3

Section A: Multiple Choice Questions [40 marks] Each question below is provided with 4 options A, B, C and D. Select the most suitable option and shade the corresponding letter A, B, C or D in the Answer Sheet provided.

1 The following apparatus can be used to collect gaseous product.

Which chemical reaction produces a gas that can be collected using the above apparatus?

- Α 2H₂O₂ → 2H₂O + O₂
- В Fe + H₂SO₄ → FeSO₄ + H₂
- C $PbO_2 + 4HCl \rightarrow PbCl_2 + Cl_2 + 2H_2O$
- D $ZnCO_3 + 2HNO_3 \rightarrow Zn(NO_3)_2 + CO_2 + H_2O$
- 2 A liquid is thought to be pure ethanol.

What is the best way to test its purity?

- Α burn it completely in oxygen
- measure its boiling point В
- C react with ethanoic acid
- test with litmus paper
- 3 The boiling points of some elements are given in the table.

element	boiling point/ °C
nitrogen	-196
oxygen	-183
xenon	-108

A mixture of nitrogen, xenon and oxygen at -250 °C is heated up to -160 °C.

Which element(s) is/are still in the liquid state at -160 °C.

- Α xenon
- В nitrogen and oxygen
- C oxygen and xenon
- all of the above

The rate of diffusion of two gases is measured at different temperatures but at 4 constant pressure.

Which would diffuse most slowly?

- argon at 25 °C Α
- argon at 60 °C В
- C nitrogen dioxide at 25 °C
- nitrogen dioxide at 60 °C
- 5 The relative atomic mass of element **J** is 12.01.

What is the reason that the relative atomic mass of element J is not a whole number?

- J atoms can have different number of neutrons. Α
- J atoms can have different number of protons. В
- C Naturally occurring J cannot be obtained pure.
- The mass of the electrons have been included.
- Element X has a proton number of 15. Element Y has a proton number of 35.

Which of the following properties will a compound formed between X and Y?

- It has a low boiling point. Α
- В It is able to conduct electricity in liquid state.
- C It is inert.
- It is insoluble in organic solvent.
- Some properties of substances P, Q and R are given in the table below. 7

substance	percentage composition by mass	electrical conductivity when solid	effect of heat
Р	constant	yes	solid burns in air to form an oxide
Q	varies	no	liquid burns to form carbon dioxide and water
R	constant	no	solid decomposes to form two products

Which classification of the substances as an element, a mixture or a compound is correct?

	compound	element	mixture
Α	Р	Q	R
В	P	R	Q
C	Q	P	R
D	R	P	Q

8 An atom of element **X** is represented by ${}_{4}^{9}X$.

Which statement about an atom of X is correct?

- Α It is in Group IV of the Periodic Table.
- It is in Period 4 of the Periodic Table. В
- C It forms an ion with a 2+ charge.
- D The total number of protons and neutrons is 13.
- 9 The compound below is made up of elements Y and Z.

Which groups of the Periodic Table are these elements likely to come from?

	Υ	Z
Α	III	VII
B C	Ш	I
C	V	I
D	V	VII

10 A substance F

- (i) has a high melting point;
- (ii) is a good conductor of electricity;
- (iii) is malleable.

What could F be?

- A graphite
- В iron
- potassium chloride
- silicon dioxide
- On complete combustion, 4.0 g of hydrocarbon gives 11.0 g of carbon dioxide and 9.0 g of water.

What is the formula of the hydrocarbon?

CH₄

C C₂H₆

В C₂H₄

- D СзНа
- What is the formula of uranium(VI) oxide?
 - Α U₆O

C UO₃

В U_2O_3 UO₆

13 Chalk is impure calcium carbonate. A piece of chalk has a mass of 23.0 g. When reacted with excess hydrochloric acid, 4.49 dm³ of carbon dioxide gas was collected at room temperature and pressure.

What is the percentage purity of the piece of chalk?

- Α 19.5%
- В 40.7%
- 55.3% C
- D 81.3%
- 14 A solid X has the following properties.
 - (i) It is insoluble in water.
 - (ii) It gives off a gas when heated.
 - (iii) It gives off a gas when added to dilute sulfuric acid.

Which one of the following could X be?

- Α calcium hydroxide
- В copper(II) carbonate
- potassium carbonate C
- sodium sulfate
- Metal Y reacted with dilute hydrochloric acid to form a colourless solution. Aqueous sodium hydroxide was added to this solution and a white precipitate was seen. This precipitate dissolved in excess sodium hydroxide.

What could metal Y be?

- A calcium
- В lead
- C iron
- zinc
- When an excess of lead(Π) carbonate reacts with dilute sulfuric acid, the reaction stops after only a small amount of gas has been given off.

Which statement best explains why this happens?

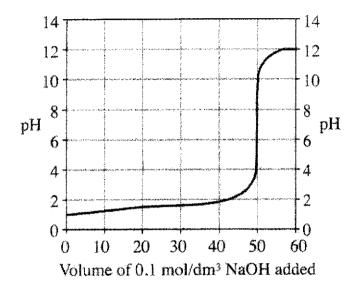
- Α An insoluble layer of lead(II) sulfate is formed on lead(II) carbonate.
- The concentration of acid decreases rapidly. В
- The lead(II) carbonate is unreactive. C
- The lead(II) carbonate is impure.
- Which reactants could be used safely to prepare potassium nitrate? 17
 - aqueous potassium hydroxide and dilute nitric acid Α
 - aqueous potassium sulfate and sodium nitrate В
 - C potassium and aqueous ammonium nitrate
 - potassium and dilute nitric acid

NAS/2021/Prelim/4E/Chemistry/01/6092

18 Manganese(IV) oxide is a catalyst for the decomposition of hydrogen peroxide.

Which one of the following statements explains why the rate at which oxygen is produced decreases during the reaction?

- Manganese(IV) oxide is used up.
- The reaction absorbs heat energy from the surroundings. В
- C The surface area of manganese(IV) oxide decreases.
- The solution of hydrogen peroxide becomes more diluted.
- Solutions of hydrochloric acid and ethanoic acid of the same concentration react completely with 5.0 g of calcium carbonate, in separate containers.


Which statement is correct?

- A smaller volume of CO2 is produced with ethanoic acid than with hydrochloric acid.
- В A greater volume of CO2 is produced with ethanoic acid than with hydrochloric acid.
- Ethanoic acid reacts slower because it has a lower pH than hydrochloric acid.
- D The same volume of CO2 is produced with ethanoic acid than with hydrochloric acid.
- Which of the following reactions is endothermic?
 - 2C₄H₁₀ + 13O₂ → 8CO₂ + 10H₂O Α
 - В CuCO₃ → CuO + CO₂
 - C $2H \rightarrow H_2$
 - 2NaOH + H₂SO₄ → Na₂SO₄ + 2H₂O
- Which of the following elements form oxides whose aqueous solution have a pH greater than 7?
 - 1 calcium
 - 2 carbon
 - 3 copper
 - iron
 - Α 1 only
 - 1 and 2 only В
 - C 3 and 4 only
 - D 1. 3 and 4 only

The chart below shows the colours of three indicators at different pH values. 22

Indicator	Colour change Low pH → high pH	pH which colour change takes place
Methyl orange	Red → yellow	4.0
Bromothymol blue	Yellow → blue	6.5
Phenophthalein	Colourless → pink	9.0

Titration is carried out between sodium hydroxide and dilute hydrochloric acid. The pH change is plotted onto the graph shown below.

Which indicator(s) can be used to identify the end point of this titration.

- methyl orange only Α
- bromothymol blue only В
- bromothymol blue and phenolphthalein only C
- all of the above indicators.
- Aqueous potassium iodide and acidified potassium manganate(VII) solution were added to four solutions separately. The colour changes are seen as shown in the table.

solution	potassium iodide	potassium manganate (VII)
1	colourless to brown	purple to colourless
2	colourless to brown	no change
3	no change	purple to colourless
4	no change	no change

Which solution(s) contain(s) a reducing agent only?

- 2 A
- В
- C 1 and 3
- 2 and 4 D

NAS/2021/Prelim/4E/Chemistry/01/6092

24 Copper reacts with concentrated sulfuric acid, according to the following equation,

What is the role of concentrated sulfuric acid in the above reaction?

- A It is a catalyst.
- **B** It is a dehydrating agent.
- C It is a reducing agent.
- **D** It is an oxidising agent.
- 25 Rubidium is an element in the same group of the Periodic Table as lithium, sodium and potassium.

Which statement about rubidium is likely to be correct?

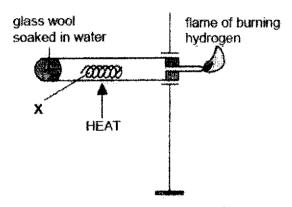
- A It forms an insoluble hydroxide.
- B It is formed by the electrolysis of concentrated rubidium chloride.
- C It oxidises readily when exposed to oxygen in the air.
- **D** It reacts slowly with water at room temperature and pressure.
- 26 The positions of the elements, V, W, X, Y and Z are shown in the outline part of the Periodic Table.

Period	Group								
	I	П		Ш	IV	V	VI	VΠ	0
1									
2	٧	W						X	
3	Υ							Z	

Which statement is not correct?

- A An atom of element W has a greater mass than an atom of element V.
- B Element Y has a lower melting point than element V.
- C Element Y will react with element X in the ratio of 1:1.
- D Element Z is more reactive than element X.

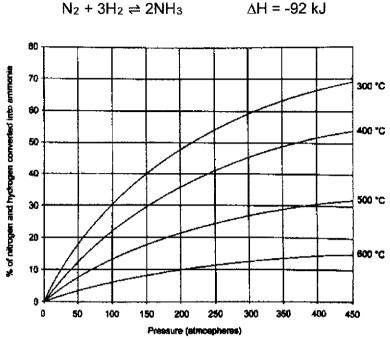
27 In each of three experiments, a halogen was added to separate solutions containing ions of the other two halogens.


The table shows the results.

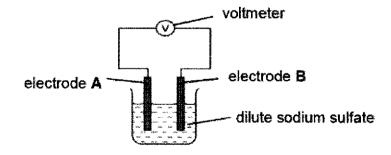
experiment	halogen	halide solution		
•	addded	Χ-	Υ-	Z-
1	X ₂		Y ₂ displaced	Z₂ displaced
2	Y ₂	no reaction		no reaction
3	Z ₂	no reaction	Y ₂ displaced	344 444

What are X, Y and Z?

	X	Y	Z
Α	Br	C <i>l</i>	I
В	Br	I	C <i>l</i>
С	C <i>l</i>	Br	I
D	C <i>l</i>	I	Br


Based on the setup as shown in the diagram below, what is substance X most 28 likely to be?

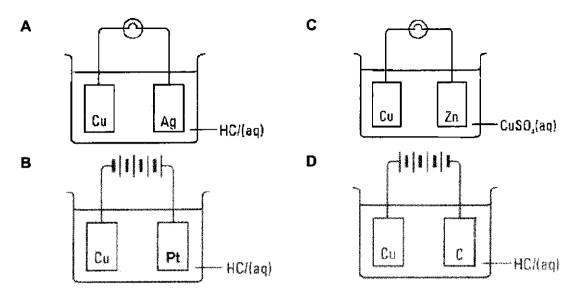
- X is a metal below hydrogen in the reactivity series. Α
- X is a metal above hydrogen in the reactivity series. В
- X is an oxide of a metal that is below hydrogen in the reactivity series.
- **X** is an oxide of a metal that is above hydrogen in the reactivity series.
- Which substance found in car exhaust fumes is not a pollutant? 29
 - carbon monoxide Α
 - В nitrogen
 - nitrogen dioxide C
 - Unburnt hydrocarbons D


30 The graph below gives the percentage conversion of nitrogen and hydrogen under different conditions.

The equation for the reaction is given as

Which of the following statements is correct?

- A Finely divided nickel is used to catalyse the reaction.
- В The backward reaction is an exothermic process.
- C The yield of ammonia decreases with decreasing temperature.
- D The yield of ammonia increases with increasing pressure.
- 31 A simple cell was set up as shown.

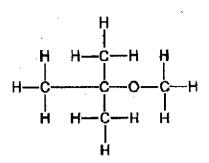


Which pair of electrodes would give the largest reading on the voltmeter, and which electrode will be the positive terminal?

	electrode A	electrode B	positive terminal
Α	copper	iron	copper
В	iron	silver	silver
C	magnesium	copper	magnesium
D	zinc	magnesium	zinc

32 Four experimental set-ups are shown below.

Which set-up will the pH of electrolyte increase around the copper electrode?



Useful fractions are obtained by the fractional distillation of petroleum. 33

Which of the following fractions and its uses are correct?

	fraction	use	
Α	bitumen	fuel in cars	
В	kerosene	for making roads	
С	lubricating oils	for making waxes and polishes	
D	petrol	aircraft fuel	

34 The structural formula of compound **X** is shown.

Which of the following compound is an isomer of compound X?

A

C

В

D

- 35 Which one of the following properties of propanoic acid is not a typical property of an acid?
 - A Its aqueous solution has a pH less than 7.
 - **B** It burns in air to give water and carbon dioxide.
 - C It reacts with magnesium to give a salt and hydrogen gas.
 - **D** It reacts with magnesium oxide to give a salt and water.
- 36 A hydrocarbon (relative molecular mass, 44) will react with chlorine only in the presence of light.

Which one of the following is the hydrocarbon?

A CH₄

C C₃H₆

B C₂H₄O

D C₃H₈

Catalytic addition of steam to hydrocarbon X forms compound Y. Compound Y can 37 be oxidised to compound Z.

What could X, Y and Z be?

	X	Y	Z
Α	C ₂ H ₄	C ₂ H ₅ OH	CH₃COOH
В	C ₂ H ₆	C₂H₅OH	CH₃COOH
С	C ₃ H ₆	C ₃ H ₈	C ₂ H ₅ COOH
D	C ₃ H ₈	C ₂ H ₅ COOH	C₃H ₇ OH

The table shows the energy given out by four compounds when they are burnt 38 completely.

compound	relative molecular mass	∆H/ kJ per mol
C ₄ H ₉ OH	74	-2650
C ₂ H ₅ OH	46	-1400
CH ₄	16	-900
C ₃ H ₈	44	-2200

Which compound produces the least amount of energy when 1 g of it is burnt completely?

CH₄ Α

В C₂H₅OH

C СзНв

C₄H₉OH

An ester of molecular formula, C4H8O2 was produced by reacting an alcohol with a carboxylic acid. Several alcohols and acids are shown below.

	alcohol	acid
1	ethanol	ethanoic acid
2	methanol	butanoic acid
3	propanol	methanoic acid

Which of the following could be the alcohol and the acid?

3 only Α

1 and 2 only В

1 and 3 only C

all of the above

40 Polyacrylamide is used to manufacture soft contact lenses. Part of the polymer is shown below.

Which statements about polyacrylamide are correct?

- 1 It is formed by addition polymerisation.
- 2 It contains ester linkages.
- 3 The molecular formula of its monomer is C₃H₅NO.
- A 1 and 2 only
- B 2 and 3 only
- C 1 and 3 only
- D all of the above

--End of Paper-

[Blank Page]

Section A

Answer all questions in the spaces provided. The total mark for this section is 50.

A 1	(a)	Use	the list of substances to answer the questions.	
			carbon	
			carbon dioxide	
			chlorine	
			iron	
			neon	
			nitrogen dioxide	
			phosphorus	
		(i)	Which substance forms a compound with hydrogen with the formula, XH_3 .	
				[1]
		(ii)	Which substance is produced at high temperatures in car engines?	
				[1]
		(iii)	Which substance is a major constituent of stainless steel?	
				[1]

(iv) Which two substances are reducing agents?

Which substance is unreactive?

......[1]

(v)

(b) Which of the statements about the processes in the blast furnace are true and which are false?

Put a tick $(\sqrt{})$ in one box in each row.

	true	false
Carbon in coke reacts with oxygen to form carbon dioxide.		
Carbon monoxide reduces iron(III) oxide in haematite to form molten iron.		
Limestone reacts with sand to form molten slag.		
Molten slag sinks to the bottom of the furnace.		

[2]

[Total: 7]

A2 The Haber process is an important process to produce ammonia, which is used as a feedstock to produce fertilisers for agricultural use.

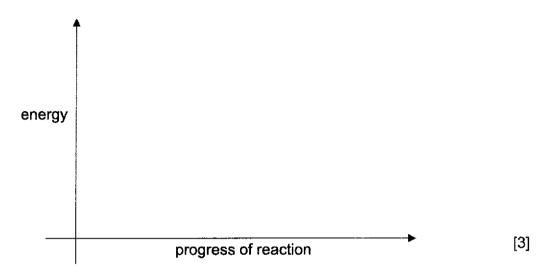
The process is costly as the raw materials, nitrogen and hydrogen need to be obtained by processes that require energy.

The table below shows the bond energies of some bonds.

bond	bond energy/ kJ/mol
H-H	436
0 – H	460
N – N	160
N = N	944

(a) Hydrogen reacts with nitrogen to produce ammonia in the equation below.

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$
 $\Delta H = -91.8 \text{ kJ}$


Calculate the bond energy of the N – H bond in kJ/mol.

(b)	Use ideas about breaking and forming bonds to explain why the enthalpy change for the process is negative.	
		[2]
(c)	Finely divided iron is used as a catalyst in the Haber process.	
	What other essential industry conditions is necessary for making ammonia from nitrogen and hydrogen?	
		[1]

(d) Draw an energy profile diagram to show the effect of the catalyst on the Haber process.

Your diagram should show and label

- · reactants and products,
- the activation energy for the uncatalysed and catalysed reactions,
- the enthalpy change of reaction.

(e)	Use ideas about collisions between particles to explain, how a catalyst increases the rate of reaction.	
		[2]
f)	Catalysts are expensive to buy but it reduces costs in the long run.	
	Give a reason to explain why catalysts reduce costs in the long run.	
		[1]

[Total: 11]

А3	Germanium, an element with proton number of 32, was discovered by Clemens
	Alexander Wrinkler at Freiberg, Germany, in 1886. It is in the same Group as
	carbon and silicon.

(a)	Germanium	tetrachloride	is a co	ourless	liquid w	vith melti	ng point	-49.5	°C.

Draw a 'dot and cross' diagram to show the bonding in germanium tetrachloride. Show outer shell electrons only.

d		nd t	bo	ndi	ng,	th	e c	liffe	erei	псе			xide elting		
•••			- • • •									 ••••	• • • • • •	•	
					•••		••••					 		•	
												 		-	
	****					• • • •	••••	• • • •				 		•	
											•	 			
· • •		· • • • •				• • • •						 			
	· · · · ·	• • • •						* * = 4	••••		• • • • •	 			[3]
													[To	tal	: 5]

A4 The table below shows some information about two copper ores, tenorite and cuprite. Both contain copper oxide.

ore	formula of copper	oxidation number of	percentage of
	oxide in ore	copper	copper by mass
tenorite		+2	80.0%
cuprite	Cu ₂ O		

(a)	(1)	what is the formula of the copper compound in tenorite?	
			[1]
	(ii)	What is the oxidation state of copper in cuprite?	
			[1]
	(iii)	Calculate the percentage of copper by mass in cuprite.	
			[1]
(b)	(i)	Charcoal (carbon) is added to tenorite to form copper and a gas. The gas that was produced forms a white precipitate in limewater.	
		Write an equation, with state symbols, for the extraction of copper from tenorite.	
			[2]
	(ii)	The equation in (b)(i) shows that extraction of copper from tenorite is a redox reaction.	
		Use ideas about oxidation state to explain why this statement is true.	
			[2]

(c) Another ore of copper, chalcocite, contains copper(II) sulfide.

Complete the 'dot and cross' diagram below for the sulfide ion showing outer electrons only.

[2]

[Total: 9]

A5	Small pieces of a silvery metal, E, were added to concentrated nitric acid.	Α
	brown gas, F, and a colourless solution containing salt G were formed.	

Analysis of a sample of gas F showed it contained 1.07 g of nitrogen and 2.43 g of oxygen.

The small sample of the colourless solution of G was diluted with water and then divided into two portions.

To one portion, aqueous sodium hydroxide was added drop by drop until it was in excess. A white precipitate D was formed that did not dissolve in excess sodium hydroxide.

To the other portion, aqueous ammonia was added drop by drop until it was in excess. There was no observable change.

(a)	Nam	e the following s	substances.	
	(i)	precipitate D		
	(ii)	metal E		
	(iii)	solution G		[3]
(b)		•	ation for the formation of white precipitate D when as added to solution G .	
		***************************************		[1]
(c)	Give	n the information	n above, determine the empirical formula of gas F.	

[2]

[Total: 6]

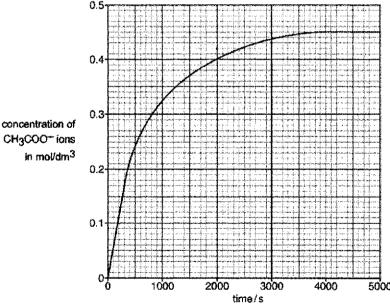
A6 This is the structure of an ester made in a reaction between a carboxylic acid and an alcohol.

0	H	Н	H	
н—с—о	¢-	-c-	-c-	-Н
	H	Н	Н	

(a) (i) State the conditions for this reaction.

[1	[1]
----	-----

(ii) What is the name of the ester?

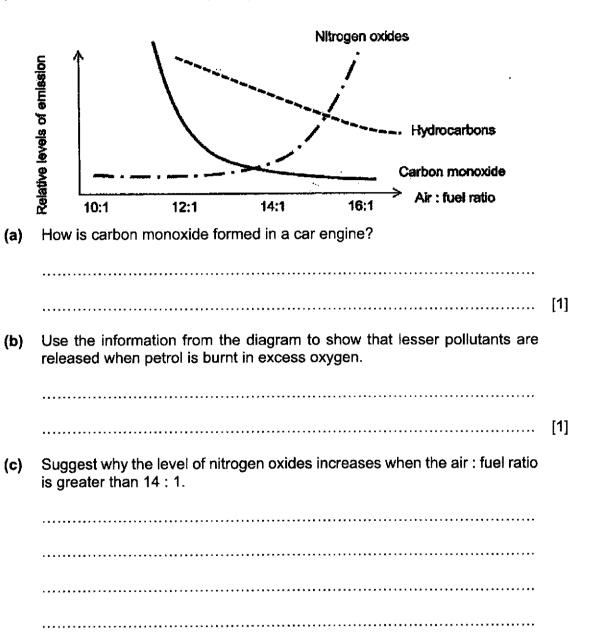

[1]

(iii) Write an equation for this reaction.

[[1]
---	-----

(b) Another ester, ethyl ethanoate, reacts with sodium hydroxide to form sodium ethanoate and ethanol.

The graph shows how the concentration of ethanoate ions, CH₃COO⁻, changes as the reaction proceeds.


Explain briefly the change in the rate of reaction with time.

 •	**************	 ,	
 •••••		 	

[Total: 5]

A7 Most vehicles are operated using petrol engine.

For vehicles which are run by petrol engine, air : fuel ratio in the engine plays an important role to determine the relative levels of emission of different air pollutants as shown in the diagram given below.

(d)	(i)	Catalytic converters installed in cars reduce the amounts of carbon monoxide and nitrogen oxides from cars.	
		Write an equation to show how a catalytic converter reduces the amounts of carbon monoxide and nitrogen oxides from cars.	
		equation:	[1]
	(ii)	Catalytic converters do not solve all environmental problems.	
		Explain why this is so.	
			[2]
		[Tota	l: 7]

Section B

Answer all three questions in this section.

The last question is in the form of an either/or and only one of the alternatives should be attempted.

B7 Read the information about the elements in Group II of the Periodic Table.

element	number of shells of electrons in atom	atomic radius/ pm	ionic radius/ pm	effect of adding metal to water
magnesium	3	150	66	reacts very slowly
calcium	4	180	99	reacts quickly with water
strontium	5	200	134	reacts vigorously with water

 $(1\ 000\ 000\ 000\ 000\ pm = 1m)$

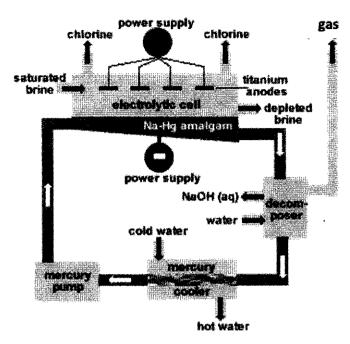
Thermal stability of Group II elements and its polarising power

Polarisation is the distortion of the electron cloud of an anion by a positively charged particle. The ability of a cation to polarise an anion is called its polarising power. An approximate measure of the polarising power of a cation is its charge density.

Charge density is proportional to \(\frac{charge of cation}{ionic radius} \)

Group II hydroxides decompose on heating to form metal oxides and steam. The temperature at which the metal hydroxides decompose are shown in the table below.

metal hydroxide	decomposition temperature/ °C
Mg(OH) ₂	332
Ca(OH) ₂	520 - 580
Sr(OH) ₂	500 – 850


(a)	(i)	What is the relationship between atomic radius and the reactivity of the metals in Group II?	
			[1]

(ii)	Explain the relationship in (a)(i).	

		[2
_	igest why the radius of magnesium atom changes when it forms a gnesium ion.	
(i)	Determine which ion, Mg ²⁺ , Ca ²⁺ or Sr ²⁺ , has the highest polarising power.	
		[
(ii)	A student proposes that the temperature at which Group II metal hydroxides decompose depends on the polarising power.	
	Does the information given support the idea of the student?	
	Explain your reasoning.	

(d) Strontium chloride is useful in reducing tooth sensitivity by forming a

	ier over the teeth. A way to produce strontium chloride in the lab is to t strontium hydroxide with an acid.
(i)	Name the acid that is added to react with strontium hydroxide.
(ii)	Write a balanced chemical equation for the reaction.
	[Total

B8 Castner-Kellner cell can be used to perform electrolysis of brine. Brine is saturated sodium chloride solution. The cell is used to produce sodium hydroxide and chlorine gas.

(image taken from: https://www.worldofchemicals.com/media/methods-of-preparation-ofcaustic-soda/6748.html)

In the Castner-Kellner cell, the cathode is the mercury that flows along the bottom of the cell. Sodium solid and chlorine gas are produced as the product of the electrolysis.

Sodium dissolves in the liquid mercury to form Na-Hg amalgam (alloy of sodium and mercury). The amalgam flows into the decomposer. In the decomposer, the sodium is extracted from the amalgam and reacts with water to form sodium hydroxide and a gas.

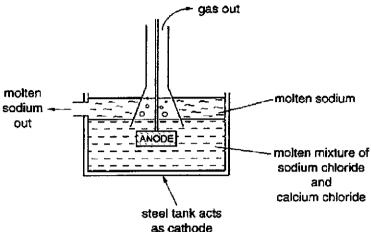
(i)	Write the ionic half equation that happens at the anode.	
		[1]
(ii)	Describe a simple test that would confirm the identity of the element formed at the anode. Include the result of the test in your answer.	
		[1]

(a)

(b)	Calculate the mass of solid sodium formed when 3600 dm³ of chlorine gas measured at room temperature and pressure is formed at the anode.	
		[3]
(c)	Write a balanced chemical equation for the reaction in the decomposer.	
		[1]

(d) Besides using electrolysis for the production of sodium hydroxide and chlorine gas, electrolysis can also be used to deposit a thin layer of metal over another metal with the help of electric current. This process is known as electroplating.

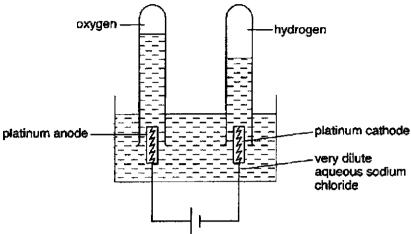
Nickel is the most common electroplated material. Nickel electroplating can be used in the automotive industry. It can be found on bumpers, rims and exhaust pipes.


Draw a well labelled diagram, including all the chemical reagents (i) used, to show how nickel can be plated on the rim of the car tyre.

		F. 3
(ii)	Suggest a benefit of nickel electroplating on the rim of the tyre.	
	Explain your answer.	
	<i></i>	
		[2]
	[Total	10]

Either

Sodium metal is extracted from molten sodium chloride by electrolysis. **B**9


The diagram shows how the process works.

		as carrioge	
(a)		e a single equation, with state symbols, to show the products of the strolysis of sodium chloride.	
			[2]
(b)		cribe a simple test and its result that would identify the gas given off ne anode.	
			[2]
(c)		cium chloride is added to the sodium chloride to lower the melting point ne mixture.	
	(i)	Explain why lowering the melting point makes the process cheaper to run.	

	(ii)	The molten sodium contains metallic impurities.	
		Name the main metal impurity you would expect to find and explain how it forms.	
		[2]	[]
(d)	Sod	ium chloride can also be electrolysed in aqueous solution.	
		cribe the differences in the products of the electrolysis of concentrated eous sodium chloride compared to molten sodium chloride.	
	••••		
		· · · · · · · · · · · · · · · · · · ·	
		[2	<u>'</u>]
		[Total: 10	0

Or B9 An experiment is carried out to electrolyse very dilute aqueous sodium chloride.

(a)	(i)	Write equations for the reactions that happen at each electrode during the electrolysis.	
			[2]
	(ii)	Is the reaction at anode an oxidation or a reduction reaction?	[4]
		Explain your reasoning.	
			[1]
(b)	(i)	During the reaction, 4.8 cm ³ of oxygen is collected.	

Calculate the mass of 4.8 cm³ of oxygen at room temperature and pressure.

What volume of hydrogen forms when 4.8 cm³ oxygen forms?

(ii) Hydrogen is collected during the reaction.

		[2]
(c)	After the electrolysis has been running for some time, the solution becomes more concentrated.	
	What are the products of the electrolysis when the solution becomes more concentrated?	
	Explain your reasoning.	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	[3]
	[Total	: 10]

-End of Paper-

Blank Page

Ngee Ann Secondary School 2021 Sec 4E Pure Chemistry (6092):Preliminary Examination Paper 2 **Suggested Answers**

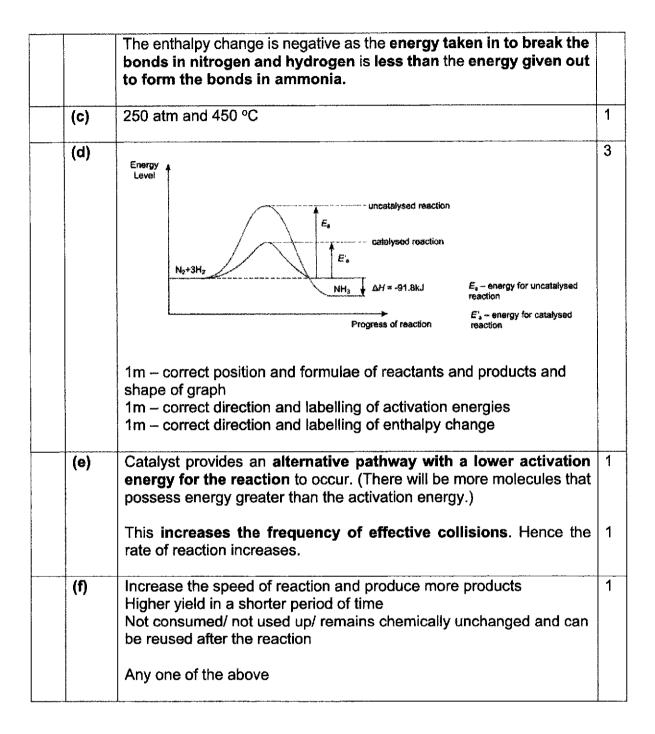
For questions on mole concept, the following errors will penalised (over the whole paper)

- Lack of unit / wrong unit
- Lack of statement / wrong statement
- Final answer not expressed to 3 sf

17

2021 Secondary 4 Pure Chemistry (6092) Prelim Paper 1
Suggested Answers

1	2	3	4	5	6	7	8	9	10
В	В	Α	С	Α	Α	D	С	D	В
11	12	13	14	15	16	17	18	19	20
Α	С	D	В	D	Α	Α	D	D	В
21	22	23	24	25	26	27	28	29	30
Α	D	В	D	С	D	D	В	В	D
31	32	33	34	35	36	37	38	39	40
В	В	С	В	В	D	Α	В	С	С


Ngee Ann Secondary School

2021 Sec 4E Pure Chemistry (6092): Preliminary Examination

Paper 2: Suggested Answers

A1	(a)(i)	Phosphorus			1
	(ii)	Nitrogen dioxide			1
	(iii)	Iron			1
	(iv)	Iron and carbon			1
	(v)	Neon			1
	(b)		true	false	2
		Carbon in coke reacts with oxygen to form carbon dioxide	√		
		Carbon monoxide reduces iron(III) oxide in haematite to form molten iron.	$\sqrt{}$		
		Limestone reacts with sand to form molten slag.		٧	
		Molten slag sinks to the bottom of the furnace.		1	
		1 m for every 2 correct answers.			
A2	(a)	Let the bond energy of N – H be x kJ/mol.			
		Energy taken in to break the bonds = 944 + 3(436) = 2252 kJ			1
		Energy given out to form the bonds = 2(3)x kJ			
		-6x + (+2252) = -91.8 x = 391 kJ/mol (3 sf)			1
	(b)	The enthalpy change is negative as the ento form the bonds in ammonia is greater		out/released	1
		energy taken in/absorbed to break the hydrogen.	bonds in	nitrogen and	1
		or			

Partnerini earning

А3	(a)		2
		C/	
		G(x) Ge (x) $G(x)$	
		Key:	
		x – electron of Ge electron of C/	
		1m – correct 'dot and cross' diagram 1m – correct key (only if diagram is correct)	
		-1m if no key	
	(b)	Germanium dioxide has a giant molecular structure. A lot of heat energy is required to overcome the strong covalent bonds between the germanium and oxygen atom.	3
		On the other hand, germanium tetrachloride has a simple molecular structure and exists as discrete molecules. A little amount of heat energy is required to overcome the weak intermolecular forces of attraction between the molecule.	Market et al
		Hence germanium dioxide will have a higher melting point than germanium tetrachloride.	
		1m – correct identification of structure 1m – correct identification of the type of interactions to overcome 1m – how much energy is needed to overcome	
		Or	
		1m – correct identifying correct structure and bonding for germanium dioxide when melting.	
		1m – correct identifying correct structure and bonding for germanium tetrachloride when melting. 1m – how much energy is needed to overcome	
		"break intermolecular forces of attraction" is not accepted.	
A4	(a)(i)	CuO	1
	(ii)	+2	1

Dartnerini earning

/!!!>	Danas			-
(111)		n cuprite		1
٠	$=\frac{1}{2(64)+16}\times 100\%$			
	= 88.9% (3 sf)			
(b)(i)	2CuO (s) + C (s) → CO) ₂ (g) + 2Cu (s)		2
	1m – correct balanced	equation		
		•	balanced)	
(b)(ii)				1
	•		arbon increased from	1
	Hence this is a redox re	eaction.		
	Allow ecf from (b)(i)			
(c)	x-6	electron of Cu		2
(a)(i)	Calcium hydroxide	A STATE OF THE STA		1
(ii)	Calcium			1
(iii)	Calcium nitrate			1
(b)	Ca ²⁺ (aq) + 2OH ⁻ (aq) -	→ Ca(OH) ₂ (s)		1
	Allow ECF			
(c)		nitrogen	oxygen	
	Mass/ g	1.07	2.43	
	No. of moles/ mol	1.07	$\frac{2.43}{16} = 0.15188$	F
	(b)(ii) (a)(i) (ii) (iii)	= 2(64) / 2(64)+16 × 100% = 88.9% (3 sf) (b)(i) 2CuO (s) + C (s) → CO 1m - correct balanced 1m - correct state sym (b)(ii) Copper in copper(II) oxidation state of copp 0 in copper. Carbon is oxidised as 0 in carbon to +4 in carbon to	= \frac{2(64)}{2(64)+16} \times 100\% = 88.9\% (3 sf) (b)(i) 2CuO (s) + C (s) → CO ₂ (g) + 2Cu (s) 1m - correct balanced equation 1m - correct state symbols (equation must be) (b)(ii) Copper in copper(II) oxide/ copper(II) oxioxidation state of copper decreased from +2 0 in copper. Carbon is oxidised as the oxidation state of 0 in carbon to +4 in carbon dioxide. Hence this is a redox reaction. Allow ecf from (b)(i) (c) 2- Key: x - electron of Cu - electron of S 1m - correct drawing of sulfide ion 1m - correct key (only if drawing is correct) (a)(i) Calcium hydroxide (ii) Calcium nitrate (b) Ca ²⁺ (aq) + 2OH ⁻ (aq) → Ca(OH) ₂ (s) Allow ECF	= 2(64)+16 × 100% = 88.9% (3 sf) (b)(i) 2CuO (s) + C (s) → CO ₂ (g) + 2Cu (s) 1m - correct balanced equation 1m - correct state symbols (equation must be balanced) (b)(ii) Copper in copper(II) oxide/ copper(II) oxide is reduced as the oxidation state of copper decreased from +2 ip supper(II) oxide to 0 in copper. Carbon is oxidised as the oxidation state of carbon increased from 0 in carbon to +4 in carbon dioxide. Hence this is a redox reaction. Allow ecf from (b)(i) (c) Key:

·	1		0.07(400	0.45400	I
		÷by smallest no.	$\frac{0.076429}{0.076429} = 1$	$\frac{0.15188}{0.076429} = 1.9872$	
		Simplest ratio	1	2	
		Empirical formula	N	O ₂	1
	- And	1m – correct number of 1m – correct empirical		nts	PROPERTY OF THE PROPERTY OF TH
A6	(a)(i)	Concentrated sulfuric a	icid, strong heating/ hea	at/ heat under reflux	1
	(ii)	Propylmethanoate			1
	(iii)	CH ₂ O ₂ + C ₃ H ₇ OH ⇌ C	4H8O2 + H2O		1
		Or			
		HCOOH + CH₃CH2CH	2OH ⇌ HCOOCH2CH2	CH₃ + H₂O	
	(b)		е reactants (hydгох	the beginning as the kide ions and ethyl	1
		the concentration of	the reactants (hydro	decreases with time as oxide ions and ethyl s/ reactants are used	1
A7	(a)	Carbon monoxide is pr	roduced from the incor	mplete combustion of	1
		Or			
		Carbon monoxide is insufficient oxygen in		car fuel burns in	
	(b)		level emission of c	el ratio increases. This arbon monoxide and	1
•	(c)	High in air : fuel ratio re result in large amount of		bustion which will then d.	1
		i .]

		1
	1m is awarded if students wrote this "More oxygen is present to react with nitrogen."	
(d)(i)	Catalytic converter	1
	2CO + 2NO → 2CO ₂ + N ₂	1
(d)(ii)	Carbon dioxide which is a greenhouse gas will still be evolved.	1
The state of the s	Excess carbon dioxide will enhance greenhouse effect and leads to global warming.	1
(a)(i)	As the atomic radius increases, the reactivity of the metals increases.	1
(a)(ii)	As the atomic radius increases, the valence electrons are further away from the attraction of the nucleus.	1
valente and design and	As a result, it is easier for the valence electrons to be lost, hence the reactivity of metals in Group II increases down the group.	1
(b)	Magnesium atom loses two valence electrons to form magnesium ion as a result the number of electron shells containing electrons decreases as a result, there is a decrease of the radius when magnesium ion.	1
(c)(i)	Mg ²⁺	1
(c)(ii)	The ionic radius of the Group II metal ions increases down the group, since charge density is inversely proportional to the ionic radius, the charge density decreases down the group, with magnesium having the largest charge density and strontium the lowest.	1
	The polarising power of the group II ions decreases down the group as well.	1
	The decomposition temperature suggests that when the polarising power decreases, the decomposition temperature of hydroxide increases. Therefore, there is a relationship and the information supports the idea.	1
(d)(i)	Hydrochloric acid	1
(ii)	$Sr(OH)_2 + HCI \rightarrow SrCI_2 + H_2O$	1
	(d)(ii) (a)(i) (b) (c)(i) (c)(ii)	 with nitrogen." (d)(i) Catalytic converter 2CO + 2NO → 2CO₂ + N₂ (d)(ii) Carbon dioxide which is a greenhouse gas will still be evolved. Excess carbon dioxide will enhance greenhouse effect and leads to global warming. (a)(i) As the atomic radius increases, the reactivity of the metals increases. (a)(ii) As the atomic radius increases, the valence electrons are further away from the attraction of the nucleus. As a result, it is easier for the valence electrons to be lost, hence the reactivity of metals in Group II increases down the group. (b) Magnesium atom loses two valence electrons to form magnesium ion as a result the number of electron shells containing electrons decreases as a result, there is a decrease of the radius when magnesium ion. (c)(ii) Mg²* (c)(iii) The ionic radius of the Group II metal ions increases down the group, since charge density is inversely proportional to the ionic radius, the charge density decreases down the group, with magnesium having the largest charge density and strontium the lowest. The polarising power of the group II ions decreases down the group as well. The decomposition temperature suggests that when the polarising power decreases, the decomposition temperature of hydroxide increases. Therefore, there is a relationship and the information supports the idea. (d)(i) Hydrochloric acid

B8	(a)(i)	2Ct (aq) → Cl ₂ (g) + 2e ⁻	1
	(ii)	Place a moist blue litmus paper above the opening. If the moist blue litmus paper turns red then bleaches, then chlorine gas is present.	1
	(b)	$2CF (aq) \rightarrow CI_2 (g) + 2e^{-}$ $Na^+ (aq) + e^{-} \rightarrow Na (s)$ $2Na^+ (aq) + 2e^{-} \rightarrow 2Na (s)$ No of moles of chlorine gas = $\frac{3600}{24} = 150 \text{ mol}1$ Mole ratio of $CI_2 : e^{-} = 1:2$ No of moles of $e^{-} = 2(150) = 300 \text{ mol}1$ Mole ratio of $Na : e^{-} = 1:1$ No of moles of $Na = 300 \text{ mol}$ Mass of $Na = 300(23) = 6900 \text{ g} - 1$	3
	(c)	2Na + 2H ₂ O → 2NaOH + H ₂	1
	(d)(i)	nickel Nickel sulfate solution/ nickel nitrate solution/ nickel chloride solution 1m — correct labelling of anode and cathode 1m — correct electrolyte	2
	(ii)	Nickel electroplating can provide corrosion protection/ resistant to corrosion. Nickel can act as a protective layer around the rim, preventing it from coming into direct contact with the oxygen in the air and moisture that can lead to corrosion.	1
Eith	er		\vdash
	(a)	2NaC/ (I) → 2Na (/) + C/ ₂ (g)	2

Partnerini earning

		1m correct state symbol (only award for correct chemical equation)	
	(b)	Hold a piece of moist blue litmus paper into the gas.	1
		If the moist blue litmus paper red, then bleaches it, then chlorine gas is present.	1
	(c)(i)	Lesser heat / energy is required to heat the mixture to keep it in molten state.	1
		This helps to save on electricity and hence cheaper.	1
		The cost of a high temperature process is linked to the energy, electricity or fuel use. This needs to be stated clearly. Not accepted: it costs a lot to heat it up	
	(ii)	The impurity is calcium.	1
		Calcium ions present accepts electrons/reduced at the cathode to form metallic calcium.	1
	(c)	For concentrated aqueous sodium chloride, hydrogen gas is formed at the cathode, for molten sodium chloride, molten sodium is formed at the cathode. For concentrated aqueous sodium chloride, the resultant electrolyte will be aqueous sodium hydroxide but for molten sodium chloride, there is no change in the electrolyte.	T
		Chlorine gas is formed at the anode for both systems.	
Or	4 3 215		
В9	(a)(i)	Anode: $4OH^{-}(aq) \rightarrow 2H_{2}O(I) + O_{2}(g) + 4e^{-}$ Cathode: $2H^{+}(aq) + 2e^{-} \rightarrow H_{2}(g)$	1
	(ii)	Oxidation as hydroxide ions loses electrons.	1
	(b)(i)	No. of mole of O_2 $= \frac{0.0048}{24}$ $= 0.0002 \text{ mol}$ Mass of oxygen gas $= 0.0002 \text{ x (16x2)}$	1
		= 0.00640 g (3 sf)	1

(ii)	Overall equation: $2 H_2O \rightarrow 2H_2 + O_2$ Mole ratio of $H_2: O_2 = 2: 1$	1
	Volume of gas is proportional to number of moles of gas. Volume of H_2 formed = 2 x 4.8 = 9.60 cm ³ (3 sf)	1
(d)	The products are hydrogen gas, chlorine gas and aqueous sodium hydroxide.	1
	Hydrogen gas is produced at the cathode as hydrogen ion is preferentially discharged over sodium ions.	1
	Chlorine gas is produced at the anode as chloride has a high concentration than hydroxide ions.	1
	Loss of hydrogen ions and chloride ions from the electrolyte (sodium chloride solution) will result in the formation of sodium hydroxide.	
	1m each is given for stating and explaining the products when the solution becomes more concentrated.	