NAME:	NO:	CLASS:
		OL/100:

ADMIRALTY SECONDARY SCHOOL

PRELIMINARY EXAMINATION 2021

SUBJECT

Chemistry

CODE/PAPER

6092/1

LEVEL/STREAM

Secondary 4 Express

DATE

30 August 2021

TIME

1120h - 1220h

DURATION

1 hour

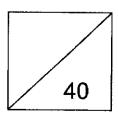
READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

Do not use staples, paper clips, glue or correction fluid.

Write your name, class and register number on the Optical Answer Sheet provided unless this has been done for you.

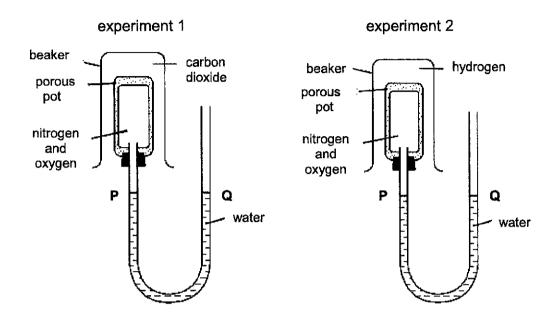
There are forty questions on this paper. Answer all questions. For each question there are four possible answers A, B, C and D.


Choose the one you consider correct and record your choice in soft pencil on the Optical Answer Sheet.

Fill in the Optical Answer Sheet very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any rough working should be done in this guestion paper.

A copy of the Periodic Table is printed on page 14.


The use of an approved scientific calculator is expected, where appropriate.

DO NOT TURN OVER THIS PAPER UNTIL YOU ARE TOLD TO DO SO.

This question paper consists of 14 printed pages including this cover page. <u>Partnerini eemina</u>

1 Two experimental set-ups used to demonstrate diffusion of gases are shown in the diagrams below. Each porous pot contains a mixture of nitrogen and oxygen.

What changes, if any, to the water levels **P** and **Q**, would you expect to see in both experiments?

:	experiment 1	experiment 2
Α	P and Q remain the same	P and Q remain the same
В	P and Q remain the same	Q is higher than P
C	P is higher than Q	Q is higher than P
D	Q is higher than P	Q is higher than P

- Which piece of apparatus could be used to determine the end-point of the reaction between hydrochloric acid and potassium hydroxide?
 - A electronic balance

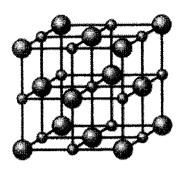
B gas syringe

C stopwatch

- **D** thermometer
- 3 A new substance was discovered and a series of experiments were conducted on it.

Which observation suggests that the substance cannot be an element?

- A It has a fixed boiling point.
- **B** It dissolves in water to form a yellow-green solution.
- C When heated strongly, a brown solid and a yellow gas are produced.
- **D** When heated in air, it can form oxides with two different chemical formulae.


4 Three atoms are shown.

$$^{32}_{16}$$
 X $^{33}_{16}$ Y $^{32}_{17}$ Z

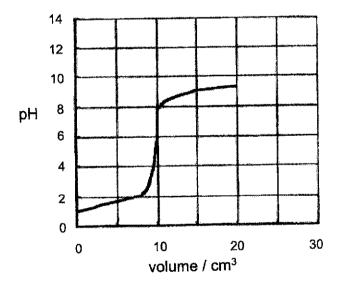
What can be deduced from the proton numbers and nucleon numbers of X, Y and Z?

- A X and Y are the same element.
- **B** X and Z are the same element.
- C Y has more protons than X.
- D Z has more neutrons than Y.
- 5 Which element has the most number of electrons in the outermost shell of its atoms?
 - A argon B boron C chlorine D potassium
- 6 What are isotopes?
 - A Atoms of different elements with the same nucleon number but different proton number.
 - Atoms of the same element with the same nucleon number but different proton number.
 - Atoms of the same element with the same number of protons but different numbers of neutrons.
 - **D** Atoms of the same element with the same number of neutrons but different numbers of protons.
- 7 Which of the following substances contains both ionic and covalent bonds?
 - A aluminium carbonateB graphiteC hydrogen chlorideD sodium

8 The diagram shows the arrangement of the ions in an ionic lattice.

Which compound would likely have this arrangement?

A barium fluoride


- B lithium nitride
- **C** magnesium hydroxide
- D sodium chloride
- **9** Which ionic equation represents the reaction when calcium carbonate powder is added to hydrochloric acid?
 - A H^+ (aq) + OH^- (aq) \rightarrow H_2O (l)
 - **B** Ca^{2+} (aq) + $2Cl^{-}$ (aq) \rightarrow $CaCl_2$ (s)
 - **C** $2H^+$ (aq) + CO_3^{2-} (aq) $\rightarrow CO_2$ (g) + H_2O (l)
 - **D** CaCO₃ (s) + 2H⁺ (aq) \rightarrow Ca²⁺ (aq) + CO₂ (g) + H₂O (l)
- 10 Bones contain a complex mixture of calcium salts, protein and other materials. When a bone is strongly heated in a current of air, the only residue is calcium oxide. From a sample of 100 g of bone, 42.0 g of calcium oxide were obtained.

What is the percentage by mass of calcium in the bone?

- A 12.0 %
- **B** 30.0 %
- C 42.0 %
- **D** 71.4 %
- 11 Which of the following statements does **not** describe a property of a weak alkali?
 - A It has a pH between 8 to 10.
 - B It forms a salt with sodium metal.
 - C It is only partially dissociated into ions.
 - D It turns universal indicator solution blue.

- 12 Which chemical is best used to distinguish between calcium chloride and calcium carbonate?
 - aqueous sodium hydroxide Α
 - В dilute hydrochloric acid
 - C silver nitrate solution
 - universal indicator solution
- Which of the following is not a common use of sulfuric acid? 13
 - Α battery acid
 - В making of wooden furniture
 - C manufacture of detergent
 - D manufacture of fertilliser
- In an acid-base titration, a 0.10 mol/dm³ alkali is added to 10 cm³ of 0.10 mol/dm³ 14 dilute acid.

The graph below shows the change in pH during the titration.

Which of the following represents the titration shown in the graph?

- ethanoic acid and aqueous sodium hydroxide Α
- ethanoic acid and aqueous ammonia В
- nitric acid and aqueous sodium hydroxide C
- nitric acid and aqueous ammonia

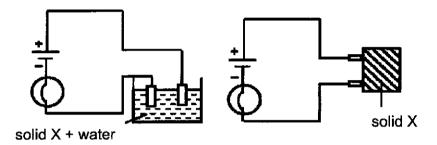
- 15 In which equation does the metal oxide act as an acidic oxide?
 - A $K_2O(s) + H_2O(l) \rightarrow 2KOH(aq)$
 - **B** Fe₂O₃ (g) + 3CO (g) \rightarrow 2Fe (s) + 3CO₂ (g)
 - C $Al_2O_3(s) + 6HCl(aq) \rightarrow 2AlCl_3(aq) + 3H_2O(l)$
 - **D** PbO (s) + $H_2O(l) + OH^-(aq) \rightarrow Pb(OH)_3^-(aq)$
- 16 A colourless solution contains two cations. When aqueous ammonia was added to the solution, a white precipitate was formed. When excess aqueous ammonia was added, the white precipitate dissolved to form a colourless solution.

Which of the following is not a possible cation in the solution?

A Ca²⁺

B K⁺

C Pb²⁺


- **D** Zn²⁺
- 17 Zinc sulfate was prepared by reacting sulfuric acid with excess zinc oxide. What is the sequence of steps that needs to be carried out to collect the pure and dry salt after the above reaction?
 - A crystallisation → filtration
 - B distillation → crystallisation
 - C filtration → evaporate to dryness
 - D filtration → air dry
- 18 Nitrogen dioxide reacts with water according to the following equation

$$2NO_2 + H_2O \rightarrow HNO_2 + HNO_3$$

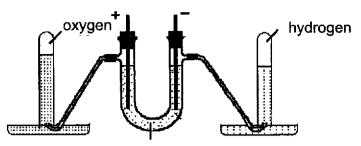
Which of the following statements correctly describes this reaction?

- A NO₂ is reduced to form HNO₃.
- **B** The oxidation state of N in HNO₂ is +3.
- **C** The reaction is a decomposition reaction.
- **D** Water acts as a catalyst in this reaction.

- Which of the following reactions that takes place in the blast furnace is an acid-19 base reaction?
 - Α $C + O_2 \rightarrow CO_2$
 - В $CO_2 + C \rightarrow 2CO$
 - C CaO + SiO₂ → CaSiO₃
 - $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$
- Two circuits are shown below. The light bulb lights up in only one of the circuits. 20

What is the identity of X?

barium sulfate Α


В magnesium

C potassium bromide

- D sugar
- In which electrolysis experiment would there be no change in pH of the solution 21 when inert electrodes are used?
 - aqueous copper (II) nitrate Α
 - aqueous silver sulfate В
 - concentrated copper (II) chloride solution C
 - concentrated potassium bromide solution D
- When aqueous copper (II) sulfate is electrolysed using copper electrodes, which 22 observations are correct?

	positive electrode	negative electrode	intensity of blue colour of electrolyte
A	electrode becomes smaller	electrode becomes bigger	constant
В	electrode becomes smaller	gas given off	fades
C	gas given off	electrode becomes bigger	fades
D	gas given off	gas given off	constant

23 The diagram shows the electrolysis of dilute sodium chloride solution using inert electrodes.

dilute sodium chloride solution

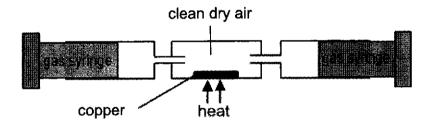
Given that, at room temperature and pressure, *x* moles of electrons were passed in the circuit, which of the following statement is correct?

- A $6x \, dm^3$ of oxygen was collected at the anode.
- **B** $6x \, dm^3$ of hydrogen was collected at the cathode.
- C $12x \text{ dm}^3$ of oxygen was collected at the cathode.
- **D** $12x \, dm^3$ of hydrogen was collected at the anode.
- Which of the following properties generally decreases when going across a period of the Periodic Table from Group I to Group VII?
 - A The acidity of the oxides.
 - B The oxidizing ability of the elements.
 - **C** The number of electrons in the valence shell.
 - **D** The tendency of the elements to form positive ions.
- **25** Elements X, Y and Z are in the same period of the Periodic Table.

Solid X conducts electricity.

Oxides of Y reacts with both acid and alkali.

Oxides of Z dissolves in water to form solution with pH < 7.


In which order do the elements appear in the Periodic Table?

- $A \quad X \to Y \to Z$
- $B \quad Y \to X \to Z$
- $\mathbf{C} \quad \mathsf{Z} \to \mathsf{X} \to \mathsf{Y}$
- $D Z \to Y \to X$

- In the Haber Process, nitrogen and hydrogen react to form ammonia. The following 26 are some statements about the process:
 - The reaction uses a transition metal as catalyst. 1
 - II Hydrogen is obtained from the fractional distillation of air.
 - III The temperature used is typically between 400 °C to 500 °C.

Which of the statements are correct?

- II and III only I and III only I. II and III I and II only C D
- Which of the following reactants will **not** produce ammonia on heating? 27
 - ammonium chloride and lithium oxide A
 - В ammonium sulfate and hydrochloric acid
 - C ammonium nitrate and potassium hydroxide
 - D ammonium phosphate and calcium hydroxide
- A sample of clean, dry air is passed over hot copper until all the oxygen in the air reacts with the copper. The volume of air decreases by 60 cm³.

What is the initial volume of the sample of air?

- 120 cm³ Α 75 cm³ В D 600 cm³ 300 cm³
- Carbon monoxide is a pollutant emitted from car exhausts. Which of its properties 29 makes it harmful to humans?
 - Α It combines with oxygen in the lungs.
 - It forms a stable compound with blood. В
 - C It has a corrosive action on lung tissue.
 - It is odourless, colourless and tasteless. D

- 30 Which process removes carbon dioxide from the atmosphere?
 - combustion of carbon-containing fuel Α
 - В flue gas desulfurisation
 - C photosynthesis
 - D respiration
- The table shows the boiling points of four fractions when crude oil is distilled. 31

fraction	W	X	Υ	Z
boiling point / °C	35 – 75	80 – 145	150 – 250	greater than 250

Which statement regarding the fractions is true?

- Fraction Y is less flammable than fraction W. A
- Fraction Y is less viscous than fraction X. В
- C The molecular mass of fraction Z is smaller than that of fraction X.
- The molecules in Z have a shorter chain length than those in fraction Y.
- 32 Which statement correctly describes the members of a homologous series?
 - They have the same empirical formula. Α
 - В They have the same physical properties.
 - C They undergo similar chemical reactions.
 - D The relative molecular masses of consecutive members differ by 12.
- 33 Which statement about vegetable oil and the margarine made from it is correct?
 - Α Both occur naturally.
 - В Margarine has the higher melting point.
 - C Both are liquids at room temperature and pressure.
 - D Vegetable oil has fewer carbon-carbon double bonds than margarine.

34 The following compound X can be converted into the following compound Y.

Which of the following correctly shows the reagents and conditions needed for the conversion?

	reagent	conditions
Α	hydrogen	200 °C, nickel catalyst
В	concentrated sulfuric acid	heat
С	steam	300 °C, 60 atm, phosphoric acid
D	monomer	450 °C, iron catalyst

- Which of the following could not be produced when methane reacts with fluorine 35 in the presence of ultraviolet light?
 - fluoromethane Α

В hydrogen

C hydrogen fluoride

- tetrafluoromethane
- When tetradecane, C₁₄H₃₀, is cracked, only three hydrocarbons are formed. The 36 hydrocarbons are ethene, propane and propene.

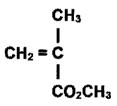
What is the ratio of the hydrocarbons formed?

	ethene	propane	propene
A	1	1	1
В	1	2	2
С	1	3	1
ם	4	1	1

- Terylene and nylon are man-made fibres. Which of the following is not a typical 37 use of such fibres?
 - clothing Α
 - В fishing line
 - C food product
 - D parachute

38 Apples contain malic acid. The diagram below shows the structural formula of malic acid.

Which of the following salt(s) could be formed upon reacting malic acid with sodium hydroxide?


- I C₄H₅O₅Na
- II C4H4O5Na2
- III C4H3O5Na3
- A II only

B I and II only

C II and III only

D I, II and III

39 Bone cement, used in artificial hip and knee replacements, is formed by the polymerisation of methyl methacrylate and the process is highly exothermic.

methyl methacrylate

Which statement about bone cement is true?

- A The empirical formula of bone cement is $C_5H_8O_2$.
- B Aqueous bromine is decolourised by bone cement.
- C Water is formed in the polymerisation of methyl methacrylate.
- **D** Less energy is released in the formation of C-C bond than the energy absorbed in the breaking of C=C bond.

40 The structural formula of compound Z is shown.

compound Z

Which of the following compound is an isomer of compound Z?

A

В

Ç

D

END OF PAPER

The Periodic Table of Elements

				e:	<u> </u>	MINTAFA	*****	4.4 0.4 3	MIN MATERIAL TO A STATE OF THE	TOESCO.																		
WILDOWS AND A STREET OF STREET	0	2	Ŷ	helium 4	9	Ž	neon	20	18	₹	argon	40	36	<u>~</u>	kryptoi	8	ফ্র	×	xeuou	131	98	듄	radon	I .			********	-
**Company of the Company of the Comp	M				6	IL.	fluorine	Ç.	11	õ	chlorine	35.5	35	ത്	bromine	8	53		iodine	127	82	₹	astatine	ſ				
rantiforcobana-laconas-ratiforcoras	N				8	0	oxygen	16	16	တ	sulfur	32	¥	Se	selenium	73	52	p	teffurium	128	86	<u>0</u>	potonium	ı	116	ے	ivermorium	ı
osenance de la company de la c	^					z	nitrogen	7	15	۵.	surcydsod	3	8	As	arsenic	75	55	සි	antimony	122	83	ã	bismuth	209	-			
en skalferformenne kannen of denen	2				9	ပ	carbon	2	14	জ	d ucoilis	58	32	æ	lermanium	73	22	Š	£	119	82	8	pes	207	114	Ĭ	flerovium	1
	=				5	Φ	notoo	-	13	¥	stummium .	27	3.	ශී	S wnjje6	70	49	E	indium	115	8.	ĭ	thattum	5 8				
derlemante de la companya del companya de la companya del companya de la companya							•••••				.V		30	 §	zinc	65	48	3	cadmium	112	80	<u></u>	mercuny	201	112	-	opernicium	1
and the delication of the second second second													28	ಕ	cobbet	2	47	Ag	siver	108	79	₹	plog	197	111	Ro	sentgenium c	1
dn													58	Z	nickel	20	46	Б	palladium	106	82	古	platinum	195	110	ద	armstadtium r.	ŀ
Group													27	ප	Bedoo	29	45	듄	rhodium	103	14	<u></u>	iridium	192	109	Ž	meitnerium d	ì
		-	r	hydrogen 1	jednosom delevelede dinamental								26	æ	fig.	56	44	₹	ruthenium	101	9/	ဝိ	csmium	190	108	£	hassium	l
					į									Mn	manganese	₹S	43	ည	technetium	ŧ	75	8	thenium	186	107	듄	bohrium	ì
					ımber	₫.	***************************************	nass					24	ర	chromium 1	22	42	₽	molypdenum	96	74	≥	tungsten	184	106	රී	seaborgium	1
				Key	proton (atomic) number	atomic symbol	name	e atomic n					23			51									105			ŧ
					proton	ato		relativ					22	F	Stanium	48	40	7	zirconium	O.	72	Ï	hafnium	178	104	ž	Rutherfordium	
					i				ı				74	သွ	scandium	45	36	>	yttrium	තිස	57-71	anthanoids			89 103	actinoids	<u></u>	
	=				4	å	beryllium	Ç.	12	ğ	magnesium	24											barium			œ E	гафит	***
	Margaret .				က		Ethium	~	***	g	mnipos	ន	6	×	mnissex	68	33	2	mnibidum	88	SS.	රි	aesium	133	87	ŭ	ancium	····

E 3		_		3	1
온웃	ytterblum 173	102	Š	mobelium	1
8 E	thulium 169	101	Md	mendelevium	1
ឌ ជា	erbium 167	100	Ē	fermium	1
29	holmitum 165	66	T.	einsteinum	1
8 &	dysprositum 163	85	ರ	californium	1
9 £	tarblum 159	26	益	berkelium	1
2 8	gadolinium 157	96	5	curium	1
8 🗓	europlum 152	88	Ą	americtum	ı
S &S	samarlum 150	76	2	plutonium	1
£ E	mnintemord	93	Š	nephmium	1
8 ₹					
සු	pressectymium 141	91	Q.	profactinium	231
జి రి	140	96	f	thorium	232
E 2	lanthanum 139	83	Ac	actinium	1
nthanoids		tinoids			

e volume of one mole of any gas is $24\,dm^3$ at room temperature and pressure (r.t.p.).

NAME: NO: CLASS:	

ADMIRALTY SECONDARY SCHOOL

PRELIMINARY EXAMINATION 2021

SUBJECT Chemistry

CODE/PAPER 6092/2

Secondary 4 Express LEVEL/STREAM

25 August 2021 DATE

0800h - 0945h TIME

1 hour 45 minutes DURATION

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, glue or correction fluid.

The use of an approved scientific calculator is expected, where appropriate.

You may lose marks if you do not show your working or if you do not use appropriate units.

Section A

Answer all questions.

Write your answers in the spaces provided on the question paper.

Section B

Answer all three questions. The last question is in the form of either/or.

Write your answers in the spaces provided on the question paper.

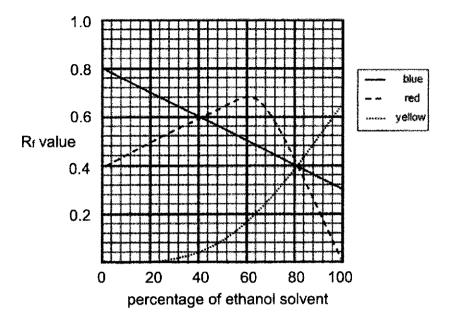
A copy of the Periodic Table is printed on page 21.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's	s Use
Section A	/ 50
Section B	/ 30
Total	/ 80

DO NOT TURN OVER THIS PAPER UNTIL YOU ARE TOLD TO DO SO.

This question paper consists of **21** printed pages including this cover page. Partnerini earning


Section A Answer all questions.

1 The table shows some information about substances A to E.

substance	melting point / °C	boiling point / °C	Does it conduct electricity when it is a solid?	Does it conduct electricity when molten?
Α	71	-62	no	no
В	-8	58	no	no
С	1240	2100	yes	yes
D	1473	1700	no	yes
E	1649	2231	no	no

(a)	Which substance is most likely to be tungsten(VI) oxide?
	[1
(b)	Which substance is most likely to be argon?
	[1
(c)	Which substance is most likely to be used as a cutting tool?
	[1
(4)	Draw the heating curve of substance B when the temperature increased from
(4)	-20 °C to 50 °C.

2 A sample of ink contains a mixture of red, blue and yellow dyes. To separate the dyes in the ink, the solvent used is a mixture of water and ethanol. The R_f values of the coloured dyes in solvents with different percentage of ethanol present are shown.

(a)	What is the R _f value of the blue dye when a solvent mixture containing 90 cm ³
	ethanol and 60 cm ³ water is used in the chromatography?

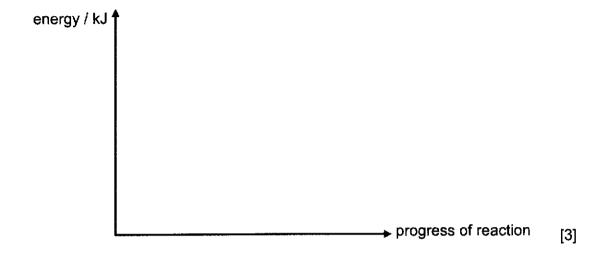
Rf value of the blue dye:	[1]]
---------------------------	-----	---

(b) A mixture of water and ethanol was used to separate a sample of this ink. Only one spot was formed on the chromatogram. Using evidence from the graph, explain why it cannot be concluded that the ink sample is a pure substance.

(c) Suggest a suitable method to separate the water and ethanol solvent mixture.

3 The world is trying to reduce the reliance of fossil fuel by exploring alternative fuels. The table below gives some information about the different fuels explored.

fuel	physical state at room temperature and pressure	enthalpy change of combustion / kJ / mol	products of complete combustion
hydrogen	gas	- 256	H ₂ O only
methanol	liquid	- 715	CO ₂ and H ₂ O
methane	gas	- 890	CO ₂ and H ₂ O


(a) The complete combustion of methane is represented by the following equation.

(i) Calculate the mass of methane that needs to be combusted to produce 3115 kJ of heat.

	(11)	change for the complete combustion of methane has a negative sign.	
			[2
(b)	disa	ng only information from the table, state one advantage and one dvantage of using methanol as a fuel compared to hydrogen apart from the bunt of heat given out.	
	adva	antage:	
		······································	
	disa	dvantage:	
			F0:

[1]

(c) Draw an energy profile diagram for the complete combustion of hydrogen. Indicate the enthalpy change, ΔH and activation energy, E_a on the diagram clearly.

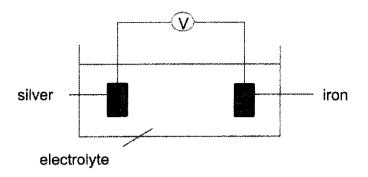
4 Duralumin is a mixture of aluminium with copper. It is used mainly in machine parts due to its high strength and hardness compared to aluminium. However, duralumin is more susceptible to corrosion than aluminium.

(a)	State the name given to mixtures such as duralumin.
	[1]
(b)	Explain why duralumin is harder than aluminium.
	[2
(c)	Explain why duralumin corrodes more easily than aluminium.
(d)	Recycling of metals has been encouraged as a way to produce useful metals instead of extracting them from their ores. Explain why.

.....[1]

5	Acidified potassium manganate(VII) reacts with excess sodium ethanedioate. The
	ionic equation of the reaction is shown below.

2 Mr	2 MnO ₄ ⁻ (aq) + 16 H ⁺ (aq) + 5 C ₂ O ₄ ²⁻ (aq) \rightarrow 2 Mn ²⁺ (aq) + 8 H ₂ O (l) + 10 CO ₂ (g)								
(a) Describe two observations in this experiment.									


reducing agent.

......[2]

(b) State and explain, in terms of oxidation state, which chemical species is the

(c) Calculate the volume of CO₂ produced at r.t.p given that 25.0 cm³ of 0.5 mol/dm³ of potassium manganate(VII) was used.

6 The diagram shows a simple cell set-up.

Complete the table by filling in the missing information.

electrolyte used	electrodes used	product formed at positive electrode	product formed at negative electrode		
aqueous sodium nitrate	silver and iron		And the second s		
	silver and iron	silver			

[3]

7 A colorimeter measures the intensity of light that is absorbed by a coloured solution. The darker the colour of the solution, the more light is absorbed and the higher the reading on the colorimeter.

In experiment 1, fluorine gas was bubbled into aqueous potassium bromide for 6 minutes. The reaction mixture was measured with a colorimeter over time.

(a)	Describe and explain how the colorimeter reading changes as the reaction takes place.						
	[3]						

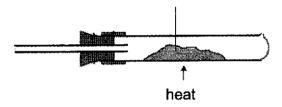
[2]

(b)	ln	experiment	2,	aqueous	potassium	bromide	was	replaced	with	aqueous
	ро	tassium chlo	ride	e of the sa	me concent	ration.				

(i)	Draw a 'dot-and-cross' diagram to show the bonding in potassium chloride
	Show only the valence electrons.

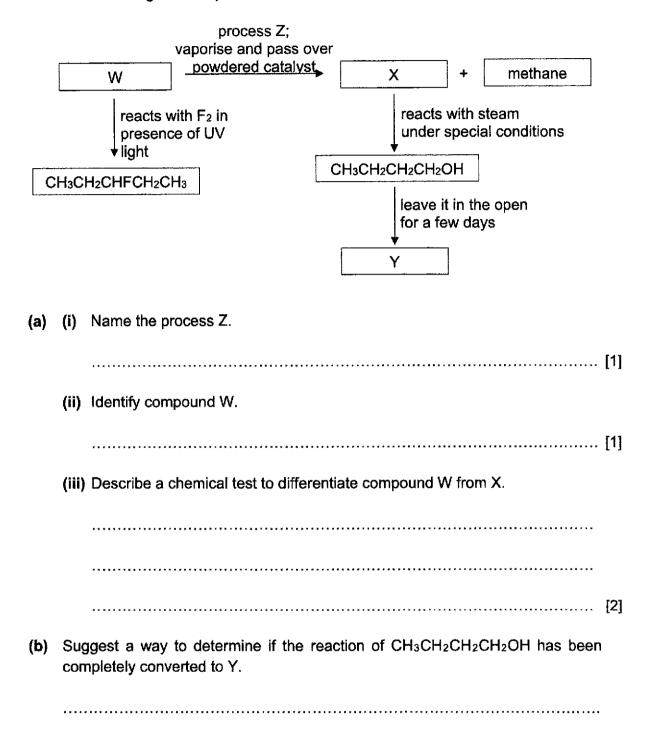
(ii)	State one similarity and one difference in the experimental result between experiments 1 and 2.	
	Similarity:	
	Difference:	
		[2

Hydrated copper(II) sulfate has the chemical formula, CuSO4*xH2O where x can 8 range from 0 to 5. The pentahydrate (CuSO4*5H2O) is the most commonly encountered salt.


A sample of CuSO4.5H2O was heated over time to slowly remove the water of crystallisation. After some time it was noted that the mass of the sample decreased by 15% and CuSO₄•5H₂O was converted to compound P.

(a) Suggest the chemical formula for compound P. Show your working clearly. [Mr CuSO₄.5H₂O = 250]

chemical formula of compound P:	[2
---------------------------------	----


(b) On further heating of the sample till 950 °C, it decomposed to form copper(II) oxide. Copper(II) oxide is then further heated with carbon in a glass tube to produce a gas and molten copper.

copper(II) oxide and carbon

(i)	Write an equation for the reaction between copper(II) oxide and carbon.	
		[1]
(ii)	Molten copper(II) oxide and copper conduct electricity differently. Describe how they conduct electricity differently.	!
		[1]
(iii)	The conduction of electricity can have different effects on copper and on molten copper(II) oxide. Describe the difference.	l
		[1]

9 The reaction of organic compound W is shown below.

Section B

Answer all three questions in this section.

The last question is in the form **either/or** and only one of the alternative should be attempted.

10 The structural formula of the artificial sweetener, aspartame, is shown below.

(a) Name two functional groups present in aspartame.

......[1]

(b) Aspartame is hydrolysed in the stomach to produce methanol as well as the amino acids aspartic acid and phenylalanine.

Hydrolysis involves the reaction of an organic compound with water to form two or more new products through breakage of bonds in the organic compound.

Two of the products of hydrolysis of aspartame are shown below:

$$\begin{array}{c|c} H & O \\ H-N-\overset{|}{C}-\overset{|}{C}-OH \\ & \overset{|}{H} & CH_2 \\ & & \\ & & C_6H_5 \end{array}$$

(i) Draw the structural formula of aspartic acid.

(ii) The full structural formulae of ethanol and propanol are shown below:

name of compound	full structural formula
ethanol	H H H-C-C-O-H H H
propanol	H H H H-C-C-C-O-H H H H

		Explain why methanol, ethanol and propanol belong to the same	
		homologous series.	
		[2	<u>'</u>]
(c)		en warmed in the presence of concentrated sulfuric acid, methanol reacts propanoic acid to form water and ester P.	
	(i)	Name ester P.	
		[1]
	(ii)	Esters are commercially used in perfumes for its aromatic property.	
		State one other commercial use of ester.	
		[1]
(d)		acromolecule can be formed from phenylalanine undergoing condensation merisation as a single monomer.	
	(i)	Define the term 'macromolecule'.	
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
			1

13

(ii) Draw the structural formula of the polymer formed from the monomer phenylalanine, showing two repeating units.

[1]

11 Reaction Rates

The reaction between colourless peroxodisulfate(VI) ions and iodide ions is represented by the following ionic equation.

$$S_2O_8^{2-}$$
 (aq) + 2|- (aq) $\rightarrow 2SO_4^{2-}$ (aq) + |₂ (aq)

The same volume of aqueous S₂O₈²⁻ and aqueous I⁻ are used for each experiment.

The table below shows the results of each experiment when different concentrations of each reactant are used.

experiment	initial cond mol/		initial rate of reaction / mol/dm3s
	S ₂ O ₈ ² -	-	
1	0.008	0.020	1.22 x 10 ⁻³
2	0.016	0.020	2.44 x 10 ⁻³
3	0.032	0.020	4.88 x 10 ⁻³
4	0.008	0.040	2.44 x 10 ⁻³
5	0.008	0.080	4.88 x 10 ⁻³

Order of Reactions

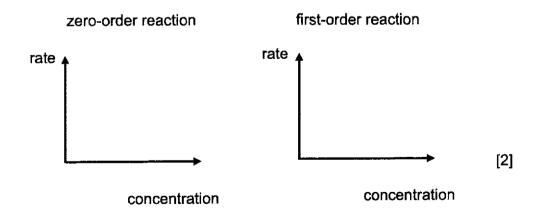
The order of a reaction refers to the power dependence of the rate of reaction on the concentration of each reactant. It is a numerical value.

In a zero-order reaction, the concentration of the reactants has no effect on the initial rate of reaction.

In a first-order reaction, the initial reaction rate is directly proportional to the concentration of one of the reactants.

In a second-order reaction, the initial rate of reaction quadruples when the concentration of one of the reactants is doubled.

Increasing the rate of reaction


If a small amount of Fe^{2+} ions is added to the reaction mixture, the rate of reaction will increase. Fe^{2+} will react with the peroxodisulfate(VI) ions, forming Fe^{3+} ions, which will then react with the iodide ions in the following two stages:

Stage 1:
$$2Fe^{2+}(aq) + S_2O_8^{2-}(aq) \rightarrow 2Fe^{3+}(aq) + 2SO_4^{2-}(aq)$$

Stage 2:
$$2Fe^{3+}(aq) + 2I^{-}(aq) \rightarrow 2Fe^{2+}(aq) + I_2(aq)$$

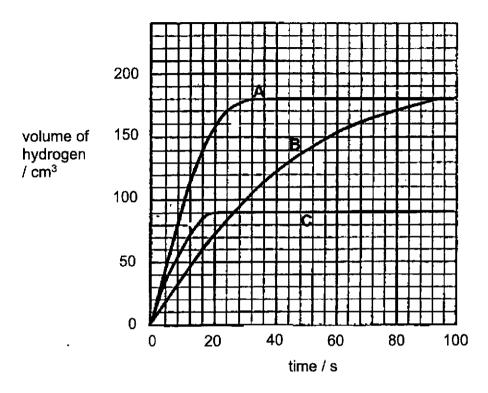
a)	(i)	Suggest a method to measure the rate of reaction between peroxodisulfate(VI) ions and iodide ions.
		[1]
	(ii)	Two students made comments about the reaction.
		Student 1: The reaction is first order with respect to S ₂ O ₈ ²
		Student 2: The reaction is second order with respect to I ⁻ .
		Which student is correct? Show by calculation using information from the table to support your answer.
		[3]

(iii) Sketch the graphs of rate against concentration of reactant for a zero-order and a first-order reaction.

(iv) Another two similar experiments were carried out.

experiment	concentration concentration of		initial rate of
	of S ₂ O ₈ ²⁻ /	1-/	reaction /
	mol/dm³	mol/dm ³	mol/dm³s
6	0.016	0.040	
7		0.080	9.76 X 10 ⁻³

		Predict the initial rate of reaction in experiment 6 and the concentration of $S_2O_8^{2-}$ in experiment 7.	
		initial rate for experiment 6:	
		concentration of S ₂ O ₈ ²⁻ in experiment 7:	[2]
(b)	(i)	Explain the role of Fe ²⁺ ions when added into the reaction mixture.	
			[2]
	(ii)	Suggest a way to remove Fe ²⁺ ions from aqueous iodine after Stage 2.	
			ro:


F	17	ı	ł	F	R

12			a transitio sulfide, Ni		It is manu	factured in	n a four-sta	ige process fr	rom
	5	Stage	1 – nickel dioxid	• •	s heated in	air to form	nickel(II) o	xide and sulfu	r
		_	3 – impur	(II) oxide is e nickel is re arbonyl, Ni(l	eacted with				
	5	Stage		tetracarbor	•	posed to (give pure ni	ckel	
	(a)	(i)	Construc	ct the balanc	ced equatio	n for the re	eaction in st	age 1.	
								•••••	[1]
		(ii)		e the mass sulfide is h			t is formed	when 182 kg	, of
					•				
							1		
							.*		
									[2]
	(b)	-	ain why nesium.	this 4-stag	ge process	cannot	be used	to manufact	ure

									[2]

•		nounts of three metals	
aqueous II	aqueous zinc	aqueous nickel(II)	aqueous copper(II)
	nitrate	nitrate	nitrate
zinc	no reaction	green solution turn colourless and zinc coated with a grey	blue solution turn colourless and zinc coated with a pink
		solid	solid
nickel		no reaction	
copper	no reaction	no reaction	no reaction
Predict the	observations whe	en nickel is added to	<u> </u>
		minoror is added to	
(i) zinc	nitrate solution		

OR

12 In experiment 1, 0.488 g of zinc was reacted with two acids, hydrochloric acid and sulfuric acid separately. The volume and concentration of the acids used were both 20.0 cm³ and 2.00 mol/dm³. The curves A and B shown in the graph below show the results of the reactions.

In experiment 2, a similar reaction with an unknown mass of zinc and 20.0 cm3 of a 2.00 mol/dm³ acid was conducted. Curve C shows the result of the reaction.

Explain, with relevant calculations, why the same volume of gas was produced (a) for both curves A and B.

 			 	 		 • • • • • •	· · · · · ·	• • • • • •	• • • • • • •		**********	
 	• • • • •	• • • • •	 	 	•••••	 	•••••	• • • • • •		•••••		
 			 	 	,	 					,	[3]

(b)		veen curves A and B, identify the curve for the reaction that used sulfuric . Explain your choice.	
			[2]
(c)	Give	en that either sulfuric acid or hydrochloric acid was used to obtain curve C,	
	(i)	identify the acid used and state your reasoning.	
			[1]
	(ii)	calculate the mass of zinc used.	
			[1]
(d)	and	eriment 2 was repeated using the same mass of zinc and the same volume concentration of the acid, but this time, a small amount of copper(II) sulfate tals were added to the reaction mixture.	
		rvescence was observed and a brown deposit was formed. The volume of rogen collected was slightly less than in experiment 2.	
	With	n the aid of an equation, explain why less hydrogen was collected.	

		······································	
			[3]

The Periodic Table of Elements

	-			=			····				=				Ę				ş.			_	=		-	********		
0	5	4 <u>1</u>	- 2	4	10	Ž	neor	2	έ	¥	argo	9	36	궃	kryptr	8	22	* -	xeuo	131	98	돈	racto	l				
5	-				G	Ш	fluorine	0	17	ວັ	chicrine	35.5	32	à	bromine	90	53	_	iodine	127	88	¥	astatine	*				
5					00	0	axygen	5	16	ဟ	stilling	32	8	ø	selenium	62	22	<u>a</u>	tellurium	128	\$	S.	mnjuolod	1	116	<u>ک</u>	wermorum	1
^						z	nitrogen	4	15	<u>a</u>	phosphorus	ઝ	33	As	arsenic	25	51	හි	antimony	122	8	õ	bismuth	508				
2					9	ပ	carbon	ij	14	ΰ	Silicon	28	32	නී	germanitan	£	20	స్	£	119	8	£	lead	207	114	I	Herovium	*
=					20	00	porou	-	13	¥	aluminium	27	34	eg O	gaffurn	70	49	드	mdium	115	<u>~</u>	Ĕ	Maillum	204			******	B C****C**
	_												30	۲Z	zinc	65	48	පි	cadmium	112	8	웃	mercuny	23	112	5	copernicium	1
													28	J	comber	64	47	Ag	silver	108	62	Υn	Bold	197	111	ğ	roentgenium	1
G													28	Z	nickel	26	46	g	pelledium	106	78	۵	platinum	195	110	SO.	darmstadium	ì
Group	-												27	රි	cobalt	600	\$	듄	thodium	103	2	<u>,=</u>	iridium	192	109	¥	meitnerium	1
	-	· I	Profession										56	P	uou	99	4	₹	питении	- 5	92	ő	oemium	190	108	£	EDWARE	ı
	-				,								25	Ž	manganese	8	43	ပ	technetum	*	£	æ	menium	186	107	듑	populum	ı
					umber	~ ~		nass					24	Ö	chromium	25	42	Š	такраения	96	7	3	tungaten	184	106	S	mnBlodes	ı
	-			Key	proton (atomic) num	atomic symbol	Marie	re atomic r							-					- 1					105			
					proton	ato		relatin					22	F	Menium	48	40	Z	zirconium	91	72	Ĭ	hafnium	178	104	ž	Rutherfordium	1
					-			l	•				24	တ္တ	*candium	₹	ස	>	ytting	68	57-71	Smthanoids			89 103	actinoids		
					4	86	beryllium	රා	12	Ž	magnesium	24	20	Ö	catcium	\$	88	ത്	strontium	88	98	æ	Darlum	137	88	æ	radium	ł
					(L)		Whiten		11	ž	sodium	ន	16	¥	potassium	ස	37	2	rubidium	8	돲	ర	caesium	133	87	ΐ	fractoium	ı

					The state of the s		
anthanoids	22	88	20	9	61	62	63
	2	පී	ā	2	ē	Sm	岀
	fanthamum	cectum	раженофинкан	neodymium	promethium	samanum	europiun
	139	140	141	4	į	150	52
actinoids	89	6	9	85	93	94	95
	ĄÇ	£	ď.	ວ	Š	2	Am
	actinium	thorium	profactinium	uranium	กสมนาเมส	mnuconid	M. Mericine
	ı	232	231	238	1	***	1
	monte of the same of conference of the same						

169 169 101 Mdd

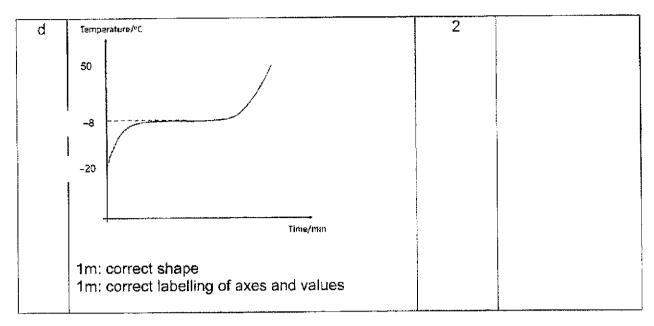
98 Fr 167 Tm

67 Ho solmlum 165 99 Es

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

PartnerInLearning

END OF PAPER


Admiralty Secondary School Marking Scheme 4E Pure Chemistry (Paper 1 and 2) PRELIMINARY EXAMINATION 2021

PAPER 1 [40 marks]

1	2	3	4	5	6	7	8	9	10
С	D	С	А	Α	С	А	D	D	В
11	12	13	14	15	16	17	18	19	20
В	В	В	D	D	С	С	В	С	С
04	00	00	24	25	26	77	20	20	20
21	22	23	24	25	26	27	28	29	30
С	А	Α	D	А	С	В	С	В	С
.,,,			~				·		
31	32	33	34	35	36	37	38	39	40
Α	O	В	А	В	D	С	В	Α	С

PAPER 2 SECTION A [50 marks]

Qn.	Description	Mark	Remarks
1a	D	1	
b	A	1	
C	E	1	

Qn.	Description	Mark	Remarks
2a	0.50	1	
b	The sample could be a mixture of three dyes if the solvent used is 80% ethanol.	1	
	This is because only one spot will be observed as all three dyes have the same R _f value of 0.4	1	
С	Fractional distillation		A: simple distillation

Qn.	Description	Mark	Remarks
3ai	No of moles of methane = 3115/890 = 3.5 mol		
	Mass of methane = 3.5 X 16 = 56g	1	
ali	The energy taken in to break 4 mol C-H bond and 2 mol O=O bond is less than the energy give out in the bond formation of 2 mol C=O bond and 4 mol O-H bond. Hence the reaction is exothermic and has a negative sign for enthalpy change.	2	1m: compare energy taken in and given out 1m: relate energy taken in to that of bond breaking of the reactants and energy given out as bond forming of products

b	Advantage: Methanol is a liquid while hydrogen is a gas at rtp. Easier to transport methanol as transporting hydrogen would require use of pressurised tanks Disadvantage: Burning methanol releases carbon dioxide which is a greenhouse gas. While	1	
	burning hydrogen produces only water which is non-pollutive	1	
C	Energy 2H ₂ + O ₂ 2H ₂ O Progress of reaction [1 mark for correct shape of graph, 1 mark for correct labelling of reactant and product, 1 mark for correct labelling of enthalpy change and activation energy]	3	

Qn.	Description	Mark	Remarks
4a	Alloy	1	
b	Aluminium consists of aluminiums atoms arranged in orderly layers. These layers can slide easily when a force is applied. While duralumin contains atoms of different sizes that disrupt the orderly arrangement of the atoms. Hence the atoms cannot slide over each other easily when a force is applied. Hence it is harder. 1m: describe correctly the arrangement of atoms in aluminium and duralumin. 1m: describe correctly the ease of atoms sliding over each other when a force is applied.	2	

С	Aluminium is more reactive than copper.	1	
	Hence it acts as a sacrificial metal protection for copper and corrode much easily.	1	
d	To conserve metal as it is a finite resource	1	A: any other plausible reason
	or		
	To reduce pollution as extraction of metal might produce harmful waste products		

Qn.	Description	Mark	Remarks
5a	Purple solution turned colourless.	1	
	2. Effervescence observed.	1	
b	C ₂ O ₄ ² -is the reducing agent.	1	***
	C ₂ O ₄ ²⁻ is oxidised to form CO ₂ . The oxidation state of C increases from +3 in C ₂ O ₄ ²⁻ to +4 in CO ₂ .	1	
C	No. of moles of KMnO ₄ used = 25/1000 x 0.5 = 0.0125 mol	1	
	No. of moles of CO ₂ produced = 0.0125 x (10/2) = 0.0625 mol	1	
	Volume of CO2 produced = 0.0625 x 24 = 1.50 dm ³	1	

Qn.		Descri	ption		Mark	Remarks
6	electrolyte used	electrodes used	product formed at positive electrode	product formed at negative electrode	3	
	aqueous sodium nitrate	silver and iron	hydrogen	iron ions		
	any silver salt solution	silver and iron	silver	iron ions		
	1,70	1m: elec	•	240		
		product at po product at ne		i		

Qn.	Description	Mark	Remarks
7a	Reading increase over time as more bromine is formed.	1	
	Fluorine is more reactive than bromine, hence fluorine displaces bromine from potassium bromide solution to form bromine and potassium fluoride solution.	1	
	Solution turns from <u>colourless to reddish brown over</u> <u>time</u> causing the reading to increase	1	
bi	1m: cation 1m: anion	2	
bii	Similarity: reading increases over time	1'	
	Difference: reading is higher in experiment 1 than in experiment 2	1	

Qn.	Description	Mark	Remarks
8a	From graph, % mass loss = 15%		
	Mass loss = 250 x 15% = <u>37.5</u> ≈ mass of 2 mol of water molecules	1	
	Chemical formula of P : CuSO4.3H2O	1	
bi	2CuO + C → 2Cu + CO ₂	1	
bií	Molten R conducts electricity with free mobile ions while molten S conducts electricity with mobile/delocalised electrons.	1	
biii	S will remain unchanged while R will be electrolysed/ decomposed.	1	

Qn.	Description	Mark	Remarks
9ai	Cracking	1	
aii	CH ₃ CH ₂ CH ₂ CH ₃		
aili	Add <u>aqueous bromine</u> to both W and X. If reddish brown aqueous bromine turns from brown to colourless rapidly, sample is X, If aqueous bromine <u>remains reddish brown</u> , sample is W.	1	
b	By adding acidified potassium manganate (VII) to mixture. If it remains purple, it means all have been converted. Or By checking whether the substance boils at the fixed boiling point of butanoic acid.	1	

PAPER 2 SECTION B [30 marks]

Qn.	Description	Mark	Remarks
10a	Carboxylic acid	1	
	Amide		
	• Ester		
	Amine		
	Any two of the above.		
bi		1	
	OH - C - CH ₂ - C - COOH		
bii	They have the same general formula,	2	
	 C_nH_{2n+1}OH. They contain the same –O – H functional group Each successive member of the series differ by a –CH₂ unit. 		
	Any two of the above.		
ci	Methyl propanoate	1	
cii	Used in flavouringsUsed as solvents	1	
	Any one above		
di	Macromolecules are large molecules built up from small units/molecules	1	
dii	H O H O N-C-C N-C-C H CH ₂ C ₆ H ₁ C ₆ H ₁	1	

Qn.	Description	Mark	Remarks
11ai	 Measure the change in colour of the solution due to the formation of I₂ over time or Measure the change in electrical conductivity of solution over time 	1	
	of solution over time		
aii	Student 1 is correct. Comparing experiment 1 & 2, when the concentration of $S_2O_8^{2^-}$ is doubled, the initial rate of reaction also doubles.	1	
	2.44 X 10 ⁻³ = 2 1.22 X 10 ⁻³		
	Comparing experiment 4 & 5 / 1 & 4, when the concentration of I is doubled, the initial rate of reaction is doubled	1	
	4.88 X 10 ⁻³ = 2 2.44 X 10 ⁻³	1 (for both calculatio	
aiii	Zero order First order	2 (1m for each correct graph)	
aiv	Initial rate of reaction : 4.88 X 10 ⁻³ mol/dm ³ s	1	
	Concentration of S ₂ O ₈ ²⁻ : 0.016 mol/dm ³	1	
bi	Fe ²⁺ acts as a catalyst.	1	
	It speeds up the rate of reaction (by providing an alternative pathway with lower activation energy) and remain chemically unchanged at the end of the reaction.	1	

bii	1.	Add sodium hydroxide/potassium hyroxide to	1	
		precipitate out the insoluble iron (II)		
[hydroxide		
	2.	filter to remove the iron (II) hydroxide		
		precipitate.	1	

FITHER

EITHI Qn.	Description	Mark	Remarks
12ai	2NiS + 3O ₂ → 2NiO + 2SO ₂	1	
ai	no. of moles of NiS= 182000 = 2000 mol	1	
	2000 x (32 +16x2) = 128 kg	1	
b	magnesium is more reactive than carbon;	1	
	thus manufacture by <u>electrolysis</u> (of its ore) instead of reduction by carbon;	1	
ci	simple covalent molecule/ simple molecular structure with	1	
	It has a low boiling point which is probably due to the need for little amount of energy to overcome the weak intermolecular forces of attraction		
	between the molecules.	1	
cii	no visible change	1	
d	blue solution turned green	1	
	nickel coated with pink solid	1	

OR

Qn.	Description	Mark	Remarks
12a	$Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2$ $Zn + 2HCI \rightarrow ZnCl_2 + H_2$		
	No.of moles of zinc used = 0.488/65 = 0.00751 mol	1	

	No. of moles of acid used		
	= 2.0 x 20.0/1000		
	= 0.04 mol	1	
	- 0.04 11101	·	
	Zinc is the limiting reagent in both reactions and	1	
	will produce the same volume (180 cm ³) of	į	
	hydrogen		
	nyarogon		
b	A is the reaction with sulfuric acid		
	Curve A has a steeper gradient than curve B		
	which means experiment A has a faster rate of	1	
	!	•	
	reaction.		
1	Given the acid concentration is the same, since	1	
i	sulfuric acid is dibasic while hydrochloric acid is		
	monobasic, the <u>concentration of H</u> ± <u>present in</u>		
	sulfuric acid is twice as much as in hydrochloric		
	acid. Hence rate is faster for reaction with		
	'		
	sulfuric acid.		
cì	Sulfuric acid		
}			
	Curve C shows the same initial gradient as curve		
İ	A which means they have the same initial rate of	1	
		•	
	reaction		
cii	No. of moles of hydrogen	1	
	= 90/24000		
	= 0.00375 mol		
]	- 0,00013 (10)	1	}
			+
1	mass of zinc = $0.00375 \times 65 = 0.244 g$;		
	Or]	
	01		
	half the continuous of bandungue the configure half the		
	half the volume of hydrogen, therefore half the		
	mass of zinc		
}	so 0.488/2 = 0.244 g;		
d	$Zn(s) + CuSO_4(aq) \rightarrow ZnSO_4(aq) + Cu(s)$	1	
ļ ^u	211(3) 1 Outo 4(aq) 7 211004 (aq) 1 Outs)	•	
	OR	1	1

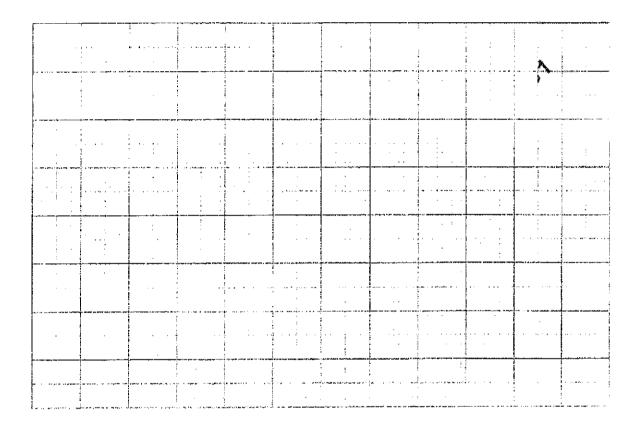
Zn(s) + Cu²+(aq) → Zn²+(aq) + Cu(s)		
zinc displaces copper from copper(II) sulfate to produce brown copper deposit	1	
less zinc reacts with acid to produce less hydrogen;	1	

Admiralty Secondary School Marking Scheme 4E Pure Chemistry (Paper 3) PRELIMINARY EXAMINATION 2021

Qn	Indicative material	Mark	Total
1(a)	full set of data (5 time taken values) + correct trend (increasing)	1	[4]
:	accurate calculation of average speed of reaction	1	
	all time taken recorded to nearest second	1	
	accurate calculated speed to 3 s.f.	1	
1 (b)	axis labels + units	1	[4]
	appropriate scale (y-axis to cover at least 2/3 of paper)	1	
	all points correctly plotted	1	
	best fit line (0,0 is not a data point)	1	
1(c)	Trend: The larger the volume of P used, the higher the average speed of reaction.	1	[3]
	Explain: Larger volume of P, higher concentration of P, more P particles per unit volume	1	
	Higher frequency of collision and <u>higher frequency of</u> <u>effective collision</u> , hence higher speed of reaction.	1	
1(d)	No of moles of P to use = (0.18 x 25) / 1000		[2]
	= 0.00450 mol	1	
	Volume of P to draw from 0.2 mol/dm ³ P = (1000 x 0.0045) / 0.2		
	= 22.5 cm ³	1	
1(e)	value from graph AND indication shown	1	[1]
	to determine from x = 22.5 cm ³ allow ECF from 1(d)		
1(f)	Change to the experiments Use burette/pipette	1	[2]
	 Repeat each set of experiment a few imes and find average of time taken 		
	Explanation (to match change suggested) More accurate (than measuring cylinder)	1	

	 To reduce the human 	reaction time error		1
1(g)	Start from origin	Treaction time end	1	
1(9/	 Steeper gradient 		,	
	. •	e does not pass through origin,		
	can accept line where			
	the original best fit lin		į	
	the same]			
	<u>-</u>			
1(h)	Procedures			[5]
	1. Perform the procedures			
	time round, use a t	hermometer to measure the		
	temperature of solution F	before adding to Q. Record the		
	temperature, T ₀ , to the n	•		
		5.[.]		
	2 Panaat Stan 1 for four m	ore times with the temperature of		
	•	•		
		T ₀ +20, T ₀ +30 and T ₀ +40		
	respectively. [1]			
	O Daniel House	af D. to the war area to C		
		of P, to the nearest °C, and time		
		econd, for mixture to turn blue-		
	black			
	Results			
	Temperature of solution	Time taken / s		
	P/°C	Time taken/s		
	T ₀ =			
	$T_0 + 10 =$			
	$T_0 + 20 =$			
	T ₀ +30 =			
	T ₀ +40 =			
	[1]			
	[1]			
	Data Brassasina			
	Data Processing If the time taken for the blue	-black colour to appear for every		
		•		
		P is halved, then the suggestion		
	is confirmed. [1]			
	Assumptions			
	1. Solution P is stable to	heating and will react with Q		
	normally			
	2. The temperature differe	ence between each successive		
	mixture when P is added	to Q is approximately 10 °C even		
		e starch solution is not heated.		
	and agricolation & and ar			
	1 mark awarded for any one	of the above two points	!	
	Finalk awarded for any one	of the above two points.		
				<u> </u>

Note: Supervisors are asked to carry out the following experiment to ensure that results fall within the required limits.


To 10.0 cm³ of Q, add 2 cm³ of starch solution and then add 25cm³ of P.

The time taken for the mixture to turn blue-black should be within 15-25 s.

To adjust the time taken, increase or decrease the concentration of P.

Setter's results for Question 1:

experiment	volume of Q / cm ³	volume of starch / cm³	volume of P / cm ³	volume of water / cm ³	time taken / s	1 time taken / s ⁻¹
1	10	2	25	0	19	0.0526
2	10	2	20	5	26	0.0385
3	10	2	15	10	32	0.0313
4	10	2	10	15	63	0.0159
5	10	2	5	20	138	0.00724

Qn	Indicative material		Mark	Total
2(a)	Test	Observations		[12]
	Test 1 Place 2 cm³ of R in a test tube and add equal volume of aqueous silver nitrate	Yellow/pale yellow ppt formed.	1	
	Add dilute nitric acid to the mixture.	No changed is observed.	1	- Control Balance
	Test 2 Place 1 cm³ of R in a test tube and add an equal volume of aqueous copper(II) sulfate.	(Colourless solution turned brown.) A pale brown ppt is produced. 2KI(aq) + CuSO₄ (aq) → 2CuI(s) + I₂(aq) + K₂SO₄	1	
	Add aqueous sodium thiosulfate to the mixture until no further change take place.	Brown ppt (turned to white ppt) and soluble in excess to form colourless solution	1	
		{ Na ₂ S ₂ O ₃ – reducing agent} I ₂ (brown soln) → I (colourless solution		
	Test 3 Place 2 cm ³ of R in a test tube and add an equal volume of dilute sulfuric acid and a few drops of S.	Colouriess solution turned reddish brown/brown	1	
	Add an excess of solution S to the mixture and allow to stand for a few minutes	The brown solution turns dark brown/ black ppt formed.	1	
	Test 4	2KI(aq) + H₂SO₄(aq) + H₂O₂ → I₂(ag) + K₂SO₄(aq) + H₂O(l)		
	Place 2 cm ³ of acidified potassium manganate(VI) solution in a test tube and add	Purple acidified potassium manganate (VII) solution turned from purple to colourless.	4	
and the second s	equal volume of S. Leave the mixture to stand for a few minutes.	Effervescence observed. (Colourless gas produced relights the glowing splint. Gas is oxygen.)		
	Test 5	Colourless/Light green solution turns to pale yellow or orange or	1	

F	To 1 cm ³ of aqueous	brown solution/ On standing		
	iron(II) sulfate add an	brown ppt formed	 i '	
	equal volume of S.	11		
	Leave the mixture to	(Effervescence observed.		
ŀ	stand for a few minutes,	The gas produced relights the		
	shaking occasionally.	glowing splint. Gas is oxygen.)		
		Reddish brown ppt formed	1	
	To the minture add	Effervescence observed.	1	
,	To the mixture, add sodium hydroxide until is	The gas produced relights the	1	
	no further change is	glowing splint. Gas is oxygen.		
	seen.	growing apinits are to oxygom		
			'	
				603
2(b)	Anion R is <u>iodide ion, la io</u>	<u>n</u>	1	[2]
	December to Test 4, 5 vol	llow precipitate of silver iodide is		
	formed with silver nitrate so		1 %	
	Tofffied With Silver fill die 30	Saucer.	' ^	•
	The precipitate is insoluble	in dilute nitric acid.		
	$Ag^{+}(aq) + I^{-}(aq) \rightarrow AgI(s)$			
	3 , " , " , "			
0()		- Die ausdusies asset	1	[2]
2(c)	Chemical property of soluti	on K is a reducing agent	1	[2]
	 Peaconing: In Test 3 color	urless solution of iodide ion is	1	
	oxidized to brown iodine so		'	
	omazea to brown loans se			
2(d)	Chemical property of soluti	on S is an oxidizing/reducing	1	[2]
`	agent.			
		•		
	Reasoning:		1	
	 Reducing agent: In 	Test 4, purple acidified potassium		
		reduced to colourless Mn2+	1	
	solution.			
	 Oxdising agent: Tes 	t 3, colourless I solution is		
	oxidized to brown 12 or Tes	.t 5 , the pale green Fe ²⁺ solution is		
	oxidized to yellow Fe3+ solu	ition.	<u></u>	