	Class	Register No.
- W. J. A.		
Candidate Name		

PEIRCE SECONDARY SCHOOL **PRELIMINARY EXAMINATION 2021** SECONDARY 4 EXPRESS / 5 NORMAL (ACADEMIC)

SCIENCE (CHEMISTRY, BIOLOGY) Paper 1 Multiple Choice

5078/01 01 September 2021 1 hour

Additional Materials: Multiple Choice Answer Sheet

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

Do not use staples, paper clips, glue or correction fluid.

Write your name. Index number on the Answer Sheet in the spaces provided.

There are forty questions in this paper. Answer all questions. For each question, there are four possible answers, A, B, C and D.

Choose the one you consider correct and record your choice in soft pencil on the separate answer sheet.

Read the instructions on the Answer Sheet very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer.

Any rough working should be done in this booklet.

A copy of the Data Sheet is printed on page 15.

A copy of the Periodic Table is printed on page 16.

The use of an approved scientific calculator is expected, where appropriate.

This paper consists of 16 printed pages and 0 blank page. Setter: Mr Brandon Sham (Chemistry) and Ms Tan Yin Chin (Biology)

Turn Over

A group of students want to investigate if the mass of manganese(IV) oxide will affect the speed of decomposition of hydrogen peroxide. Hydrogen peroxide decomposes to form water and oxygen gas.

Which of the following apparatus is **not** required for this investigation?

- A electronic balance
- B gas syringe
- C stopwatch
- **D** thermometer
- 2 To obtain sodium chloride from a mixture of sand and sodium chloride solution, which of the following should be carried out first?
 - A crystallisation
 - **B** distillation
 - C evaporation to dryness
 - **D** filtration
- 3 A white solid was dissolved in distilled water and the resultant solution is tested with several reagents. The table shows the observations for the different tests.

reagent	observation					
aqueous sodium hydroxide, warm	moist red litmus paper turns blue					
aqueous ammonia	no visible change					
dilute nitric acid, aqueous silver	effervescence observed, no precipitate					
nitrate	formed					
dilute nitric acid, aqueous barium	effervescence observed, no precipitate					
nitrate	formed					

What is the identity of the white solid?

- A ammonium carbonate
- B ammonium sulfate
- C calcium chloride
- D sodium carbonate

- Which of the following statements is true when liquid stearic acid is cooled to a 4 temperature below its melting point?
 - A The distance between the particles increases.
 - The forces of attraction between particles become stronger. В
 - C The particles become more disorderly arranged.
 - The particles vibrate faster. D
- Which of the following statements is true about sub-atomic particles in an atom? 5
 - A neutron has a relative mass of 1. Α
 - В All atoms have protons, neutrons and electrons.
 - C An electron has a relative charge of 1+.
 - Protons are found orbiting around the nucleus. D
- Atoms W and X are isotopes. 6

W has 35 protons and 46 neutrons.

Which of the following shows the correct symbol for X?

Α C

- 7 Atom E has an electronic configuration of 2.8.3.

Atom F has an electronic configuration of 2.6.

Which row correctly describes the compound formed between E and F?

	bonding	melting point				
Α	covalent	low				
В	covalent	high				
C	ionic	low				
D	ionic	high				

8	Potassium dichromate	(VI	has a chemical	formula of K2Cr2O7
_	, ctacciaiii a.c.iiiciii.atc.		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

What is the charge of a dichromate(VI) ion?

- A 2-
- **B** 3+
- C 6+
- **D** 6-
- 9 Which of the following has the same number of moles as 16.0 g of oxygen gas?
 - A 12.0dm³ of hydrogen gas at room temperature and pressure
 - **B** 16.0dm³ of oxygen gas at room temperature and pressure
 - C 24.0dm³ of steam at 120°C and pressure of 1 atmosphere
 - **D** 40.0g of calcium
- 10 Which of the following is an example of an endothermic change?
 - A combustion
 - B dissolving ammonium nitrate in water
 - C dissolving concentrated sulfuric acid in water
 - **D** respiration

- 11 When hydrogen peroxide is added into acidified potassium manganate(VII), the colour of the solution changes from purple to colourless.
 - When hydrogen peroxide is added into aqueous potassium iodide, the colour of the solution changes from colouriess to brown.

What is the role of hydrogen peroxide in these reactions?

	reaction with acidified potassium manganate(VII)	reaction with potassium iodide
Α	oxidising agent	oxidising agent
В	oxidising agent	reducing agent
С	reducing agent	oxidising agent
D	reducing agent	reducing agent

- 12 Which statement about acids and bases is not correct?
 - A Acids do not contain hydroxide ions.
 - B An acidic solution has a pH value of less than 7 at 25°C.
 - C Basic oxides can be formed from metals reacting with oxygen.
 - Soluble bases that dissolve in water and producing hydroxide ions are called alkalis.
- Which set of reagents is the most appropriate to prepare a pure, dry sample of copper(II) sulfate?
 - A copper and dilute sulfuric acid
 - B copper(II) carbonate and dilute sulfuric acid
 - copper(II) chloride solution and sodium sulfate solution
 - D copper(II) oxide and sodium sulfate solution

- An atom of element J has 3 occupied electron shells and 5 valence electrons. 14 What is element J?
 - Α arsenic
 - В indium
 - C phosphorus
 - D thallium
- Which of the following does not describe about elements in Groups I and VII? 15

	Group I	Group VII					
A	alkali metals	halogens					
В	boiling point decreases down the group	boiling point increases down the group					
С	form covalent compounds	form ionic compounds only					
D	react with cold water readily	exist as coloured substances					

- Which of the following shows the chemical equation when chlorine water is added 16 into aqueous potassium bromide?
 - $KBr(aq) + Cl(aq) \longrightarrow KCl(aq) + Br(aq)$ Α
 - $2KBr(aq) + Cl_2(aq) \longrightarrow 2KCl(aq) + Br_2(aq)$ В
 - $KBr(aq) + Cl(l) \longrightarrow KCl(aq) + Br(l)$ C
 - $2KBr(aq) + Cl_2(l) \longrightarrow 2KCl(aq) + Br_2(l)$ D
- Which of the following will not produce a colour change? 17
 - Α copper + aqueous silver nitrate
 - В iron + aqueous copper(II) sulfate
 - magnesium + aqueous zinc chloride C
 - zinc + aqueous iron(III) sulfate D

- Which of the following is not added into the blast furnace during the extraction of 18 iron?
 - coke Α
 - В haematite
 - limestone C
 - quicklime D
- Which statement does not explain the importance of recycling metals? 19
 - Metals are finite resources. Α
 - В Metals obtained from recycling are more useful.
 - Recycling of metals uses less energy than mining and extracting. C
 - The extraction of ores causes pollution to the environment. D
- What is the approximate volume composition of dry air? 20

	percentage of nitrogen / %	percentage of oxygen / %	percentage of noble gases and carbon dioxide / %
Α	21	78	1
В	21	0.93	78
С	78	21	1
D	78	1	21

Data Sheet Colours of Some Common Metal Hydroxides

calcium hydroxide	white
copper(II) hydroxide	light blue
iron(II) hydroxide	green
iron(III) hydroxide	red-brown
lead(II) hydroxide	white
zinc hydroxide	white

The Periodic Table of Elements

	0	5 문	helium 4	우 ;	g Z	20	<u>ج</u>	\ \	argon	40	99	호	knypton i	86	22	2	xenon	2	ထိ	줃	redon	1				
	5			Ф 1		florine 10	2 2	: 2	chorine ar horize	35.5	83	മ്	bromine	8	જ	-	odine	/7.	8	₹	astati re	'			•	-
	IA			ω (0	axygen 16	2 4	2 0	sufur Sufur	32	ষ্ক	స్టి	selenium	ę.	8	<u>e</u>	tellurium	28	z	<u>~</u>	polonium	-	118	<u></u>	livermonium	1
	>			-	z	nitrogen 14	,	2 0	chosphorus	3	33	As	arsenic	75	₹	සු	antimony	122	x	எ	bismuth	509				
	1			ဖ	O	carbon 17	1 1	Ü	5 <u>8</u>	28	32	æ	germanium	ಣ	8	ي ا	#	£ 13	8	£	lead	207	7,	ĩ	llerovi.m	1
	=			ιn.	<u></u>	фалаг 1.1	- 6	2 7	aluminium	27	31	ලී	gaalium	70	49	<u>=</u>	majpu	115	€	F	thatturn	204				
			•								ଛ	Z,	ZIUC	92	48	ਲ	cadmium	112	8	운	mercury	201	112	ర్	copernicium	1
											82	ਟੋ	reddoo	94	47	Å	silver	108	79	Æ	gok	197	111	æ	roentgenium	ı
9											28	Z	nickel	නු	46	몬	palladium	9	28	깥	piatirum	195	110	ద	darmstadtium	
Group											27	ප	cobalt	29	45	듄	rhodium	103	11	<u></u>	Fridium	192	109	M	meltnerkum	I
		- I	hydrogen 1								26	ij	iron	20	44	2	ruthenium	101	76	ő	шпшво	190	108	£	hassium	1
				•							25	М'n	тапдалезе	8	43	ပ	technetium	e	22	Re	menium	186	107	띪	bohrium	J
				umber	8		Hass				24	ర	chromium	22	42	€	moiybdenum	96	74	M	tungsten	<u>\$</u>	106	S	seaborgium	J
			Key	(atomic) r	omic sym	กลพษ	ve atomic				23	>	vænædium	51	41	g	mioblum	8	73	, ca	tanfalum	181	105	2		_
				proton	atc	1	reian										,						104		œZ.	1
											24	တ်	scandium	45	33	; > -	yttnium	8	12-25	lanthenoids			89 - 103	actinoids		
				4	æ	beryllium	5	7.	Mg	24	20	රී	calcium	6	38	റ്	stronllum	88	£	Ba	barlurc	137	88	æ	radium.	
	_			က	; ;	lihium	\		e l	23	5	. .	potassium	සි	37	2	rubidum	82	25	ű	caestum	133	87	ŭ	francium	ı

7.1	3	utelium	175	103	ڌ	lawrencium	1	
22	2	yterbium yterbium	173	102	ž	robelium		
69	٤	thuilium thuilium	169	101	₹	mendelevium	•	
89	ញ់	erbica	167	100	Ë	fermium	1	
<i>L</i> 9	운	holmium	165	66	ű	einsteinum	1	
99	<u>a</u>	dysprosium	163	86	ඊ	californium	1	
8	2	(e:bit.m	159	<i>1</i> 6	ă	berkelium berkelium	ı	
\$	Ö	gadolinium	157	8	ફ	Curium		
63	岀	europium	152	98	Am	americium	1	
62	S	samarium	150	46	ď	plutonium	ı	
61	E.	promethium	: 1	93	Š	neplunium	ı	
60	Z	Peodym um	144	8	>	uranium	238	
29	ፚ	praseodymicar	141	91	P	profectinium	231	
58	පී	cerium	45	06	f	Ihorium	232	
57	Ë	Bufhanum	139	88	Ac	actinium	1	

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

	 Class	Register No.
		,
Candidate Name		

PEIRCE SECONDARY SCHOOL **PRELIMINARY EXAMINATION 2021 SECONDARY 4 EXPRESS / 5 NORMAL (ACADEMIC)**

SCIENCE (CHEMISTRY) Paper 3

5076/03, 5078/03 24 August 2021 1 hour 15 minutes

Additional Materials: Nil

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number in the spaces provided at the top of this page. Write in dark blue or black pen. You may use a soft pencil for any diagrams, graphs or rough working.

The use of an approved scientific calculator is expected, where appropriate. You may lose marks if you do not show your working or if you do not use appropriate units.

Section A [45 marks]

Answer all questions.

Write your answers in the spaces provided on the Question Paper.

Section B [20 marks]

Answer all questions.

Write your answers in the spaces provided on the Question Paper.

A copy of the Data Sheet is printed on page 14. A copy of the Periodic Table is printed on page 15.

The number of marks is given in brackets [] at the end of each question or part question.

	For Examiner's Use						
PARENT'S SIGNATURE	Section A						
	Section B						
	Total						

This document consists of 15 printed pages and 1 blank page. Setter: Mr Brandon Sham

Dartnarial coming

Section A

Answer all questions in the spaces provided.

Use the list of substances to answer the questions. 1

argon

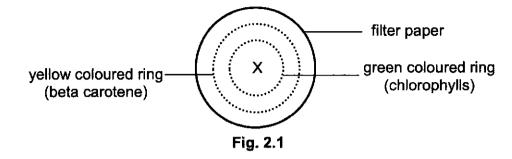
calcium hydroxide

copper

helium

lead(II) oxide

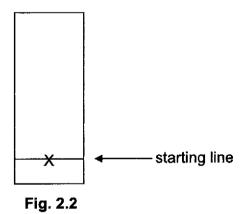
magnesium oxide


sodium hydroxide

steel

zinc

(a)	Which substance is used to neutralise acidity in soil to promote plant growt	h?
		[1]
(b)	Which two substances are used to make brass?	
		[1]
(c)	Which substance can react with both acids and alkalis to form salt and wonly?	ater
		[1]
(d)	Which substance is the main constituent of noble gases in clean, dry air?	
		[1]
(e)	Which substance melts over a range of temperatures?	
		[1]


2 A drop of plant extract obtained from leaves was placed in the centre of a piece of round filter paper. A chromatogram was obtained as shown in Fig. 2.1.

(a)	Using Fig. 2.1,	state	and	explain	which	substance	is	more	soluble	in	the
	solvent used.										

[2]

- (b) The chromatogram was repeated again using a long piece of filter paper.
 - (i) On Fig. 2.2, draw the results of the chromatogram that you will expect to see. Label your diagram.

[1]

(ii) Explain why the starting line cannot be submerged into the solvent.

[1]

3 (a) Table 3.1 shows the information of some air pollutants and their sources. Fill in Table 3.1 with **one** source for each air pollutant.

Table 3.1

air pollutant	source
sulfur dioxide	
oxides of nitrogen	
carbon monoxide	

[3]

(b)	Describe the effects of sulfur dioxide on human and on the environment whit is emitted to the atmosphere.	nen
	effect on human:	
	effect on environment:	
		[2]

(c)	(i)	Under certain conditions, nitrogen monoxide reacts with oxygen in air form nitrogen dioxide.	to						
		Write the chemical equation for this reaction.							
			[1]						
(d)	(ii)	Explain why nitrogen monoxide is oxidised in this reaction.							
			[1]						
	Although carbon dioxide is not considered as an air pollutant, a build the atmosphere can lead to global warming.								
	elec	w the 'dot and cross' diagram to show the arrangement of the outer shortens in carbon dioxide. Solution numbers: C, 6; O, 8]	ell						

Fig. 4.1 describes some of the reactions of several substances. 4

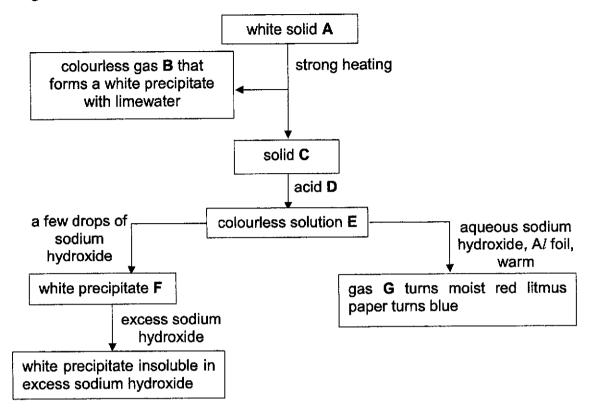


Fig. 4.1

(a)	State the identities of	of A,	В,	C,	D,	E,	F	and	G.
-----	-------------------------	-------	----	----	----	----	---	-----	----

Α	
В	
С	
D	
E	
F	
G	[7]

Write a balanced chemical equation, with state symbols, for any one of the (b) reactions in Fig. 4.1.

[2]

5 Fig. 5.1 shows different particulate models to represent different substances.

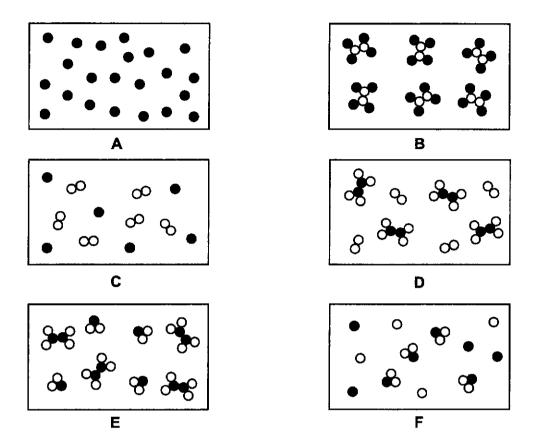


Fig 5.1

Fill in Table 5.1 with the appropriate letter(s) in each row to match the descriptions given.

Table 5.1

description	diagram
a compound	
an element	
a mixture of an element and a compound	
a mixture of two compounds	

[4]

a)		culate the concentration of this solution in mol/dm³. ative atomic masses: H, 1; O, 16; Na, 23]	
(b)	<i>a</i>	concentration = mol/dm ³	,
	(i)	Write the ionic equation for neutralisation.	
			ete
	(i) (ii)		
		Hence, calculate the number of moles of ions required to comple	
		Hence, calculate the number of moles of ions required to comple	
		Hence, calculate the number of moles of ions required to comple	eto
(c)	(ii)	Hence, calculate the number of moles of ions required to comple neutralise 25.0 cm ³ of the above sodium hydroxide solution.	

6

(a)	Stat	e the order by	y which the elements are arr	ranged in the Periodic Table.
		na i ndimaski) na maran sklušti i i i i i i i i i i i i i i i i i i	Application of the state of the	[1]
(b)			with the electronic configura	rations of atoms of lithium-7 and
			Table 7.1	
		atom	number of electrons	electronic configuration
		lithium-7	3	
	ро	tassium-39	19	
				[2]
(c)		-		
	(i)		•	
		AND THE RESIDENCE OF THE PROPERTY OF THE PROPE		[1]
	(ii)			
		similarity:		
		explanation		
		difference:		
		explanation		
	(b)	(b) Fill pota	atom lithium-7 potassium-39 (c) A few drops of distilled water. Litt (i) Write the chabove with value observation similarity: explanation:	(b) Fill in Table 7.1 with the electronic configure potassium-39. Table 7.1 atom number of electrons lithium-7 3 potassium-39 19 (c) A few drops of Universal Indicator are addedistilled water. Lithium and potassium are the (i) Write the chemical equation for the react above with water. State symbols are no similarity: (ii) Describe and explain one similarity observations for the reactions carried or similarity: explanation:

[Turn Over

Section B (20 marks)

Answer all questions from this section.

Write your answers in the spaces provided.

Some metals can be extracted from their oxides when heated with carbon. Table 8.1 8 shows the experimental results after heating 0.25 g of four different metal oxides with excess carbon for 10 minutes.

Table 8.1

metal oxide	volume of carbon dioxide produced / cm ³
calcium oxide	0
copper(II) oxide	32
iron(II) oxide	10
nickel(II) oxide	25

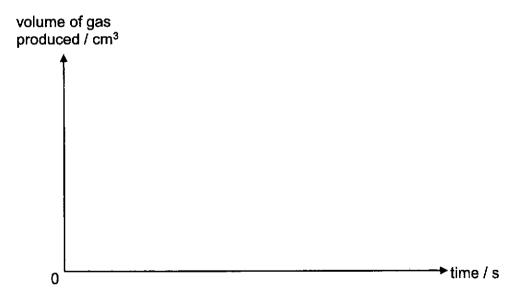
(a)		ng the information from Table 8.1, arrange the metals in decreas stivity.	ing
			[1]
(b)	(i)	Explain why no carbon dioxide is produced when calcium oxide is heawith carbon.	ited
			[1]
	(ii)	Suggest a method to extract calcium from its ore.	[1]

(c)	(i)	Draw the 'dot and cross' diagram to show the arrangement of the outer shell electrons in calcium oxide. [Proton numbers: O, 8; Ca, 20]
		[2]
	(ii)	Explain why solid calcium oxide is unable to conduct electricity, but molten calcium oxide can conduct electricity.
(d)	cond	trical wiring are often made of pure copper because of its high electrical fluctivity and high ductility. e one other physical property of copper.
		[1]
(e)		is another metal that is widely used in daily life. However, iron will undergo ng over time.
	(i)	State a method which can prevent iron from rusting.
	(ii)	Describe how the method in (e)(i) helps in rust prevention.
		[1]

[Turn Over

The speed of reaction between zinc granules and excess 0.1 mol/dm³ dilute sulfuric 9 acid was studied by collecting the gas produced at regular time intervals.

No effervescence was observed after 120 seconds. The total volume of gas collected was 82 cm³ at room temperature and pressure.


State the identity of the gas produced. (ii)

[1]

Calculate the number of moles of gas produced. (ii)

[1]

(b) Sketch the graph of volume of gas produced against time on the axes provided. Label this graph A.

[2]

(c)	Describe how the graph in (b) shows that the speed of the reaction decreases as the reaction proceeds.
	[1]
(d)	Sketch on the axes provided in (b) to show the expected result when the experiment is repeated,
	(i) at a higher temperature. Label this graph B.
	(ii) using excess 0.05mol/dm³ dilute sulfuric acid. Label this graph C . [2]
(e)	Using the collision theory, explain why the speed of reaction would increase when powdered zinc is used instead.
	[2]
(f)	Another student wanted to investigate the speed of reaction between copper and dilute sulfuric acid instead. He observed no effervescence after adding a strip of copper into dilute sulfuric acid.
	Explain why he was unable to carry out this investigation.
	[1]

[Turn Over

Data Sheet Colours of Some Common Metal Hydroxides

calcium hydroxide	white
copper(II) hydroxide	light blue
iron(II) hydroxide	green
iron(III) hydroxide	red-brown
lead(II) hydroxide	white
zinc hydroxide	white

The Periodic Table of Elements

	0	2	ē	<u></u>	4	<u></u>	ē	ر اور	g.	<u> </u>		Bon	9	မ္ဘ	<u>></u>	pton	4	X	9	non-	<u>,</u>		<u>۔</u>	- Lop	,				
			<u> </u>	<u>4</u>	\dashv				\dashv							_	-				\dashv	_		_	\dashv				
	⋝					6	ц	fluorin	<u>6</u>	17	ο —	chlorin	35.5	8	卤	- Promin	8	<u> </u>	<u> </u>	X SO	127	82	¥ —	astatl	<u>،</u>				
	ΙΛ					8	0	oxygen	16	9	တ	sulfur	32	ጽ	స్ట	sefenium	79	25	<u>e</u>	tellurium	128	\$	8	polanium	'	116	<u>ک</u>	Ivermorkum	1
	>					Ł	z	nitrogen	14	(5	Δ	phosphorus	31	33	As	arsenic	72	સ	දු	antimony	122	8		bismuth	20g				
	Λ					9	ပ	carbon	12	7	ത	silicon		32	ගී	germanium	ដ	20	હ્	ď	119	8	£	þeal	207	114	Œ.	flerovium	1
	#					LS	ω	5000	11	13	¥	altuminium	27	3	ලී	gallium	70	49	드	indium	115	∞	ĭ	thateum	204				
					,									ළ	Zu	ziuc	65	48	3	cadmium	112	98	무	mercury	201	112	5	copernicium	Ţ
														29	ਟੋ	copper	64	47	Ag	Silver	108	7.9	₹	gold	197	111	Rg	roentgenium	1
9														28	Z	nickel	50	46	P	pailadium	106	78	£	platinum	195	110	ŝ	darmstadfium	ı
Group	ļ													12	ප	cobait	නු	45	듄	rhodium	103	11	<u>_</u>	iridium	192	109	Ĭ	metrnerium	1
			·I	hydroden										26	ų.	<u>io</u>	20	44	22	ruthenium.	101	76	S	osmium	190	108	£	hasslum	ı
						,								25	₹	Tranganese	S	43	ပ	technetium		75	R.	menium	186	107	뭅	pohrium	J
						umber	Ç	<u> </u>	nass					24	ර්	chromium	25	42	₹	moivbdenum	98	74	M	tungsten	184	106	S	seaborgium	J
					Key	(atomic) n	atomic symbol	name	e atomic r					1				1								105			- 1
						profon	of a	3	relativ					22	įΈ	titanium	48	40	7	ziroonium	94	72	Ì	hafnium	178	104	ž	Rutnerfordium	ŧ
										_				7	ι (Z	scandium	45	39	-	vttrium	80	57 - 71	lanthanoids			89 - 103	actinoids		
	=					P	. 6	Ser in	(φ	2	Ž	Magnesium	24	2	ී	Calcum	\$	38	<u></u> ~	strontium	88	26	B	backur	137	88			ı
	_					64	· :_	Figure 1	_	7	2	Ellips	23	0,	, ,	notassium	ဓင္ဌ	37	£	mbidina	85	55	చ	Capelin	133	87	į.	francium	ı

							_	
Σ.	3	intellim	175	103	<u>-</u>	awrencium	i	
22	\$	ytterbium	173	102	S	robelium	1	
66	Ē	thullum	169	101	₽₩	mendelevium	1	
89	ù	erbium	167	100	Æ	farmium	1	
67	운	holmium	2	66	Ë	einsteinum	1	
99	<u></u>	dysprosium	163	86	ඊ	californium	1	
ß	2	terbium	139 28	16	益	berke⊪um	ı	
54	හි	gadolinium	157	8	Ş	CURING	ı	
63	岀	europium	152	35	Ām	amencium	ı	
23	£	samanum	窓	94	a 3	pfutonium	ı	
61	ā	propertium	1	93	2	neplunium	ı	
8	2	reodym ura	144	26		uranium	238	
59	4	presendymium	141	91	ď	protectinium	231	
58	ت ا	Certum	9	06	阜	Thorium	232	
57	· ·	tanthaming.	139	88	Ą	actinium	ı	

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

PSS 2021 4E/5N Science(Chemistry) 5076/5078 Preliminary Examination Marking Scheme – MCQ

1	2	3	4	5	6	7	8	9	10
D	D	Α	В	Α	С	D	A	Α	В
11	12	13	14	15	16	17	18	19	20
C	Α	В	С	С	В	С	D	В	С

Distribution

- A-5
- B-5
- C-6
- D 4

R	SS 2021	PSS 2021 Sec 4E/5N Express Science (Chemistry) 5076/5078 Preliminary Examination	Ë	Paper 3 Marking Scheme
		Section A	Marks	Marker's comments
-	(a)	calcium hydroxide	-	Correct answer only
	(q)	zinc, copper	-	
	(0)	lead(II) oxide	-	
	(p)	argon	_	
	(e)	steel	-	
7	(a)	Beta carotene. It travels further from the starting point.	~ ~	Do not accept if candidates state the colour.
	(c)(c)	yellow coloured spot / beta carotene green coloured spot / chlorophylls	T	
	(c)(jj)	The plant extract would dissolve into the solvent before separation can occur.	~ -	- A della Control della Contro

c	١
٦	4

3 1 mark for each box	Do not accept 'incomplete combustion of fuels'.				2 Do not accept if candidates just state 'death'.	Do not accept if candidates just state 'formation of acid rain'.	1 Do not penalise for wrong state symbols.
	source	volcanic eruption / combustion of fossil fuels	internal combustion engine / lightning activity	incomplete combustion of carbon- containing fuel	es and lungs / cause respiratory problems	Effect on environment: reacts with oxygen and water in the atmosphere to form acid rain, which corrodes limestone buildings or metal structures / harms aquatic life and plants	
	air pollutant	sulfur dioxide	nitrogen dioxide	carbon monoxide	Effect on human: irritation of eyes (bronchitis)	Effect on environment: reacts with acid rain, which corrodes limest aquatic life and plants	2NO + O ₂ → 2NO ₂
3 (a)					(q)	· · ·	(c)(j)

_	_
r	
•	

(P)	(p)	2	oxidation state 1 mark for covalent bonding
			1 mark for correct number of electrons
	A: calcium carbonate	7	Accept chemical formula.
	B: carbon dioxide		e.c.f. (deduct max 1 for
	C: calcium oxide		cation)
	D: nitric acid		e.c.f. (deduct max 1 for
	E: calcium nitrate		including wrong valency)
	F: calcium hydroxide		e.c.f. for wrong acid
	G: ammonia		

(q)	(b) Accept any 1 of the following:	-	1 mark for balanced chemical equation
	$CaCO3(s) \rightarrow CaO(s) + CO2(g)$		1 mort for correct state
	CO ₂ (g) + Ca(OH) ₂ (aq) → CaCO ₃ (s) + H ₂ O(<i>l</i>)		symbols
	CaO(s) + 2HNO₃(aq) → Ca(NO₃)₂(aq) + H₂O(l)		e.c.f from (a)
	$Ca(NO_3)_2(aq) + 2NaOH(aq) \rightarrow Ca(OH)_2(s) + 2NaNO_3(aq)$		

_		_
		7
-	_	-

2			The state of the s	4	1 mark for each correct row
		description	diagram		
		a compound	В		
		an element	۷I		
		a mixture of an element and a compound	Q		
		a mixture of two compounds	Ш		
9	(a)	10 = HOENU			Accept if candidates find
		= 0.25 mol			concentration in g/dm³,
		0.25		~	Tollowed by mol/dm². Do not penalise if
		250 1000			candidates did not leave
		$= 1.00 \text{ mol/dm}^3 (3 \text{ s.f.})$			final answer in 3 s.f.
	(j)(q)	H ⁺ (aq) + OH ⁻ (aq) → H ₂ O(<i>l</i>)		_	Do not penalise if no state symbols included
	(q)	$n_{OH^-} = \frac{25}{1000} \times 1.00$			Allow e.c.f. from (a)
		= 0.025 mol			Do not penalise if
		$n_{OH^{-}}: n_{H^{+}} = 1:1$			candidates did not leave
		1H ⁺ - 0.0200 1110 (0.8.1.)		~	final answer in 3 s.f.
	(၁)	Heat is given out to the surrounding		_	Do not accept if candidates
					simply states that the
				•	temperature increases
			The state of the s		

C	1	
	_	۰

<u>, </u>	(a)	Increasing proton / atomic number	n / atomic number		-	Do not accept if candidates did not state 'increasing'.	Se
	(a)					1 mark for each row	
		element	number of electrons	electronic configuration			
		lithium-7	3	2.1			
		potassium-39	19	2.8.8.1			
) 	(c)(i)	Accept any 1 of the following:	he following:		-		
		2Li + 2H ₂ O → 2LiOH + H ₂	iOH + H ₂				
		2K + 2H ₂ O → 2KOH + H ₂	OH + H ₂				
၁)	(c)(jj)	Similarity: the colour	of the solution	changes from green to purple /	~		
		effervescence observed.	served.		~		•
		Explanation: The produced.	solutions formed are alkal	Explanation: The solutions formed are alkalis / are alkaline or hydrogen is produced.			
		Difference: Lithiu	um reacts quickly while pota	Difference: Lithium reacts quickly while potassium reacts very violently with	~		
		water / I he rate or effervescence of effervescence is slower in lithiu	water / The rate of effervescence is faster in potassit of effervescence is slower in lithium than potassium.	is taster in potassium than lithium / The rate m than potassium.	۲		
		Explanation: Potassium is more I than potassium / the reactivity inc	Explanation: Potassium is more reactive than lithium / lith than potassium / the reactivity increases down for Group I.	reactive than lithium / lithium is less reactive reases down for Group I.	-		

г	٠.
E	

	Section B	8 E		
ထ	(a)	Calcium, iron, nickel, copper		induction of the state of the s
	(j)(q)	Calcium is placed above carbon in the reactivity series / carbon is not strong enough to reduce calcium oxide to calcium.		Do not accept if candidates state that
				calcium is more reactive than carbon
	(ii)(q)	Electrolysis	-	Do not accept if wrongly spelt
:	(c)(j)	-z- /* / **/	-	1 mark for each
			-	
	_	Ca ××		Accept drawing with all electron
				shells
	(c)(jj)	In solid calcium oxide, the ions are held together in their fixed position by strong electrostatic forces of attraction in the giant lattice structure / have no free-moving	-	
		In molten calcium oxide, the ions are free-moving and can act as charge carriers.	~	
	(p)	Accept any 1 of the following:	~	Do not accept:
		High melting and boiling points Malleable		solid at r.t.p.
		High density Hard		sonorous
	(e)(i)	Electroplating / galvanising / coating the iron with oil or paint or plastic	_	

0	0