		$114g = 0.162dm^3$ $\frac{1}{2} = \frac{1}{2} \frac{1}{2}$	[1]
		density = $114g \div 0.162 dm^3 = 704g/dm^3$	[1]
		$1 dm^3 = 0.083g$	
		$24dm^3 = 0.083g \times 24dm^3 = 1.992g$	
		1000g = -143000kJ	
		enthalpy change = -14300 ÷ 1000g x 1.992g = <u>-285</u> kJ/mol	[1]
		Childipy Gialige - 14000 - 1000g x 1.002g - 2001011101	ן ניין
		1mol = -5075kJ	
		no. of mol. of $C_8H_{18} = 1000g \div 114 = 8.7719$ mol	
		enthalpy change = 8.7719mol x (-5075kJ) = -44500kJ/kg	[1]
	:		
	(b)		[1]
		Hydrogen is a gas, while octane is a liquid at room temperature and	
		pressure. This makes hydrogen more dangerous and difficult to store.	
		OR	
		Hydrogen is a more energy efficient fuel.	
		Hydrogen has a larger energy content than octane. For 1kg of each fuel,	
		hydrogen releases more energy (i.e. 143000kJ) than octane (i.e.	
		44500kJ).	
	(c)		[1]
	1-15	anode: $H_2(g) \rightarrow 2H^+(aq) + 2e^-$	[1]
	(d)		[3]
		1m – energy level of product is <u>lower</u> than that of reactant	
		1m – correct labelling of enthalpy change using a one-sided arrow	
		1m correct labelling of <u>activation energy</u> using a one-sided arrow; activation analysis layer for the reaction with actorize	
	(0)	activation energy is <u>lower</u> for the reaction with catalyst	[1]
	(e)	The conventional simple cell uses two metals of different reactivity, while the lithium-ion battery uses only one metal, i.e. lithium.	ן נין
		In the conventional simple cell, the more reactive metal is the anode.	[1]
		while in the lithium-ion cell, graphite anode is used.	[,,]
	(f)	The statement is <u>not valid</u> .	[1]
	('')	During charging, electrons and lithium ions move out of the cathode	"
		towards the anode. The gain of electrons is a reduction process.	
B9	(a)		[1]
		This error will result in a larger volume of aqueous sodium hydroxide	
		required to neutralise the oxalic acid from the burette.	
	(b)	H_2A + 2NaOH \rightarrow Na ₂ A + 2H ₂ O	
		Fr. Eqn.: 1 2	
		Given: 1.0mol/dm³ 1.6mol/dm³	
		25.0cm³ ?cm³	
		0.025mol 0.050mol	[1]
-		maximum volume of NaOH = 0.050 mol ÷ 1.6 mol/dm ³ = 31.3 cm ³	[1]
	L		1

Queenstown Secondary School

-	(c)	(i)		С	Н	0		
	(-,	17	%	26.7	2.20	71.1		
] ;			$A_{\rm f}$	12	1	16]	
			no. of mol.	2.225	2.20	4.44375]	[1]
			÷ 2.2	1	1	2	1	
			: empirical for	mula = <u>CHO</u> ₂				[1]
		(ii)	$(CHO_2)_n = 90$					
			n = 2					[4 1
		4		$nula = C_2H_2O_4$	05 - 00 - 0.00	055550		[1] [1]
		(iii)		oxalic acid = 0.	05 ÷ 90 = 0.00	iu55556moi		L'J
				00013227 mol s = 0.00055556	5 mal + 0 0001	3997 ~ A		[1]
			no. or serving	5 - 0.00000000	0.0001	5221 ~ <u>∓</u>	İ	
B10	Eithe	∍r						
	(a)	(i)			<u>olecule,</u> with <u>we</u>	<u>eak intermolect</u>	<u>ılar</u>	[1]
]				n molecules.			1	
				information giv	en, TiC/₄ has a	<u>oq pniliod wol</u> s	int of	[1]
		/***	<u>136°C</u> .		talağındırın tərəv			741
		(ii)		i is a <u>metal</u> and				[1]
ļ			•	med should be ding occurs be			1	
		(iii)				nce of mobile c	haroed	[2]
							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	(b)	(i)		particles prevents the electric current from being carried. TiO₂ + 2C/₂ + 2C → TiC/₄ + 2CO [[1]
	` '	(ìi)	When inhaled, CO combines with <u>haemoglobin</u> in blood, causing				[1]	
				the body to be starved of oxygen, leading to death.				
	(c)	(i)	· · · · · · · · · · · · · · · · · · ·			[1]		
		(ii)				[2]		
			from titanium chloride.					
040	O				-			
B10	Or	(i)	'Dot and cros	s' diagram of F	- C/- E (covs	ulent)		[2]
	(a)	(1)	Dol-ano-cros	s diagram on	- C/ - 1 (COVE	iletit)		[4]
					F			
		(ii)	4C/F ₃ + 6H ₂ O	→ 12HF + 3O ₂	2 + 2C/2			[2]
-	(b)	(i)	<u>0; -1</u>					[1]
		(ii)	U is <u>oxidised</u> ,	as the oxidatio	n state of ura r	nium increases	from <u>0 in</u>	[1]
			<u>U</u> to +6 in UF ₆ .					
			C/ in C/F ₃ is reduced, as the oxidation state of chlorine decreases [[1]	
		_	from +3 in C/F	$_3$ to $+1 \ln C/F$.				ran.
	(c)	<u>F</u>				- £		[1] [1]
			can conduct el			ot <u>mobile (ions)</u> ,	, wnich	Lil
				s the electric current to be carried. The and fluorine are non-conductors of electricity as they both exist				
								[1]
			eutral molecules. The <u>absence</u> of <u>mobile charged particles</u> prevents lectric current from being carried.					
	 			TOTAL DOLLING COLL				

Queenstown Secondary School

Name:	. ()	Class: Sec <u>4A</u>
-------	-------	----------------------

Queenstown Secondary School

Preliminary Examination 2021 Secondary Four Express Chemistry 6092/01

1 September 2021 Wednesday

Time: 1200 - 1300h

Duration: 1 hour

Additional Materials: Multiple Choice Answer Sheet

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

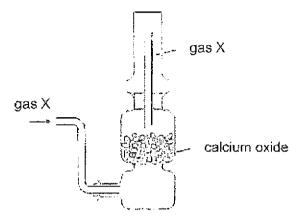
Do not use staples, paper clips, glue or correction fluid.

Write your name, class and index number on the Answer Sheet in the spaces provided.

There are forty questions on this paper. Answer all questions. For each question there are four possible answers A, B, C and D.

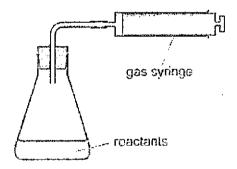
Choose the one you consider correct and record your choice in soft pencil on the separate Answer Sheet.

Read the instructions on the Answer Sheet very carefully.


Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any rough working should be done in this booklet.

A copy of the Periodic Table is printed on page 20.

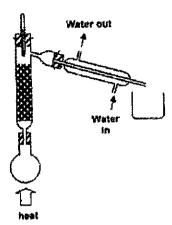
The use of an approved scientific calculator is expected, where appropriate.


This document consists of 20 printed pages.

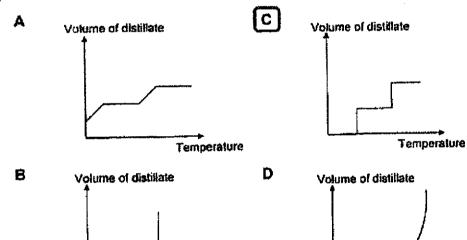
The experimental set-up below is used to collect a clean, dry sample of gas X. 1 Gas X was given off after ammonium chloride and calcium hydroxide was mixed together and heated in a test-tube. Gas X = NH₃

What can be deduced about gas X?

- 1 It is soluble in water. ✓
- 2 It is less dense than air. ✓
- 3 It can also be dried using concentrated sulfuric acid. * [calcium oxide]
- A 1 and 2 only
- B 1 and 3 only
- C 2 and 3 only
- D 1. 2 and 3
- The apparatus shown is used to measure the rate of a reaction.



Which of the following reaction rate can be measured using this apparatus?


- A calcium with dilute hydrochloric acid ✓ [H₂ produced]
- B copper with dilute nitric acid * [no reaction]
- C aqueous sodium carbonate with aqueous silver nitrate * [no gas produced]
- D chlorine with aqueous potassium bromide × [no gas produced]

Queenstown Secondary School

The diagram shows the apparatus used to separate liquid R (boiling point 70°C) and 3 ethanol (boiling point 98°C).

Which graph would be obtained if volume of distillate collected was plotted against temperature?

Temperature

Queenstown Secondary School

[Turn over

Temperature

- 4 Three separations are listed below.
 - 1 Obtaining oil from a mixture of oil and water. [immiscible liquids]
 - 2 Obtaining ammonium chloride from a mixture of ammonium chloride and sodium chloride.
 - 3 Obtaining solid copper(II) sulfate [soluble] from copper(II) sulfate solution

Which techniques would be involved in separation 1, 2 and 3 respectively?

	1	2	3
Α	simple distillation	sublimation	crystallisation
В	simple distillation	crystallisation	filtration
С	separating funnel	<u>sublimation</u>	<u>crystallisation</u>
D	separating funnel	crystallisation	filtration

- 5 The following observations were recorded after various tests were carried out on a green solid.
 - A blue precipitate was observed when aqueous ammonia was added to an aqueous solution of the green solid. [Cu²⁺]
 - Effervescence was formed when dilute nitric acid was added to the green solid. Upon adding aqueous barium nitrate to the resultant mixture, no visible reaction was seen. [CO₃²-]

What could be the identity of the green solid?

A iron(II) nitrate C copper(II) sulfate

B iron(II) suifate D copper(II) carbonate

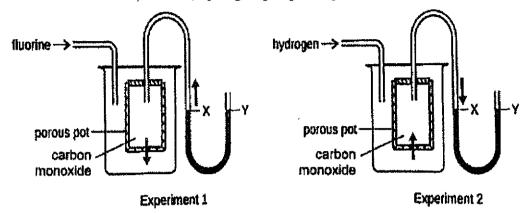
In an experiment, 4.0cm³ of 1.0mol/dm³ iron(III) sulfate solution is mixed with 4.0cm³ of 1.0mol/dm³ sodium hydroxide solution. [Fe³* (aq) + 3OH⁻ (aq) → Fe(OH)₃ (s)]

excess limiting

What does the reaction vessel now contain?

A a green precipitate and an colourless solution

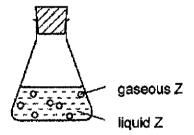
B a green precipitate and an orange solution


C a red-brown precipitate and a colourless solution

D a red-brown precipitate and an orange solution

PartnerInLeaming

Queenstown Secondary School


Two experimental set-ups used to demonstrate the diffusion of gases are shown in 7 the diagrams below. In each porous pot is carbon monoxide $[M_r = 28]$. In the first experiment, the gas introduced into the beaker is fluorine gas $[M_r = 38]$, while in the second experiment, hydrogen gas $[M_r = 2]$ was introduced.

What changes, if any, to the water levels X and Y would you expect to see in both experiments?

	experiment 1	experiment 2
A	Y is higher than X	X is higher than Y
В	X is higher than Y	Y is higher than X
С	X and Y remain the same	Y is higher than X
D	X and Y remain the same	X and Y remain the same

The conical flask contains compound Z which is present in liquid and gaseous states. 8

Which statement is correct?

- A The molecules in gaseous Z slide over each other. * [move freely]
- B Energy is lost when compound Z changes from gas to liquid.
- C Compound Z sublimed from liquid Z to form gaseous Z. ➤ [solid]
- D Compound Z has a range of boiling points. * [fixed]

Queenstown Secondary School

9 The table gives some statements about atoms and explanations for these statements. Which row shows both a correct statement and a correct explanation for the statement?

	statement	explanation
A	atoms are electrically neutral	same number of electrons and neutrons × [protons]
В	atoms of metals tend to gain electrons x [tose]	to achieve a full valence shell
c	the mass of an atom is	presence of protons and neutrons
	concentrated in its nucleus	<u>in nucleus</u>
_	the nucleus and electrons repel each	nucleus and electrons have opposite
D	other * [attract]	charges

10 The table shows information about particles R and S.

particle	number of			
particle	protons	neutrons	electrons	
R	11 2,8 <u>,1</u>	12	10	
S	19 2,8,8,<u>1</u>	20	18	

positive ion positive ion

Which of the following statement is correct for both R and S?

PartnerInLearning

- A Both are atoms in the same Group.
- B Both are isotopes of the same element.
- C Both are positive ions in the same Group.
- **D** Both are positive ions in different Groups.

Queenstown Secondary School

Some properties of substances P, Q, R and S are given in the table. 11

	percentage	solid		
substance	composition by	conducts	changes on heating	
	mass	electricity		
Р	Varios	70	solid burns to form carbon dioxide	
	varies	по	and water	
Q	constant	yes	solid burns in air to form an oxide	
R	varies	no	solid melts	
S	constant	yes	solid decomposes	

Which classification of substances is correct?

	element	mixture	compound
Α	S, Q	Р	R
В	Q	<u>P. R</u>	<u>s</u>
С	s	Р	Q, R
D	R	P, Q	S

12 Lithium and fluorine react to form lithium fluoride.

A student writes three statements about the reaction.

- 1 Lithium atoms lose an electron when they react. ✓
- 2 Each fluoride ion has one more electron than a fluorine atom. ✓
- 3 Lithium fluoride consists of strong electrostatic forces between atoms. * [ions]

Which statements are correct?

A 1 and 2 only B 1 and 3 only C 2 and 3 only D 1, 2 and 3

Queenstown Secondary School

13 The compound below is made up of hydrogen and the elements X, Y and Z.

Which statement is incorrect?

- A Element Z is most likely from Group VII.
- B Element X is most likely from Group IV.
- C The compound is formed by the losing and gaining of electrons.
 - * [sharing]
- D The compound has the molecular formula X₅H₃YZ.
- 14 Carbon and silicon are both in Group IV of the Periodic Table.

At room temperature, CO2 is a gas whereas SiO2 is a solid.

Which statement explains this?

- A Covalent bonding is weaker in CO₂.
- B Covalent bonds in CO₂ are double bonds and in SiO₂ the covalent bonds are single bonds.
- C CO₂ is a covalent compound and SiO₂ is an ionic compound.

PartnerInLearning

D CO₂ is a simple covalent molecule and SiO₂ is a giant covalent molecule.

Queenstown Secondary School

15	Below are	four	statements	about	metals.

- 1 Metals can conduct electricity.
- 2 Metals have high melting points, except some metals. ✓
- 3 Metals contain a lattice of positive ions in the presence of delocalised electrons. ✓
- 4 Metals require a large amount of energy to overcome the strong covalent bonds between the atoms. * [forces of attraction between + ions and e]

Which of the following statements is correct?

- A Statement 1 is correct and statement 3 explains statement 1.
- B Statement 2 is correct and statement 4 explains statement 2.
- C Statement 3 is incorrect and statement 4 is correct.
- D All statements are correct but statement 1 does not explain statement 2.
- 16 Two moles of X decompose rapidly at room temperature to give one mole of oxygen and two moles of bromine. $[2Br_2O \rightarrow O_2 + 2Br_2]$

What is the molecular formula of X?

- A BrO₂
- B Br₂O
- C Br₂O₂
- D Br₄O₂
- 17 All ammonium salts produce ammonia gas on heating with sodium hydroxide. Which ammonium salt has the greatest percentage mass of nitrogen?
 - A NH₄C/
- B NH₄NO₃
- C (NH₄)₂SO₄
- D (NH₄)₃PO₄

- 26.2%
- 35%
- 21.2%
- 28.2%
- 12.0 g of anhydrous magnesium sulfate combines with 12.6 g of water to form hydrated magnesium sulfate.

What is the formula of the hydrated magnesium sulfate?

- A MgSO₄.9H₂O
- B MgSO₄,7H₂O
- **C** MgSO₄.5H₂O **D** MgSO₄.3H₂O

Queenstown Secondary School

l'Turn over

	MgSO ₄	H₂O
mass	12.0 g	12.6 g
M _r	120	18
mass / M _r	0.1	0.7
÷ 0.1	1	7

19 Upon strong heating, a metal nitrate compound undergoes decomposition according to the following equation:

$$2XNO_3(s) \rightarrow 2X(s) + 2NO_2(g) + O_2(g)$$

Complete decomposition of 6.80g of the nitrate gives 480cm³ of oxygen, measured at room temperature and pressure. What is the relative atomic mass of X?

- A 108
- B 170
- C 216
- **D** 340

$$2XNO_3(s) \rightarrow 2X(s) + 2NO_2(g) + O_2(g)$$

Fr. Eqn.: 6,80g

0.48dm³

0.04mol

0.02mol

$$M_r$$
 of XNO₃ = 6.80g ÷ 0.04mol = 170

$$A_r$$
 of X = 170 - 14 - 3(16) = 108

20 0.5mol/dm³ sulfuric acid is added gradually to a flask containing 20cm³ of 2.0mol/dm³ sodium hydroxide solution.

What is the total volume of the mixture in the flask when the solution is just neutral?

- A 20cm³
- B 40cm³
- C 60cm³
- D 80cm³

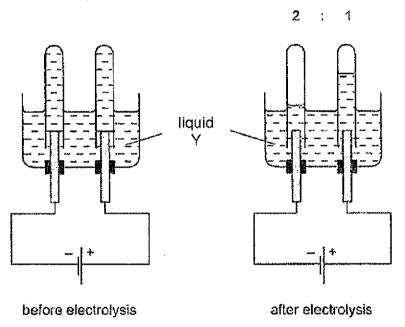
 H_2SO_4 + 2NaOH \rightarrow Na₂SO₄ + 2H₂O

Fr. Eqn.: 0.5mol/dm³ 2.0mol/dm³

?cm³

20cm³

0.02mol 0.04mol


Volume of $H_2SO_4 = 0.02$ mol $\div 0.5$ mol/dm³ = 0.04dm³ / 40cm³

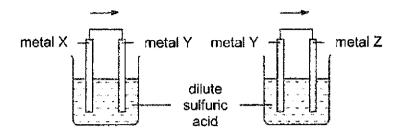
Queenstown Secondary School

Magnesium can be produced by electrolysis of molten magnesium chioride, MgCl₂. 21 What are the equations for the reactions that occur at the positive electrode and at the negative electrode? Mg24, C/

	positive electrode	negative electrode
Α	2CF → Cl ₂ ÷ 2e ⁻	ĭVg²+ + 2e → Nig
В	40H ⁻ → 2H ₂ O + O ₂ + 4e ⁻	$2H^+ + 2e^- \rightarrow H_2$
C	2C/⁻ + 2e⁻ → C/ ₂	$Mg + 2e \rightarrow Mg^{2+}$
D	Mg²+ + 2e⁻ → Mg	$2CI^- \rightarrow CI_2 + 2e^-$

The diagrams show an electrolysis set-up using inert electrodes. 22

Which could be liquid Y?

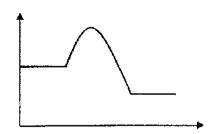

- aqueous magnesium nitrate H⁺, OH⁻, Mg²⁺, NO₃⁻
- aqueous copper(11) sulfate H+, OH+, Cu2+, SO42-2
- concentrated hydrochloric acid H+, OH-, C/ 3
- dilute sulfuric acid H1, OH1, SO42-

C 1, 2 and 4 only D 1, 3 and 4 only A 1 and 4 only B 2 and 4 only

Queenstown Secondary School

23 Two cells were set up as shown in the diagram.

The arrows show the direction of electron flow in the external circuits. X > Y > Z


Which set of metals would give the electron flows in the directions shown?

	metal X	metal Y	metal Z
Α	Ag	Cu	Zn
В	Ag	Zn	Cu
С	Cu	Zn	Ag
D	<u>Zn</u>	<u>Cu</u>	<u>Ag</u>

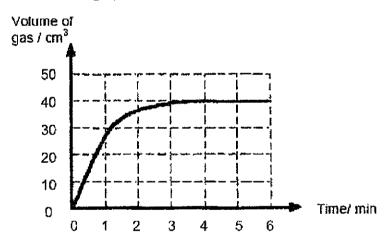
The reaction between P and Q to produce R is a reversible reaction. The activation energy for the forward reaction is +345 kJ/mol and can be represented as

$$P + Q \rightleftharpoons R$$
 $\Delta H = -45 \text{ kJ/mol}$

The energy profile diagram is shown below. exothermic

Which of the following options correctly describes the reverse reaction?

	type of reaction	activation energy (in kJ/mol)	ΔH (in kJ/mol)
A	exothermic	+345	-45
В	endothermic	<u>+390</u>	+45
C	exothermic	-345	-4 5
D	endothermic	-390	+45


Queenstown Secondary School

25 Which of the following statements best describes the mechanism of a hydrogenoxygen fuel cell?

The electrode reactions in a hydrogen-oxygen fuel cell are shown below.

: $O_2(g) + 2H_2O(l) + 4e^- \rightarrow 4OH^-(aq)$ at the positive electrode at the negative electrode : $H_2(g) + 2OH^-(aq) \rightarrow 2e^- + 2H_2O(l)$

- A Electricity is used to provide heat energy.
- B Electricity is used to generate hydrogen and oxygen.
- C Hydrogen ions react with hydroxide ions to generate electricity.
- D Hydrogen and oxygen undergo redox reactions to generate electricity.
- The rate of reaction between pieces of zinc [limiting] and 1.0mol/dm3 hydrochloric 26 acid [excess] was investigated. The total volume of gas produced every minute was recorded over a period of time. The zinc had completely reacted in the reaction and the results are shown in the graph below.

What would be expected if the experiment was repeated using the same mass of zinc and the same volume of 0.5mol/dm3 hydrochloric acid? [] conc. = [speed]

	maximum volume of gas produced	time at which maximum volume is obtained
Α	40cm ³	less than 4 minutes
В	<u>40cm³</u>	longer than 4 minutes
С	20cm³	less than 4 minutes
D	20cm ³	longer than 4 minutes

Queenstown Secondary School

27 A household bleach contains sodium chlorate(I), NaC/O, as its active ingredient. When sodium chlorate(I) is stirred into excess aqueous hydrogen peroxide, the reaction that occurs is represented by the following equation.

NaC/O (aq) +
$$H_2O_2$$
 (aq) \rightarrow NaC/ (aq) + O_2 (g) + H_2O (/)

Which of the following can be deduced from the reaction?

- 1 Hydrogen peroxide acts as a reducing agent in this reaction. ✓
- 2 Hydrogen peroxide acts as an oxidising agent in this reaction. *
- 3 The final solution gives a white precipitate with acidified silver nitrate. ✓ [C/]
- 4 The final solution bleaches damp litmus paper. **≭** [no Cl₂]
- A 1 only B 2 only C <u>1 and 3</u> D 2 and 4
- 28 Which of the following statements about sulfuric acid is/are true?
 - 1 It is used to make fertilisers. ✓
 - 2 It causes Universal Indicator to turn orange due to the low amount of H⁺ ions.
 - * [red, high]
 - 3 It reacts with sodium hydroxide to form a soluble salt and hydrogen gas.
 - * [water]
 - 4 It reacts with lead(II) carbonate to form an insoluble salt, carbon dioxide and water. ✓
 - A 1 and 2 only B 1 and 4 only C 2 and 3 only D 3 and 4 only
- 29 Which of the following salts can be prepared using the same method?
 - A zinc chioride [soluble non-SPA], calcium sulfate [insoluble]
 - B potassium iodide [soluble SPA], lead(II) iodide [insoluble]
 - C copper(ii) sulfate, lead(ii) nitrate [soluble non-SPA]

<u>PartnerinLearning</u>

D potassium nitrate [soluble - SPA], magnesium nitrate [soluble - non-SPA]

Queenstown Secondary School

- Which of the following are true of Haber Process? 30
 - Nitrogen is obtained from the cracking of petroleum.
 - * [fractional distillation of air]
 - 2 1 mole of nitrogen reacts with 3 moles of hydrogen to form ammonia. ✓
 - 3 Unreacted nitrogen and hydrogen are released into the atmosphere.
 - * [recycled]
 - 4 Finely divided iron provides an alternative pathway with lower activation energy.
 - A 1 and 2 only
- B 1 and 3 only
- C 2 and 4 only D 3 and 4 only
- The table below shows some information of three elements. 31

element	Р	Q	R
atomic number	10	11	7
	2.8	2.8.1	2.5

Which of the following statements about the elements is correct?

- A P exists as a monatomic element and is used to fill up balloons. * [Ar]
- B P and R are in the same period as their atoms occupy two electron shells each.
- C The compound formed between P and Q has a high melting point.
 - * [unreactive]
- D Q and R form a compound that has a formula of QR₃. * [Q₃R]
- Rubidium, Rb, is an element in the same group of the Periodic Table as lithium, sodium and potassium.

Which statement about rubidium is likely to be correct?

- A It forms a manganate with the formula RbMnO4.
- B It forms an insoluble hydroxide. * [soluble]
- C It is obtained by the electrolysis of aqueous rubidium chloride. * [molten]
- D It reacts slowly with cold water to form an alkaline solution. * [explosively]

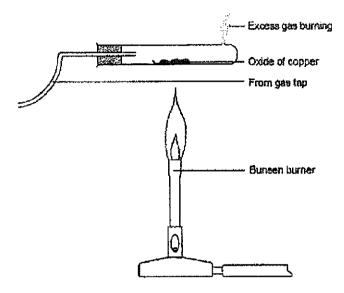
Queenstown Secondary School

33 The information below shows the percentage of carbon in two samples of steel, Q and R. Q consists of 60% carbon while R consists of 20% carbon.

[↑ carbon → harder and stronger; more brittle]

Which statement is correct about the two samples of steel?

- A Q has higher strength and less brittle than R.
- **B** R has higher strength and more brittle than Q.
- **C** Q has lower strength and more brittle than R.
- D R has lower strength and less brittle than Q.
- 34 The table below provides information on the chemical properties of four metals and some of their compounds.


metal	metal + steam	metal oxide + coke	strong heating of metal carbonate
W	H₂ evolved	oxide reduced	CO₂ evolved
X	H₂ evolved	no visible reaction	no visible reaction
Υ	no visible reaction	oxide reduced	CO₂ evolved
Z	H₂ evolved	no visible reaction	CO₂ evolved

Which of the following shows the correct order of reactivity of the metals?

	most reactive		→					
A	Y	W	Z	X				
В	<u>x</u>	<u>Z</u>	<u>w</u>	Y				
С	z	×	W	Y				
D	w	×	Y	Z				

Queenstown Secondary School

The following set-up is used to study the reduction of an oxide of copper. 35 The oxide of copper is Cu_2O , which is a red solid. [H₂ + $Cu_2O \rightarrow H_2O + 2Cu$] What would be observed when the reaction has stopped, and what is the purpose of burning the excess gas?

	observation	purpose for burning excess gas
A	and a state area because [Co.1]	hydrogen gas used to reduce oxide is
A	red solid turns brown [Cu]	highly flammable
ь		carbon monoxide used to reduce oxide is
В	red solid remains unchanged	poisonaus
С	red solid turns brown	carbon dioxide is a pollutant
_		nitrogen dioxide gas used to reduce oxide
D	red solid turns black	is a pollutant

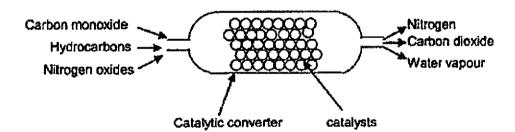
36 Which of following reactions does not occur in a blast furnace during the extraction of iron?

$$C$$
 $CO_2 + C \rightarrow 2CO$

B CaO + SiO₂
$$\rightarrow$$
 CaSiO₃ D Fe₂O₃ + 3CO \rightarrow 2Fe + 3CO₂

Queenstown Secondary School

37 The following diagram shows a simplified process of desulfurisation.


 $[CaCO_3 + SO_2 \rightarrow CaSO_3 + CO_2]$ purified gases to chimney

CaCO_3

desulfurisation chamber

Which of the following correctly describes the process?

- A The purified gases give a white precipitate in limewater. [CO₂]
- B Carbon monoxide present in the flue gases reacts with CaCO₃.
- C The purified gases decolourise acidified aqueous potassium manganate(VII).
- D The desulfurisation process is a redox reaction.
- 38 The diagram below shows the cross section of a catalytic converter in the exhaust system of a car.

Which process(es) take(s) place in the converter?

- 1 Hydrocarbons are reduced to form carbon dioxide and water vapour.
- 2 Carbon monoxide reacts with nitrogen oxides to form carbon dioxide and nitrogen. [2CO + 2NO → 2CO₂ + N₂]
- 3 Nitrogen oxides react with hydrocarbons to form water vapour and nitrogen.
- 4 Redox reactions occur. [CO is oxidised to CO2; NO is reduced to N2]

A 1 and 2 only B 2 and 3 only C 2 and 4 only D 3 and 4 only

Queenstown Secondary School

- The average temperature of the Earth has been observed to be increasing gradually. 39
 - 1 Depletion of ozone layer * [CFCs]
 - 2 Increase in rate of growth of plants and animals *
 - 3 Increase in droughts, wildfires and heavier rainfall
 - 4 Increase in melting of glaciers and ice caps, leading to increase in sea levels

Which of the above describe the environmental effects of an increase in Earth's temperature?

- A 1 and 2 only
- **B** 1, 2 and 3
- C 3 and 4 only
- **D** 2, 3 and 4
- Biodiesel, an alternative fuel made from vegetable oil, can be used as a fuel for vehicles. Although carbon dioxide is released during the combustion of biodiesel, scientists still claim that it is a carbon neutral fuel.

Which is the basis for this claim?

- A Biodiesel is not a carbon compound.
- B Biodiesel produces less carbon dioxide when it burns.
- C Plants release carbon dioxide during respiration.
- D Plants absorb carbon dioxide during photosynthesis.

Queenstown Secondary School

The Periodic Table of Elements

		c, a	<u> </u> [4	0	a)	6 o	200	ب	<u> </u>	i.o.	يسق	g,,		v	ő X	ťυ	_	Ę.				
1	_	,, π	- 변 ^기	1.2	Z	E C		⊲(ति ^{चेर}	10	کد	₹"))	×	∳ (C	Ú	œ	ŭ				_
	WII.			60	سلا	(unate 15	44	Ö	85.55 85.55	33	ğ	91660 000 000	53		<u> </u>	69	¥					
	Λš	:		60	0	(8.23) 1 23	15	ഗ	ଜୁଞ	34	Se	7.9 P.	C)	<u>e</u>	138 138	64	S	mr.cad	116	ث	(Figure :	'
	У			2	z	다. 라마카	5	α.	8,000,000,000,000,000,000,000,000,000,0	33	As	ਹਵਤਾਹ 7 3	21	SS.	506 more 102	33	ö	Psmed 200				
	<u> </u>			S	ပ	⁽²)	W.T	S	្តីដ	32	e G	лест эттер 73	ន	ပ်	2 1 2	82	5	307 200	114	ìī.	fleto trum	-
	=			10	മ	boron 11	₽	₹	24.7.1.1.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	33	ගු	E-126	6	드	115 115	3.5	Ë	12 Jun				
										83	5	8 8	48	පි	112	몺	呈	Sec. 20	112	ర్	manamedo)	ŀ
										53	ਟੋ		- 25	Åg	158 158 158 158 158 158 158 158 158 158	<u>6</u> 7	Ρ	69.4 197	111	ő.	munectua	
Group										83	Z	<u> </u>	\$	ď	106 106	78	ă.	dather 195	110	රි	AL MARKET	ı
Gre										27	රි	13 65 69	45	돈	modern 103	11	<u>-</u>	184 July 194	£9;	1	ภะสเทษาก	1
		- I	tycroten 1							28	9	<u>8</u> 3	**	2	برانطان 1 0 1	76	ဝိ	(Sm°.T)	108	Ţ	מטוציאני	7
		•		-						52	Mn	патузнеsе 55	43	ပ	tertredium -	75	8. 9.	185 185	107	ត៍ភ	DOI THE	-
				ımter	bot	mass				72	ರ	82 BB	42	ş	मंदर् t d डर णन १५	74	>	tungsten 184	106	S,	confides	1
			Key	(etcmic) n	mic sym	רבת relative atomic ה			:	ន	>	vanadium 51	41	운	10.00 10.00	E	<u>~</u>	tentesum 181	105	යි	SULTING CHILD	-
				proton	atol	refati						Starrum 45	1						1		Recedent	
				,			-		:	2.1	သွ	scardum 45	83	>-	E 68	57-71	entrenods		69 - 103	80.00		
	II.			4	Be	馬(50g) (10g)	12	2	ตอมกะรณา 24	20	ගී	다.	33	ഗ്	නිය. දිනි	ŝ	Ba	bedum 137	88	Ra	(\$17 PM)	
	_					ξ 2	,				_					1			1			

74 [Lu (min) 178	103 LT andrema
70 Yb meson 573	8 8 전 년 전 년
83 Tm 169	101 Md marderum T
88 Er etter 167	100 Final Fi
67 Ho mutuwa 165	្ស ពីក្រុស មានស្រួ
និក្ខា ខេត្ត	822 E
65 Tb keora	9. 2. 2. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.
64 Gd gatc.num 157	용 은 를 1
68 Eu euszan 152	S5 Am amendan -
Sm Sm sencion	94 Pu phtonum -
61 Pm projekten -	93 Np nepkrum -
60 Nd геофтит 144	92 Uranam 238
59 Pr presedent	91 Pa pretamenta 231
SS George 140	8년 대 222
57 La .acterum 139	Ac Ac admum

The volume of one mole of any gas is 24 \mbox{dm}^3 at room temperature and pressure (r.t.p.)

Queenstown Secondary School

[Turn over

lanthanoids

actinoids