The curve below shows the temperature changes as liquid **Q** was cooled from 60 °C to 10 °C. 21

Which statement correctly describes the particles of liquid **Q** at various regions of the curve?

- Heat energy is gained by the particles at region XY to overcome the forces of attraction.
- The particles exist as a mixture of gas and liquid at region XY. В
- C The particles are vibrating about fixed positions at region YZ.
- The particles are arranged far apart and in a disorderly manner at region WX. D
- 22 Some hexane has been added to a beaker of copper(ii) sulfate solution. Hexane is a non-polar solvent that has a boiling point of 69 °C and is immiscible with water.

Which of the two methods can you use to obtain samples of hexane and copper(II) sulfate crystals?

method 1	method 2
fractional distillation	crystallisation
simple distillation	evaporation
using a separating funnel	evaporation
using a separating funnel	crystallisation
	fractional distillation simple distillation using a separating funnel

- 23 Salt R is heated strongly in a boiling tube and the following observations are observed.
 - · a gas evolved turns damp red litmus paper blue
 - a gas evolved forms white precipitate when bubbled through limewater
 - · water droplets formed at the top of the boiling tube

What is the identity of salt R?

A NH₄CI

B FeCO₃

C (NH₄)₂CO₃

- D CuCl₂
- 24 An element X has an electronic configuration 2.2.

The compound formed when X combines with oxygen is most likely to be

- A a compound with a low melting point.
- B a gas that dissolves in water to form an electrolyte.
- **C** a good conductor in both solid and molten state.
- D an ionic solid.
- 25 Strontium reacts with element X to form a compound with the chemical formula, SrX.

How many electrons and protons can be present in an ion of element X?

	number of	number of
	electrons	protons
Α	10	9
В	10	8
С	10	10
D	18	20

26 50 cm³ of aqueous 0.1 mol / dm³ hydrochloric acid exactly neutralises 40 cm³ of aqueous potassium hydroxide solution. The equation for the above reaction is as shown below.

What is the concentration of the potassium hydroxide solution?

A 0.625 mol / dm³

B 0.0625 mol / dm³

C 0.0125 mol / dm³

D 0.125 mol / dm³

27 12.6 g of sodium hydrogencarbonate undergoes thermal decomposition when heated as shown in the following chemical equation.

What is the volume of carbon dioxide produced in this reaction?

A 0.075 dm³

B 1.8 dm³

C 18 dm³

D 36 dm³

28 Ethane, C₂H₆, burns in oxygen to produce carbon dioxide and water as shown in the equation below.

$$2C_2H_6(g) + 7O_2(g) \rightarrow 4CO_2(g) + 6H_2O(l)$$

What is the final volume of gas(es) present at the end of the reaction, when 40 cm³ of ethane burns in 150 cm³ of oxygen?

- A 10 cm³
- **B** 40 cm³
- C 80 cm³
- **D** 90 cm³

29 In a set of two different experiments, some magnesium ribbons were reacted with excess sulfuric acid and the loss in mass of the reaction flask were measured.

The graph shows the results of two experiments, P and Q.

Which statement best explains the difference between experiment P and Q?

- A Larger pieces of magnesium ribbons were used in Q.
- B The temperature was lower in Q.
- C A larger mass of magnesium ribbon was used in P
- D A higher concentration of sulfuric acid is used in Q.
- 30 Substance R are added to aqueous potassium iodide and acidified aqueous potassium permanganate(VII). The observations are recorded below.

chemical	observations
aqueous potassium iodide	colourless solution turns brown
acidified potassium permanganate(VII)	purple solution turns colourless

From the observations, what can be deduced about substance R?

- A It is a reducing agent only.
- **B** It is an oxidising agent only.
- C It is both a reducing and oxidising agent.
- D It is neither a reducing or oxidising agent.

- Which of the following is a redox reaction? 31
 - AqNO₃ + HCI → AqCI + HNO₃
 - В $N_2 + 3H_2 \rightarrow 2NH_3$
 - LiOH + HNO₃ → LiNO₃ + H₂O C
 - D NH₄+ + OH⁻ → NH₄OH
- In some coal-burning factories, waste gases are first passed through a wet mixture of powdered 32 calcium carbonate and calcium oxide to remove harmful gases before releasing to the environment.

Which gas will not be removed by this mixture?

- carbon monoxide
- В carbon dioxide
- sulfur dioxide C
- nitrogen dioxide D
- Excess dilute sulfuric acid was added to a fixed volume of aqueous barium hydroxide. 33

Which graph best represents the variation in the total number of mobile ions present in the solution?

34 Lead(II) sulfate is an insoluble salt that is used in production of batteries.

Which of pair of reactants can be best use to produce lead(II) sulfate?

	reactant 1	reactant 2
Α	lead	sulfuric acid
В	lead oxide	potassium sulfate
С	lead hydroxide	sulfuric acid
D	lead nitrate	sodium sulfate

35 The positions of unknown elements J, K, L, M and N are shown in the partial Periodic Table below.

period		group													
	1				IV	٧	VI	VII	0						
1	·							L							
2	J							М							
3	K							N							

Which of the following statements is correct?

- A J is less dense than K.
- B J is more reactive than K.
- C L has a darker colour than M.
- **D** M has a higher boiling point than N.

36 The bar chart shows the variation of a specific property of elements in Period 2 from lithium to neon.

Which property of these elements is shown in the chart?

- A The number of electrons used in bonding.
- B The number of electron shells.
- C The boiling and melting points.
- D The atomic radius.

37 In a experimental to determine the reactivity of metals Q, R and S, the reactions of the metals with cold water and dilute hydrochloric acid were recorded in the table below. A shaded box indicates that the reaction is not carried out.

metal	reaction with cold water	reaction with dilute hydrochloric acid	displacement reaction
Q		no reaction	
R	no reaction	readily	
S	slow		can displace metal Q from its salt solution

What is the order of reactivity for metals Q, R and S starting from the most reactive to least reactive?

- $S \rightarrow R \rightarrow Q$
- $S \rightarrow Q \rightarrow R$ В
- C $Q \rightarrow R \rightarrow S$
- $R \rightarrow S \rightarrow Q$ D

38 Material X is lightweight and strong. The atomic structure of the material X is shown below.

Which statement best explains why material X is strong enough to be used for building of aircrafts body?

- Material X has many free electrons that hold the atoms in place. Α
- Metal atoms in material X cannot slide over each other easily. В
- The atoms in material X are more compact resulting in greater density. C
- The atoms are arranged in a crystal lattice structure with strong ionic bonds existing D between the atoms which prevents them from moving.

- 39 Which reaction describes how pure iron is formed in the blast furnace?
 - Iron ore thermally decomposes into iron and oxygen gas at high temperatures in the furnace.
 - В Calcium carbonate reacts with iron ore to form pure iron and slag.
 - C Carbon monoxide produced in a reaction reduces the iron ore.
 - D Coke reacts with iron ore at high temperature.
- 40 A woman was cooking using a charcoal stove as shown below. She closed the windows to the kitchen as it started to rain heavily. She soon develops a headache and dizziness.

Which of the following air pollutant is responsible for her symptoms?

carbon monoxide

carbon dioxide

sulfur dioxide

oxides of nitrogen

END OF PAPER

Colours of Some Common Metal Hydroxides

calcium hydroxide	white
copper(II) hydroxide	light blue
iron(II) hydroxide	green
iron(III) hydroxide	red-brown
lead(II) hydroxide	white
zinc hydroxide	white

The Periodic Table of Elements

		Ī	#*	E	I		. e				c			-	£		Γ				Γ			*****	Ī	000° (*********	ntintrii:-	OPIDE CO-
-	0	2	£		12	Ž	500	₹	60	¥	Brigo	4	36	호	kryok	8	2	*	CHAX	5	88	Ê	Š	1	L		to or other	
					6	u.	Buorfine	9	17	ರ	chlorine	35.5	35	ă	bramne	8	23		iodine	127	38	₹	astaline	ı				
	5				00	0	negypo	٥	16	Ø	**************************************	S	z	ŝ	selenium	2	52	ė	iollumin	128	\$	g	polonium	1	116	3	inemorium	1
	^				7	Z	nitropen	¥:	15	Ω.	phosphorus	31	33	Ą	arsenic	£	51	හි	antimony	2	88	ã	pirmuth	5 82		***************************************	noonian	
	2				9	ပ	cerbon	*	4	ૹ	silicon	28	32	ජී	germanium	g	ස	స	£	119	88	£	head	23	114	Œ	Nerovium	1
	=				5	മ	boron 11		ŧ	₹	Mumminm	27	31	ő	Danium	2	49	£	molerm	115	81	=	malien	ž	************		•	
					-				AY	~~~~	LUATAX		ଚ	Z	2002	65	48	8	cadmium	112	8	Ę	mercury	201	112	ర్	copernicium	ľ
													প্ত	ਰੋ	cobbet	孕	47	Ą	NA STATE OF	108	73	₹	gold	197	#	82	minimediuso	ł
ďn													83	Z	nicke	ŝ	8	2	pattedium	108	28	ď	platinum	195	110	ద	darmstaddam	ŀ
Group													27	රි	copeli	23	45	£	modera	133	2	in the second	richum	192	601	Z	melherium	1
		:		-									8	ů	ē	8	4	₹	rumeum.	101	92	ő	mnumso	8	8	ŕ	hassica	1
					,							*	52	Z Z	manganese	55	3	ပ	technotism	÷	2	ê	Chenium	98	107	6	Contribution	-
	- TATE OF THE PERSON				umber	8	mass						24	ර	chromium	52	4	Š	molypdenum	25	*	3	Inngsten	184	106	8	*eaborg/um	1
				Key	proton (atomic) nun	atomic symbo	relative atomic may						R :		_					- 1					5			}
			:		proton	ă	relati	THE PERSON NAMED IN COLUMN					Z i	= •	ttanium	89	4	Ŋ,	Tiredilan.	50	2	Ŧ	Tacher	178	2	œ	Rutherfordum Rutherfordum	1
- Annual Company of the Company of t	Moderation			•				_					57 (တွ	Scandium	\$	8	>-		8	2/-12	Spin Designation			89 - 103	SCHOOL		
***************************************	-			-	₩.	8	<u></u>	•	2 1	SW.	HINGS COMM	5	₹ (3	E CECCULAR CONTRACTOR	3	88 (ñ	Sucriment .	8	8	Ö	THE STATE OF THE S	200	88	ę.		
		tion to the	www.		ო "	5 į	7	-	= \$	S N	32	3	2 \	۷.	CANASS MACE	SS	7	2	TENDRON.	3	B	ర	Caesium	22	2 00	t	fraction	

ſ	owanier.	E		Γ		Ē	<u> </u>
7.1		injain	175	103	£.	Saurence	
02	\$	Merbium	173	102	Š	nonomina	
69	Ę	thullum	169	101	Ž	menchelovicum	ı
88	ù	ærbium	167	100	E	formalism	1
29	운	holmium	165	86	ű	einsteintum	1
99	۵	dysprosium	163	86	ັບ	californium	ı
92	£	terbium	159	26	ž	berkellum)
4	පි	gadolinium	157	96	ర్ధ	Carrellin	į
83	교	umidome	32	96	Am	americam	ŧ
62	S E S	samarium	<u>8</u>	86	2	phylonium	ı
6	Æ	promethium	ľ	8	2	majunjdeu	ı
9	ž	nacdymium	144	35	5	CUBURITU	238
66	ğ	prasecolymken	141	-6	g	protectinium	23.1
8	ඊ	Continue	140	8	E	thoritan	333
િ	9	anthantan	139	88	Ac	actinium	1

lanthanoids

The volume of one mole of any gas is 24 dm3 at room temperature and pressure (r.t.p.).

ZHONGHUA SECONDARY SCHOOL

PRELIMINARY EXAMINATION 2021 **SECONDARY 4E/5N**

Candidate's Name	Class	Register Number
		EATA 100

SCIENCE(CHEMISTRY)

5076 /03

27 August 2021 1 hour 15 minutes

Additional Materials:

NIL

READ THESE INSTRUCTIONS FIRST

Write your name, index number and class in the spaces at the top of this page and on all separate answer paper used.

Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Section A

Answer all questions.

Write your answers in the spaces provided on the question paper.

Section B

Answer any two questions.

Write your answers in the spaces provided on the question paper.

At the end of the examination, fasten all your work securely together The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use					
Section A	45				
Section B	20				
Total	65				

All essential working must be shown clearly.

A copy of the Data Sheet 'Colours of Some Common Metal Hydroxides' is printed on page 17.

A copy of the Periodic Table is printed on page 18.

Setter: Mr Kelvin Lee

Vetter: Mrs Maybrie Ang and Mr Desmond Chong

This document consists of 18 printed pages, including this cover page.

Section A

Answer **all** the questions in the spaces provided. Write your answers in the spaces provided on the question paper

1 The names of five oxides are given below.

sulfur dioxide

potassium oxide

dichlorine monoxide

nitrogen monoxide

zinc oxide

(a)	Name (i)	e an oxide that reacts with both nitric acid and sodium hydroxide.	
			[1]
	(ii)	turn moist blue litmus paper red.	
		***************************************	[1]
(b)		a 'dot and cross' diagram for dichlorine monoxide. Only the outer shells ctrons need be shown.	

[2] [Total: 4] A2 The apparatus shown in Fig. 2.1 can be used to separate ethanol from a solution of coloured dyes in ethanol.

Fig. 2.1

(a)	Name the separation technique shown in Fig 2.1.	
		[1]
(b)	During the experiment, explain how you can check that the ethanol obtained is pure.	
		[1]
(c)	Using Kinetic Particle Theory, describe the changes in terms of the arrangement and movement of the particles as it moves from X to Z.	
	[Total	[2] al: 4]

А3	Carbon monoxide and nitrogen monoxide are pollutants from cars that can be removed
	through a catalytic converter.

The equation for such a reaction is given.

$$2CO(g) + 2NO(g) \rightarrow N_2(g) + 2CO_2(g)$$

	$200 (g) + 2110 (g) \rightarrow 112 (g) + 2002 (g)$	
(a)	Explain why carbon monoxide causes breathing problems.	
		[1]
(b)	Explain how nitrogen monoxide is formed in a car engine.	
		[1]
(c)	Identify the oxidising agent in the reaction above. Explain your answer in terms of the oxidation states.	
	oxidising agent	
	explanation	
		[2]
(d)	Explain why this reaction does not remove all the environmental problems caused by exhaust gases.	

	[Total	[2] 6]

A4	Nitrogen exists as two isotopes, ¹⁴ / ₇ N and ¹⁵ / ₇ N. They can form useful com sodium nitride and nitrogen trifluoride, which are used in food preservation a of semi-conductors respectively.						such as nufacture
	(a)	Using nitro	ogen as an exa	mple, explain wh	at is meant by th	e term isotopes.	
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			[2]
	(b)	Complete each isoto		w to show the nu	mber of subaton	nic particles in the	e ion of
				Tabl	e 4.1		
		[ion		number of		
			1011	protons	neutrons	electrons	
			¹⁴ ₇ N ³⁻				
			$^{15}_{7}N^{3-}$	1			
		Į			<u> </u>		[2]
	(c)	Explain, in temperation		ling and structure	e, why nitrogen tr	ifluoride is a gas	at room
							[2] [Total: 6]

A5 Fig 5.1 describes some chemical reactions related to salt A.

Fig 5.1

(a) Identify the unknowns A, B, C, D, and E.

A		
В		
С		
D	1110001000100110111001100110010010101010	
Е		[5]

(b) Write an ionic equation for the formation of D.

A6 In separate experiments, powdered samples of metal X and metal Y reacted with solutions of nickel(II) sulfate and iron(II) sulfate. Table 6.1 shows the change in colours of the solutions.

Table 6.1

***************************************	metal X	metal Y
nickel(II) sulfate	Solution turns from green to colourless	Solution turns from green to colourless
iron(II) sulfate	Solution remains pale green	Solution turns from pale green to colourless

(a)	Predict the order or	f reactivity for the four metals: X, Y, nickel and Iron.	
	most reactive	***************************************	

	least reactive	***************************************	[1]
(b)	Metal Y does not r	eact with cold water but reacts with steam to produce a solid,	Z.
	Suggest the identi	ty of metal Y.	
	*****************************		[1]
(c)	In another experin copper(II) sulfate.	nent, powdered sample of metal Y was placed in a solution of	
	Describe the obse	ervations of the experiment.	
	**************************************	***************************************	

			[2] al: 4]
		[100	aı. +j

A7	Acid of J .	Acid ${\bf J}$ has a relative molecular mass of 36.5. A 200 cm 3 aqueous sample contains 182.5g of ${\bf J}$.			
	(a)	(i)	Calculate the concentration of J in g/dm ³ .		
			concentration = g/dm³ [2]		
		(ii)	Calculate the concentration of J in mol/dm³.		
			concentration = mol/dm³ [1]		
	(b)	When	J is mixed with acidified aqueous silver nitrate, a white precipitate K forms.		
		(i)	Silver carbonate is white and insoluble in water. Explain why ${\bf K}$ cannot be silver carbonate.		
			[1]		
		(ii)	Suggest the identity of J .		
			[1] [Total: 5]		

8A	(a)	Iron from blast furnaces is usually mixed with other elements to form alloys.	
		Give a reason why this use of alloy is preferred to that of iron from blast furnaces.	
		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
			[2]
	(b)	Use chemical equations to explain how impurities are removed from the iron ore the blast furnace.	in
		>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	
		(*************************************	

		[Tota	[3] il: 5]

A9 When calcium carbonate is added to dilute hydrochloric acid, carbon dioxide gas is formed.

A student wants to study the rate of this reaction by measuring the volume of gas formed over time. He added a small mass of powdered calcium carbonate to an excess of 0.1 mol/dm³ hydrochloric acid. A datalogger was used to plot the graph shown in Fig. 9.1.

Fig. 9.1

(a) (i) State the time the reacti	on stopped.
-----------------------------------	-------------

[1]

(ii) Explain why the reaction stopped.

_____[1]

(b) The experiment was repeated using the same quantity of reactants but large lumps of calcium carbonate was added instead of the powder form.

(i) On Fig 9.1, sketch a curve to represent the graph you would expect. Label the curve, **c**.

[1]

(ii)	Explain one graph.	similarity and difference between your graph and the original
	similarity	
	difference	
		[2]
		[Total: 5]

Section B

Answer any two questions.

Write your answers on spaces provided on the question paper.

- B10 In an experiment, acid H₂X solution was added to 10 cm³ of 0.05 mol/dm³ aqueous sodium hydroxide in a reacting flask.
 - (a) Acid H₂X reacts with aqueous sodium hydroxide according to the following equation.

$$H_2X$$
 (aq) + 2NaOH (aq) \rightarrow Na₂X (aq) + 2H₂O (l)

Calculate the number of moles of NaOH that has reacted. (i)

number of moles =	mol	[1]

15 cm³ of acid is required to completely neutralise aqueous sodium hydroxide. (ii)

Calculate the concentration of the acid H2X.

[2]	mol/dm ³	concentration =		
hout	rate of reaction with	State one condition that you would change to increase the rat changing the amount of product formed.	(i)	(b)
[1]	***************************************			
e of	will increase the rate	Using collision theory, explain how the condition in (b)(i) will reaction.	(ii)	
	***************************************	***************************************		

roı		***************************************		

	(c)	Describe how you videscription.	would prepare the Na ₂ 3	X. Include a suitable in	dicator in your
		######################################			***************************************

		***************************************		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

		,,,,,,,,,,		***************************************	
		***************************************			[4] [Total:10]
B11	The	Thermit reaction is us	sed to weld railway rails	together.	
3 11	In 1 mol	Thermit reaction, alum	ninium powder reacts w	ith iron(III) oxide to ma	ke small amounts of oxide is formed at the
		ne time.		b. Cities in the missing	[4] [Total:10] de to make small amounts of minium oxide is formed at the missing state symbols) + Al ₂ O ₃ () [1] changes during the reaction. ate at oxidised or reduced? unchanged
	(a)	2 Al () +	Fe ₂ O ₃ ()	→ 2Fe ()	+ Al ₂ O ₃ () [1]
	(b)	Table 11.1 shows se			during the reaction.
			Tabl	e 11.1	
		element	oxidation state at the start	oxidation state at the end	
		oxygen	-2	-2	unchanged
		aluminium			
		iron			
		(i) Complete Tab (ii) Hence, or other		rmit reaction is a redox	
					,*****************
		10111011100111001111011110111101111	*******************************		
				••••••	[1]

(c)	(i)	Predict if the melting point of aluminium oxide is high or low. Explain your answer terms of structure and bonding.	' in
			[2]
	(ii)	Draw a 'dot and cross' diagram to show the arrangement of outer shell electrons aluminium oxide.	
(d)	ls T	hermit reaction an endothermic or exothermic reaction? Explain your answer.	[2]
			[2] 10]

B12 (a) This question makes reference to Group I and Group VII of the periodic table. Lithium, sodium and potassium belong to Group I of the Periodic Table.

Table 12.1 shows the observations when these three metals react with water.

Table 12.1

Group I metal	observation
lithium	reacts quickly
sodium	reacts violently
potassium	reacts very violently

(i)	Describe and explain the reactivity of Group I metals down the group.	

		[3]
(ii)	Rubidium is located below potassium in Group I.	
	Predict what would happen when rubidium reacts with water.	

	,	[1]
(iii)	Name the gas evolved when Group I metals react with water.	
		[1

(b)	1 he 53.	elements fluorine, chlorine, bromine and iodine have atomic numbers 9, 17, 35	and
	All o	f these non-metallic elements are placed in Group VII of the Periodic Table.	
	(i)	Describe a change in physical property down Group VII.	
			[1]
	(ii)	Chlorine gas is bubbled into an aqueous solution of potassium iodide.	
		Describe the changes that would be observed. Explain your answer.	
		description	

		explanation	
			[2]
	(iii)	Write an ionic equation, with state symbols, for the reaction in (b)(ii).	
		***************************************	[1]
(c)		e the name and formula of a compound formed when an element from Group I bines with an element from Group VII.	
	nam	e of compound: chemical formula: [Total:	[1] :10]

END OF PAPER

Colours of Some Common Metal Hydroxides

calcium hydroxide	white
copper(II) hydroxide	light blue
iron(II) hydroxide	green
iron(III) hydroxide	red-brown
lead(II) hydroxide	white
zinc hydroxide	white

The Periodic Table of Elements

independent of the second	0	∾:	£	# E 4	10	Š	, S	18	Ą	§ 5	36	호	krypton	Š	*	×	131	88	£	races	***			Ecodelles	Address of the Party of the Par
	VIII	YATATI EM	en-Ynd-	New William	S	u.	fluorine 19	17	ರ	chlorine 35.5	35	ğ	bromine	20	53	j-m t	iodine 127	85	₹	astatine	1		********	**********	
	N				80	0	axygen 16	16	(V)	sulfer 32	34	Se	selenium 70	9	25	9	128	84	å	potonium	í	116	2	Wermortum	
	>				7	Z	nitrogen 74	15	<u>a</u>	phosphorus 31	33	As	arsente	Ç,	ń	B	antimonty 122	83	ö	Dismuth	503		•	***	-
	_				8	ပ		14	ζ'n	38 28	83	ලී	germanhum 70	5	8	క	₹ 6	82	8	peel	207	41,	ì	flerovium	
					H			†	*********	€	+	~~~		7		-	115		******	******	~	*****	U++0+2*****	haquaquer seco	
					L			,I		***************************************	30	72	200	S	8	රි	cadmhum 112	8	Ĭ	mercury	201	112	ర్	copermicium	-
											23	õ	copper	Š	74	Ag.	108	79	Au	plog	197	111	8	centgenium	*
dn											28	Z	nickel	දි	45	Б	pelladium 106	7.8	Æ	platinum	195	110	ő	darmstaditum	
Group		_									27	රි	jedos E	සි	45	듄	rhodium 103	77	<u>;=</u>	malini	192	109	ž	melimenum	ľ
		- :	r	hydrogen 1							26	ø.	uo.	g	4	2	101	76	ဝိ	osmirm	9	108	£	hassium	,
					•						25	Ş	manganase	6	6.4	ပ္	1echnetium	75	2	Manierra	89	107	뜝	pohrium	-
					umber	78	ssew				24	ර්	chromium	Š	3	Š	motybdenum 96	74	*	tungstern	184	106	Š	seeborgium	ı
				Key	proton (atomic) numb	mic syml	name relative atomic mass				23	>	wanadium	2	4	£	níobitum 93	73	<u>~</u>	tantahum	\$	105	පි	đubnium	1
					praton	atc	relati				22	F	Hamlum	\$	\$	Ż	zirconium 91	72	Ī	magnifican	178	104	ž	Ruthernordam	1
											21	တ္တ	scandium	ç	38	>	yttrium 89	57-71	Isnthanoids			89 - 103	actinoids		***************************************
	=				*	æ	pendlium 9	12	₩	magnesium 24	8	පී	makkin	⊋	38	స	#frontium 88	26	æ	Darkum	137	88	G.	redium	
		***************************************	-21010	*********	65	=	milm 7	T			1			_			rubidium 285	1				87	ŭ	francium	,

7	3	Lifetium	175	5	コ	Immeno(un	1
2	٤	yfferbium	173	102	ž	myjecou	l
69	Ę	thulium	169	101	ZQ MQ	mendelevium	ı
8	ш	erbirm	167	100	Ē	fermium	1
67	욷	holmium	165	66	ű	einsteinium	ı
99	2	dysprosłum	163	æ	ວັ	californium	I
65	2	terbium	159	37	ă	berkelium	ı
2	g	gedolinkun	157	96	క్	Curren	1
63	a	europium	152	95	Am	amencium	į
62	S	samarium	50	94	P	plutoralum	ı
61	Ę	promethium	1	93	£	neptunium	1
09	3	neodymium	144	35	>	urankum	238
69	à	presectymican	141	-53	o.	protectinium	33.1
58	ථ	Certum	140	8	£	thorium	232
57	2	lanthanum	139	68	AC	activium	1

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

4E5N ScChem 5076 Prelim P1 2021

21	22	23	24	25	26	27	28	29	30
С	D	С	D	В	D	В	D	D	С

										•
31	32	33	34	35	36	37	38	39	40	
В	Α	С	D	Α	Α	Α	В	C	Α	l

Prelim answer key

A1a	(i) zinc oxide (ii) sulfur dioxide / dichlorine monoxide	1 1
A1b	*Cl 600 Cl	2

A2a	Fractional distillation	1
A2b	The thermometer reads 78°C. / constant boiling point	1
A2c	At X, ethanol is in the gaseous state. The particles are <u>far apart in a disorderly</u> <u>manner</u> and they randomly at <u>high speed in all directions</u> .	1
	At Z, ethanol is in the liquid state. The particles are <u>closely packed in a disorderly</u> <u>manner</u> and will be <u>sliding over each other</u> .	1

АЗа	Carbon monoxide <u>binds with haemoglobin in blood</u> to form carboxyhaemoglobin which <u>prevent blood from transporting oxygen to all parts of body</u> , resulting in suffocation or difficulty breathing.	1
A3b	Nitrogen and oxygen in air react at high temperatures in a car engine to form nitrogen monoxide.	1
АЗс	oxidising agent: nitrogen monoxide explanation: Nitrogen monoxide is reduced. The oxidation state of nitrogen in nitrogen monoxide decreased from +2 in NO to 0 in N ₂ . OR Carbon monoxide is oxidized. The oxidation state of carbon increased from +2 in CO to +4 in CO ₂ .	1
A3d	Carbon dioxide is still formed as a product. Excessive carbon dioxide produced can cause global warming / enhance greenhouse effect.	1 1

A4a	Both nitrogen-14 and Nitrogen-15 have <u>7 protons</u> . Nitrogen-14 has <u>7 neutrons</u> while nitrogen-15 has <u>8 neutrons</u> . Isotopes are atoms with the same number of protons but different number of			1 1	
	neutrons.				<u> </u>
A4b	ion	protons	number of neutrons	electrons	
	¹⁴ ₇ N ³⁻	7	7	10	1
	15 N ³⁻	7	8	10	1
A4c	Nitrogen trifluoride is a covalent compound with simple molecular structure. The molecules are held together by weak intermolecular forces of attraction. Little energy is required to overcome the forces of attraction. Hence, it has a low boiling point and exists as a gas at room temperature.			1 1	

A5a	A – calcium nitrate	1
	B – oxygen	1
ļ	C – nitrogen dioxide	1
}	D – calcium hydroxide	1
i	E – ammonia	1
A5b	Ca ²⁺ (aq) + 2OH ⁻ (aq) → Ca(OH) (s)	1

A6a	Y iron X	
	nickel	1
A6b	zinc	1
A6c	Blue solution turns colourless. Reddish-brown precipitate formed on metal Y.	1 1

A7a	(i) Concentration = $\frac{182.5}{200}$	
	200	
	1000	
	= 912.5g/cm ³	1
	(ii) Concentration = $\frac{912.5}{36.5}$	
	= 25 mol/dm ³	1
A7b	Silver carbonate will react with acid to form a soluble salt.	 1
A7c	Hydrochloric acid	1

A8a	Alloys have atoms of different sizes which disrupt the orderly arrangement.	1
	This prevents the layers of atoms from sliding over one another easily when a force is applied. Thus, alloys are harder and stronger, thus preferred to iron.	1
A8b	Limestone added decomposes to calcium oxide and carbon dioxide. CaCO₃ → CaO + CO₂ Calcium oxide neutralizes the acidic impurities, such as silicon dioxide, to form slag.	1
	$CaO + SiO_2 \rightarrow CaSiO_3$	1

Section B

D10-		10			
B10a	(i) number of mol	$es = \frac{10}{1000} \times 0.05$			
		1000 = 0.0005			1
	(ii) number of moles of H₂X = 0.0005 ÷ 2				
	= 0.00025 mol				1
	0.00025				
	concentration = $\frac{0.00025}{15}$				
		1000			
).0167 mol/dm ³		<u>, , , , , , , , , , , , , , , , , , , </u>	1
B10b	(i) warm the acid				1
			esult in an <u>increase in l</u> e energy greater than o		1
	activation energy	Hence, this increa	ases the <u>frequency of ener</u> rate of reaction.		1
B10c			nd place it in a conical i cal flask. Solution turns		1 1
			into the conical flask u		-
		al flask <u>turns orang</u>			
			ded at the end-point. sing the same volume	of H ₂ X but	
	without in		onig the <u>danie volume</u>	<u> </u>	1
	6. Heat the	solution to dryness	. / crystallization		1
B11a	2AI (s) + Fe ₂ O ₃ (s) \rightarrow 2Fe (I) + Al ₂ C			1
B11b	element	oxidation state at the start	oxidation state at the end	oxidised or reduced?	
	oxygen	-2	-2	unchanged	
	aluminium	0	+3	oxidised	
	iron	+3	0	reduced	
B11b	(ii) In the reaction thermit is a reaction	n, <u>aluminium is oxi</u>	lised and iron in Fe₂O₃	is reduced, so	1
B11c	(i)Aluminium oxid	le has a high meltir	na point.	<u></u>	-
	Aluminium oxid€	Nas a <u>giant crystal</u>	lattice structure.		1
			g electrostatic forces of		1
		nergy is required to xide has a high me	overcome the strong the strong to overcome th	forces of attraction	
	(ii)	aco nao a mgn mo	iang pome		†
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ 7 ³⁺	72-		
	2 1 *	3	* 0 \$		
	~ * AL * ~ * \ P\				
	L XX				
					2

B11d	Thermit is an exothermic reaction.	1
	Heat energy is released in the reaction and the high temperature is	1
	sufficient to melt iron.	

B12a	The reactivity of Group I metals increases down the group.	1
(i)	Down the group, there are more filled electron shells between the nucleus	1
	and the valence electron.	
	Hence, there is a greater tendency to lose the valence electron to attain the noble gas electronic configuration.	1
B12a	Rubidium will react explosively with water.	1
(ii)		
B12a	hydrogen	1
(iii)		
B12b	Melting point/boiling point increases OR	
(i)	Colour becomes darker	
B12b	Colourless solution turns brown.	1
(ii)		ļ
()	Chlorine is more reactive than iodine and will displace iodine from	
	potassium iodide to form iodine.	1
B12b	$Cl_2(g) + 2l^-(aq) \rightarrow 2Cl^-(aq) + l_2(aq)$	1
(iii)		
B12c	Lithium fluoride, LiF	1
	Sodium chloride, NaCl	
1	Accept any Group I & VII compound.	