		Register No.	Class
Name			

ademeet Secondary School Bendemeet Secondary Secondar econdary School Bendemeer Secondary School ndemeer Secondary School Bendemeer OF BEEN DE ndemeer S ademee demeer Secondary School Bendemeer Secondary School ademe emeer Secondary School Bendemeer Secondary School ademee nding a Secondary School Code Research Soldary School ideme 1demei ndeme ndemee School Bendemeer Secondary School Bendemeer Secondary School Bendemeer Secondary School School Bendemeer Secondary School Bendemeer Secondary School Bendemeer Secondary School Bendemeer Secondary School School Bendemeer Secondary School Bendemeer Secondary School Bendemeer Secondary School Bendemeer Secondary School ademeer Secondary School Ben ademeet Secondary School Bendemeet Secondary School Bendemeer Secondary School Bendemeer Secondary School Bendemeer Secondary School Bendemeer Secondary School

DATE

31 August 2021

DURATION

1 hour

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

Write your name, class and register number on the work you hand in.

Do not use paper clips, glue or correction fluid.

There are forty questions on this paper. Answer all questions. For each question, there are four possible answers A, B, C and D.

Choose the one you consider correct and record your choice in 2B pencil on the OTAS sheet.

Read the instructions on the OTAS sheet very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer.

Any rough working should be done on the question paper.

A copy of the Periodic Table is printed on page 19.

The use of an approved scientific calculator is expected, where appropriate.

This document consists of 19 printed pages.

Aqueous hydrogen peroxide undergoes catalytic decomposition as shown in the equation below.

$$2H_2O_2$$
 (aq) $\rightarrow 2H_2O$ (l) + O_2 (g)

The diagram shows part of the apparatus used to measure the rate of decomposition.

Which piece of apparatus is connected at position X?

A burette

- В gas syringe
- measuring cylinder
- D pipette
- 2 A student set up the apparatus as shown.

Which gas will be collected and which drying agent should be used?

	name of gas	drying agent
Α	ammonia	calcium oxide
В	ammonia	concentrated sulfuric acid
C	chlorine	calcium oxide
D	chlorine	concentrated sulfuric acid

Food dyes, 1 and 2 are known to contain one or more of the three substances X, Y and Z. 3 Two chromatograms are developed; one used water as the solvent, and the other used ethanol. The results are shown in the diagram below.

Which statement(s) is/are correct?

- Substance Z is likely to be pure.
- The component in Z is more soluble in water than in ethanol. 11
- There is a component in sample 1 that is insoluble in water but soluble in ethanol. Ш
- I only Α
- I and III only В
- II and III only C
- All of the above
- An unknown substance melts at -134 °C and boils at -105 °C.

Which option correctly describes the arrangement and movement of the particles of this substance at -112 °C?

	arrangement	movement
Α	closely packed in disorderly manner	slide over one another easily
В	closely packed in orderly manner	slide over one another easily
С	closely packed in orderly manner	vibrate about fixed positions
D	spread far apart in random manner	moves in all direction at high speeds

5 Hydrogen is mixed and burnt in excess oxygen gas to form water vapour in a reaction vessel.

Which diagram represents the particles that remain in the reaction vessel?

An element Y reacts with chlorine to form a solid of formula YCI. 6 What could be the electronic structure of Y?

2.6 A

- 2.8.1 В
- C 2.8.2

2.8.7

7 Which statement about an atom is correct?

- Each element only has one nucleon (mass) number. Α
- В The nucleon (mass) number can be less than the proton (atomic) number.
- The nucleon (mass) number can be equal to the proton (atomic) number. C
- The number of neutrons is never the same as the number of electrons.

8 Element G has *n* protons.

> Element J has (n-3) protons and is able to achieve a stable electronic configuration by either sharing or accepting two electrons.

What is the compound formed when element G reacts with element J?

- Α a covalent compound, GJ₂
- В a covalent compound, G2J
- an ionic compound, GJ₂ C
- an ionic compound, G2J D

A solution of fertiliser was tested as shown. 9

What are the ions present in the fertiliser solution?

- Fe3+ and SO42-
- Fe2+ and NO₃-В
- C NH₄⁺ and NO₃⁻
- NH₄⁺ and Fe²⁺
- The table shows the results of adding dilute nitric acid and aqueous sodium hydroxide to four oxides.

Which oxide is basic?

oxide	dilute nitric acid	aqueous sodium hydroxide
Α	no reaction	reaction
В	no reaction	no reaction
С	reaction	reaction
D	reaction	no reaction

- Which pair of chemicals is most suitable for the laboratory preparations of zinc sulfate?
 - zinc carbonate and lead(II) sulfate
 - zinc chloride and sulfuric acid В
 - zinc nitrate and lead(II) sulfate C
 - zinc oxide and sulfuric acid

6

- 12 Which gas will occupy a volume of 24 dm³ at room temperature and pressure?
 - 4 g of helium Α
 - В 14 g of nitrogen
 - 24 g of carbon dioxide C
 - 32 g of sulfur dioxide
- 13 What is the volume of 0.5 mol/dm3 hydrochloric acid that would react with 0.24 g of magnesium in the reaction below?

Α 20 cm³

- 40 cm³
- 100 cm³ 50 cm³
- 14 The apparatus shown below was set up by a student to investigate the effect of air on rusting.

The student discovered that after a few days, the height of the water in the test tube rose by 4 cm, indicating that about 4 cm³ of air was used in the process of rusting.

What was the original volume of air found in the test tube?

4 cm³

10 cm³

20 cm³

- 40 cm³
- 15 Some properties of elements in the same group of the Periodic Table are listed.
 - 1 charge on the ion
 - 2 number of outer shell electrons
 - 3 number of protons
 - 4 total number of inner shell electrons

Which properties show an increase when moving down a group?

- 1 and 2 A
- В 1 and 3
- 2 and 4 C
- 3 and 4

- 16 Which statement about the production of iron from haematite is correct?
 - Carbon monoxide is used as an oxidising agent in the blast furnace. A
 - Haematite is oxidised by carbon monoxide. В
 - Limestone is added to the blast furnace to remove acidic impurities.
 - Molten iron floats on molten slag at the bottom of the blast furnace.
- 17 When 0.003 mol of a metal X was reacted with an excess of dilute sulfuric acid, 72 cm³ of gas was given off, measured at room temperature and pressure. The final temperature of the reaction mixture in the beaker was 40 °C.

Which of the following is correct for the reaction?

	type of reaction	possible identity of metal X
Α	endothermic	copper
В	endothermic	magnesium
C	exothermic	copper
D	exothermic	magnesium

18 In the graph below, curve X represents the results of the reaction between 1.0 g of powdered zinc and an excess of 1.0 mol/dm³ acid at 30 °C.

Which changes will produce curve Y?

- using 1.0 g of powdered zinc with excess of 1.0 mol/dm3 acid at 15 °C Α
- using 1.0 g of powdered zinc with excess of 0.5 mol/dm3 acid at 30 °C В
- using 2.0 g of powdered zinc with excess of 0.5 mol/dm3 acid at 30 °C
- using 2.0 g of powdered zinc with excess of 1.0 mol/dm3 acid at 30 °C D

19 A certain type of margarine is described as 'high in polyunsaturates'.

What does this type of margarine contain?

- A long chain alkane molecules
- **B** many alkene molecules joined by addition polymerisation
- c molecules containing many C=C bonds
- D molecules containing hydrogen and carbon only
- 20 The compound contained in the sex attractant of the lps Confusus bark beetle is shown below.

Which statement about this compound is false?

- A It decolourises aqueous bromine.
- B It has no effect on Universal Indicator.
- C It is saturated.
- **D** It turns purple potassium manganate (VII) colourless.

9

<u>-</u>	_												7	Γ.		_	-				٦								٦
0	1	N :	e L	- helium	4	10	ş	neon	20	8	₹ _	argon	₽	36	ጁ	krypton	\$	졌	×	xerxon	한	98	2	radon	1				_
Ş								_				_		ဗ္တ		-	Į				i			••	- 1				
5						8	0	охудел	16	16	တ	sulfur	32	34	s,	selenium	B.	25	<u>a</u>	tellurum	128	8	2	polonium	1	116	ے	[vermorium	!
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						1	z	mitrogen	14	15	۵	phospharus	<u>ب</u>	33	As	arsenic	75	2	-S	antimorny	122	83	æ	Distriction	209				
<u> </u>						9	ပ	сагвэп	12	4	ত	*ilicon	82	32	ජී	germanium	ಣ	댨	ક્ર	댪	119	82	ď	Pead	207	114	Œ	Herovium	1
						5	 20	baron	11	13	¥	aluminium	27	31	Ĝ	gadium	22	64	<u>_</u>	majpu	115	<u>~</u>	7	thedium	204		_		
]									!				8	۲ ₂	Sinc	65	48	ප	Cadmium	112	80	Ę	mercuny	201	112	<u>ა</u>	copernicium	
	 													59	వె	ropper	\$	4.7	Ag.	siver	108	79	Ψ	plag	197	11	2	centgerium	ı
9														82	Ź	nickel	99	46	윤	ранадил	109	78	苉	platinum	195	110	ΩS	darmstadtium	-
Group														27	ප	codall	59	45	둫	rhodium	103	11	<u> </u>	iridium	192	109	Ī	meitnenium	-
		← :	I	hydrogen	-									97	Ŧ.	ion	မှ	44	8	ruthenum	5	92	ő	EMILIES	96	108	£	hassium	ı
						•								25	ž	талдарезе	32	43	ပ	technetium	•	75	8	rhenium	186	107	쥺	populum	(
						umber			nass					24	ర	chromium	25	42	Š	molypdenum	୫	74	≥	tungsten	\$	106	Š	seaborgium	1
					Key	profon (atomic) number	mic sym	hame	relative atomic mass					23	>	vanadirum	25	Г								105		dubnium	ı
						profon	ato	!	relativ					22	ĭ	Diamium	\$	6	72	zirconium	8	72	Ť	hafnium	178	104	ř	Rutherfordium	ı
										4				21	B	scandium	45	န္တ	>	yttrium	68	57 - 71	anthanoids	-		89 - 103	actinords	<u> </u>	
=	 -					4	æ	beryllium	φ,	12	Ma	magnesinm	77	22	පී	cakium	4	38	Ś	strontium	88	56	8	Darrium	137			radium	ı
-						3		ithium:	7	=	œ.	Sodium	23	6	~	poteissium	66	37	8	rubidium	85	55	Ç	C865ium	133	87	Ţ	francium	ſ

Ianthanoids	57	58	59	09	61	62	63	45	65	99	19	89	69	70	۲
	La	ඵ	å	뫋	Ę.	Sm	iii	g	2	2	웃	ப்	Ę	<u>-</u>	3
	Janthanorn	cerium	praeductymium	neodymium	promethium	Samarium	Muldone	gadolinium	terblum	dysprosium	holmium	erbium	thulium	ytterbium	tute@nm
	139	140	141	4	1	30	152	157	159	163	55	187	169	173	175
actionida	68	8	91	35	88	8	ક્ક	88	26	86	83	198 198	101	102	103
	Ac	Ē	Ъа	>	å	2	Ā	క్	益	℧	ű	Ę	Md	ž	ځ
	actinium	thorium	protactinium	uranium	neptunium	plutanium	americium	CULTURE	berkelium	californium	einsteinium	fermium	mondelevium	nobelium	awrencium
	1	232	231	238	J	1	1	1	ı	1	1	į:	ı		
		ı					1								

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

	Register No.	Class
Name		

DATE 24 August 2021 1 hour 15 minutes **DURATION**

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number on the work you hand in. You may use a 2B pencil for any diagrams, graphs, tables or rough working. Write in dark blue or black pen. Do not use paper clips, glue or correction fluid.

The use of an approved scientific calculator is expected, where appropriate. You may lose marks if you do not show your working or if you do not use appropriate units.

Section A

Answer all questions.

Write your answers in the spaces provided on the question paper.

Section B

Answer all questions.

Write your answers in the spaces provided on the question paper.

A copy of the Data Sheet is printed on page 16. A copy of the Periodic Table is printed on page 17.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

This document consists of 17 printed pages.

Section A Answer all the questions in the spaces provided.

1 Table 1.1 shows the properties of 4 substances.

Table 1.1

substance	melting point/ °C	boiling point/ °C
W	-112	-50
Х	-79	90
Y	10	105
Z	85	920

(a)	Whi	ch substance(s) exist as gas(es) at 100 °C?	
			[1]
(b)		cribe the arrangement and movement of particles in substance W at room perature.	
	••••		
			[2]
(c)	Sub	stances X and Y are miscible liquids at room temperature.	
	(i)	Suggest why fractional distillation is a good method to separate X and Y.	
			[1]
	(ii)	Explain which substance, X or Y, will be distilled out first.	
			141

(iii) Sketch a temperature-time graph to show the change in temperature when a mixture of X and Y is heated from 25 °C to 120 °C.

2 Table 2.1 contains some information of six atoms U, V, W, X, Y and Z.

Table 2.1

		1000				
atom	U	V	W	Х	Υ	Z
number of neutrons	20	12			7	. 8
number of protons	17	10	13	6		
mass number			27	13	14	14

(a)	Com	plete Table 2.1.	[2]
(b)	Whic	h of the atom(s), U – Z,	
	(i)	is a noble gas?	
			[1]
	(ii)	is a pair of isotopes?	
			[1]
	(iii)	forms an ion with a charge of 3+?	
	(iv)	form diatomic molecules?	[1]
			[1]

(c)	In terms of electronic structure, explain why the atom stated in (b)(i) is unreactive.	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	[1]
(d)	Showing only outer electrons, draw a 'dot and cross' diagram to show the electronic structure of the diatomic molecule in (b)(iv).	

3 Fig. 3.1 shows the structures of 3 substances A, B and C.

Fig. 3.1

Complete Table 3.2 by

- stating whether each substance is an element, a mixture or a compound, and
- identifying the substance from the list given below.

air	ammonia	oxygen gas	carbon dioxide	steel
zinc	methane	helium	water	

Table 3.2

substance	element, mixture or compound	possible identity of substance
Α		
В		
С		

[3]

[2]

4 Table 4.1 summarises the results of the reactions when Group VII elements are added to solutions of sodium halides.

Table 4.1

Group VII	solutions of			
element added	sodium chloride	sodium bromide	sodium iodide	
bromine	Х	Х	✓	
chlorine	X			
iodine			X	

	 (a) Complete the table by adding a tick (✓) if a reaction takes place and a cross (X) if a reaction does not take place. Some have been done for you. 			[2]	
	(b)	(b) Bromine, Br ₂ , reacts with aqueous sodium iodide, Nal.			
		(i)	Predict what you would see in this reaction.		
				[1]	
		(ii)	Write a balanced chemical equation for the reaction between bromine and sodium iodide.		
				[1]	
5		Hydrogen gas reacts with fluorine gas to produce hydrogen fluoride gas as shown in the following equation.			
			$F_2(g) + H_2(g) \rightarrow 2HF(g)$		
	(a)	lden	tify the reducing agent in the reaction.		
				[1]	
	(b)	Expl	ain, using oxidation states, why the above reaction is redox.		
		••••			
				[2]	

	(c)	State the volume of fluorine gas required to produce 75 cm ³ of hydrogen fluoride gas.	
		volume of fluorine gas required = cm ³	[1]
	(d)	Hydrogen fluoride dissolves in water to form an acidic solution. Give the chemical formula of the ion which causes the acidity.	
			[1]
6		statements below give some of the chemical properties of metal X and its apounds.	
	• X f • X c • X r	does not react with cold water. fizzes slowly with dilute hydrochloric acid. does not react with aqueous sodium chloride. reacts with aqueous lead(II) nitrate. reacts with aqueous silver nitrate. O reacts with magnesium to form X	
	(a)	Use the information to help arrange the following metals in order of reactivity.	
		lead, magnesium, silver, sodium, metal X	
		most reactive	
		least reactive	[2]
	(b)	Suggest a possible identity for metal X.	F41
	(c)	Write a balanced chemical equation for the reaction between the oxide, XO, and magnesium.	[1]
			[1]

7 A solution of hydrochloric acid has a concentration of 1.5 mol/dm³. Fig. 7.1 shows how the temperature of the mixture varies with the volume of aqueous sodium hydroxide added to a 25.0 cm³ sample of the hydrochloric acid.

NaOH (aq) + HC/(aq)
$$\rightarrow$$
 NaC/(aq) + H₂O (/)

Fig. 7.1

(a)	(1)	Name the type of reaction between hydrochione and and social hydroxide.	
			[1]
	(ii)	Write a chemical equation, including state symbols, of the above reaction between aqueous sodium hydroxide and dilute hydrochloric acid.	
		······	[2]
(b)	Is th	e reaction endothermic or exothermic? Explain your answer.	
			[1]
(c)		t is the volume of aqueous sodium hydroxide needed to completely neutralize cm³ of hydrochloric acid?	
			[1]
(d)		ain why the temperature of the mixture falls when more than this volume of eous sodium hydroxide is added.	
			[1]

(e)	(i)	Calculate the number of moles of hydrochloric acid in 25.0 cm ³ of the given sample.	
	(ii)	number of moles of hydrochloric acid = moles Based on the stoichiometry of the given equation, what is the number of moles of sodium hydroxide which reacted with the number of moles of hydrochloric acid calculated in part e(i)?	[1]
		number of moles of sodium hydroxide = moles	[1]
	(iii)	Using the information from (c) and e(ii), calculate the concentration of the aqueous sodium hydroxide used to completely react with the hydrochloric acid added.	
		concentration of sodium hydroxide = mol/ dm³	[1]

8 Fig. 8.1 shows some carbon compounds.

Fig. 8.1

(a)	Which compound is a hydrocarbon that forms a single product with bromine?	
		[1]
(b)	Which two compounds have the same molecular formula?	
		[1]
(c)	When cracked, a molecule of decane, $C_{10}H_{22}$, gives compound E and one other hydrocarbon, X. Deduce the molecular formula of X.	
		[1]
(d)	Which of the compounds is formed when compound B is reacted with acidified potassium manganate(VII)?	
		[1]

Section B

Answer any two questions in the spaces provided.

9	flas	k. The	licium carbonate were added to 1 mol/dm³ of hydrochloric acid in a conical carbon dioxide gas released was collected in a measuring cylinder using ward displacement of water method.	
	(a)		e a balanced chemical equation, including state symbols, for the reaction reen calcium carbonate and hydrochloric acid.	
				[2]
	(b)	(i)	Calculate the number of moles in 10 g of calcium carbonate.	
			number of moles of calcium carbonate =	[1]
		(ii)	Calculate the number of moles of hydrochloric acid that reacted completely with 10 g of calcium carbonate.	
			number of moles of hydrochloric acid =	[1]
		(iii)	Calculate the volume of the 1 mol/dm³ hydrochloric acid that reacted completely with 10 g of calcium carbonate.	
			volume of budrochleric coid – dm³	[41
			volume of hydrochloric acid = dm ³	[1]

The experiment was repeated using an excess of a different amount of calcium carbonate in the same amount of 1 mol/dm³ hydrochloric acid. The volume of carbon dioxide gas produced was measured over a period of time. Fig. 9.1 shows the volume of carbon dioxide gas produced at regular time intervals. Study the graph and answer the questions that follow.

Fig. 9.1

(i)	What is the volume of carbon dioxide produced at the end of the reaction?	
		[1]
(ii)	Why did the reaction stop?	
		[1]
(iii)	Using your understanding of the Kinetic Particle Theory, explain why the reaction slowed down towards the end of the experiment.	
		[2]
(iv)	Suggest a way to increase the rate of production of carbon dioxide gas.	
		[1]

10 Z is a nitrate salt containing the cations Ag⁺, Fe³⁺, Cu²⁺ and Zn²⁺. Fig. 10.1 shows three processes to separate all the cations in solution Z.

Fig. 10.1

(a) Identify the cation(s) present in

(c)	(c) Copper(II) nitrate can be prepared using dilute nitric acid and a suitable compound.		
	(i)	Name a suitable solid compound that can be used to prepare copper(II) nitrate.	
			[1]
	(ii)	Write the chemical equation, including state symbols, for the reaction.	
			[2]
	(iii)	Describe how you would make pure crystals of copper(II) nitrate from the compound named in (c)(i).	
			[3]

Table 11.1 shows the fractions obtained and the amount produced by fractional distillation compared with the amount required.

Table 11.1

fraction	percentage produced (Supply)	percentage required (Demand)
liquefied petroleum gases (LPG)	3	4
petrol/gasoline	14	25
naphtha	9	3
paraffin/kerosene	15	7
diesel oil	10	22
heavy oil and bitumen	49	39

(a)	Which fraction does the demand exceed the supply by the greatest amount?	
		[1]
(b)	Suggest how cracking can help match the demand for the fractions with its supply.	
		[1]
(c)	Octane, C ₈ H ₁₈ , is a hydrocarbon in petrol, it has a relative molecular mass of 114. Hexadecane, C ₁₆ H ₃₄ , is one of the hydrocarbons in ship fuel, it has a relative molecular mass of 226. By calculating the percentage by mass of carbon for each hydrocarbon, determine which hydrocarbon burns with a smokier flame.	

(d)	Bute	ne can be made by cracking hexadecane, C ₁₆ H ₃₄ .	
	(i)	Construct an equation to illustrate the cracking of C ₁₆ H ₃₄ to make butene and another hydrocarbon as the only products.	
			[1]
	(ii)	Butene is an unsaturated hydrocarbon. Define the term unsaturated and explain how the molecular structure of butene shows that it is unsaturated.	
			[2]
	(iii)	Describe a chemical test you would carry out to show that butene is an unsaturated compound.	
			[2]

END OF PAPER

Data Sheet

Colours of Some Common Metal Hydroxides

calcium hydroxide	white
copper(II) hydroxide	light blue
iron(II) hydroxide	green
iron(III) hydroxide	red-brown
lead(II) hydroxide	white
zinc hydroxide	white

The Periodic Table of Elements

			60	5 .	_	o	<u>ج</u>		6.		8	_		_	E C	₹7	*	(D)	5	-	6	_	ક					
	0	2	Í	Melium 4	7	Ź	Ę.	7	F	⋖	Date:	4	ಹ	*	gray	ద	Ų	× _	Ken	13	8	œ	PE.	!				_
	=				6	L	fluorine	10	17	Ö	chlorine	35.5	35	<u>~</u>	bromme	80	83	_	iodine	127	92	₹	astatine	١				
	VI				8	0	oxygen	16	16	ഗ	sulfar	32	쫎	ß	selenum	79	25	Ţe	teflurium	128	84	S.	mninolog	1	116	ذ	Ivermorum	1
	<u> </u>				7	z	nitrogen	7	15	۵.	eunorlideorlid	31	ಜ	As	SUBBLIC	7.5	51	S S	antimony	122	83	õ	bismuth	200				
	_				9	ပ	carbon	12	14	ত	silicon	28	32	ලී	germanem	7.3	20	က်	Ë	119	82	윤	Per !	207	114	H	flerovium	-
	Ξ				5	60	Donoc	11	13	Ą	aluminium	27	31	က္ဆ	mrijes	70	49	딤	mdium	115	80	ï	mailled.	204				
													30	5	zinc	65	48	3	cadmium	112	8	Ÿ	mercury	201	112	ర్	сорытісіцт	
													23	ਰ	copper	64	47	Ą	Salver	108	<u>6</u>	Ψ	Pg.	197	111		roentgenum	
Q													28	Z	nickel	59	46	2	mnipelled	106	78	ď	pkatinum	195	110	മ്	darmstadijum	
Group													23	රි	Gobalt	59	45	뚠	modium	103	11	ä	ridium	192	109	¥	meitnerium	t
		_	I.	hydrogen 1									8	윤	5	56	44	₹	nuthenium	101	92	ဝိ	OSMUM	190	2	£	hassium	1
			-		•								25	돌	manganese	55	43	ပုံ	technetium		75	&	Therium	186	107	듐	mnulog	
					umber	তু		mess					74	ប៉	chimmium	52	42	ŝ	molybdenum	96	74	3	fungsten	184	106	ß	seaborgium b	ı
				Key	proton (atomic) number	atomic symbo	name	relative atomic mass						>								₩			105		dubnium	I
					proton	ato		reletiv					23	F	Utanium	48	40	Ż	zirconium	91	72	Ì	hainim	178	104	ž	Rutherlordium	ı
					L								71	ပ္ပ	scandium	45	36	>	ythium	89	57-71	anthanoids			89 – 103	actinoids		
	=				4	8	beryffium	6	12	₽	magnesium	24	2	ర	calcium	40	88	స	strontum	88	50	B	barrum	137	88	X.	radium	1
	_				က	:	Epina.	,	Ħ	ø	sodium	23	19	¥	potassium	39	37	8	nubidun	85	53	ර	caesium	133	93	ů.	francium	

lanthanoids	25	58	20	99	61	62	8	25	65	89	67	89	69	70	7.1
	<u>.</u>	පී	4	₹	ᇤ	S	盁	8	£	മ്	오	山	٤	ځ	3
	Fanthanum	CREMIT	praeacdymainm	песфинит	promethium	Samarum	europium	gadolinium	terbium	dysprosium	holmium	erbirm	thulium	ytterbium	luterium
	139	140	141	\$	1	150	152	157	150	163	165	167	\$	173	175
actinoids	<u>0</u>	80	91	35	93	8	38	96	97	88	66	130	101	102	103
	Ą	£	Pa	_	Š	₫	Αm	Ş	盉	ਹ	ដ្ឋា	Ē	Þ	ž	ت
	actinium	THORIGIT	profactinium	manium	neptunium	phytonium	americum	curium	berkelium	californium	einsteinium	termium	mendelevium	nobelium	lawrencium
	1	232	231	238			ł	ı	ı	1	ı	1	ı	1	ı

The volume of one mole of any gas is $24\,\mathrm{dm}^3$ at room temperature and pressure (r.t.p.).

Bendemeer Secondary School Science (Chemistry) 2021 Preliminary Examination Answer Scheme

1	В	2	Α	3	В	4	Α	5	С
6	В	7	С	8	D	9	D	10	D
11	D	12	Α	13	В	14	С	15	D
16	С	17	D	18	С	19	С	20	С

(a) W, X (b) Particles are fa							
(b) Particles are far							½ m each
randomly at high	r apart in speeds.	disorde	rly arran	gement,	moving		1,1
(c)(i) X and Y have	different	boiling p	oints.				1
(ii) X will distil first a				nt.			1 (no mark for stating X)
(iii) temperature / °C				/	/		Shape 1m Labelling of temperature, 1m
105			Y distils	_/			
	V -1:-4:1-						
90	X distils						ļ
/					_		ĺ
				<u>.</u>	time		
					ante		
(a)							3 correct,
atom	U	V	W	Х	Υ	Z	
number of	20	12	14	7	7	8	(no ½ m)
number of	17	10	13	6	7	6	:
protons	<u> </u>						
Mass number	37	22	27	13	14	14	
							Area of Area o
(b)(i) V (ii) X & Z (iii) W (iv) U/ Y							1m each
(c) Electronic struct	ture of V	is 2.8. It :	already h	as a full v	alence e	ectron	1m
	atom number of neutrons number of protons Mass number (b)(i) V (ii) X & Z (iii) W (iv) U/ Y	temperature / °C 105 90 X distils x dist	temperature / °C 105 90	temperature / °C 105 y distils x distils x distils x distils x distils x distils x distils x distils x distils x distils x distils x distils x distils x distils x distils x distils x d	(a) Atom	temperature / °C 105 y distils y distils 105 x distils y distils time (a) Atom	time (a) Atom U V W X Y Z number of 20 12 14 7 7 8 neutrons number of 17 10 13 6 7 6 protons Mass number 37 22 27 13 14 14 (b)(i) V (ii) X & Z (iii) W (iv) U/ Y (c) Electronic structure of V is 2.8. It already has a full valence electron

	(d)					2m			
	OR	U X	U XX						
3	substance	e element, m		possible identity of	substance	½ m each			
	Α	elem	ent	oxygen					
	В	compo		ammoni	a				
	C	mixt	ure	air					
4		Group VII		solutions of					
	1	element added	sodium chloride	sodium bromide	sodium iodide	½ m each			
		bromine	Х	Х	✓				
		chlorine	X	✓	✓				
		iodine	X	X	X				
	(h)/i) Dur	olo polid formad				1			
-	(b)(i) Purple solid formed. (ii) Br₂ + 2Nal → 2NaBr + I₂								
	\								
5	5 (a) Hydrogen, H ₂ (b) Oxidation state of fluorine decreases from 0 in F ₂ to -1 in HF. Hence								
	(b) Oxidate fluorine is	tion state of fluori reduced.	ne decreases	from 0 in F ₂ to -1 in	HF. Hence	1			
	Oxidation	state of hydroge	n increased fr	rom 0 in H ₂ to +1 in	HF. Hence	1			
	There is h	is oxidised. both oxidation and	d reduction in	the reaction. Hence	this is a				
	redox rea								
	(c) 37.5 c	m ³				1			
	(d) H ⁺					1			

6	(a) sodium	1m for correct
0	magnesium	placing of Na,
	metal X	Mg, Pb, Ag
		1m for correct
	lead	placing of X
	silver	
	(b) zinc/ iron	1
	(c) XO + Mg → MgO + X	1
7	(a) (i) Neutralisation	1
•	(ii) NaOH (aq) + HCl (aq) → NaCl (aq) + H₂O (l)	1m for correct equation, 1m for state symbols
	(b) Exothermic. Temperature increases	1/2 , 1/2
	(c) 30 cm ³	1
	(d) All tqqhe hydrochloric acid has been used up and there is no more reaction.	1
	(e)(i) 25/1000 x 1.5 = 0.0375	1
	(ii) 0.0375	1
	(iii) concentration NaOH = mole/vol = 0.0375/0.03 = 1.25 mol/dm³	1
	(III) CONCONTRACION NACON NACON CONCONTRACION NACON NA	<u>'</u>
8	(a) E	1
	(b) C & F	1
	(c) C ₈ H ₁₈	1
	(d) A	1
	[(u) A	
9	(a) CaCO ₃ (s) + 2HCl (aq) → CaCl ₂ (aq) + CO ₂ (g) + H ₂ O (l)	2
	(b)(i) 10/ [40 +12+3(16)] = 0.1	1
	(ii) 0.1 x 2 = 0.2	1
		1
	(iii) vol = mol/ conc = $0.2/1 = 0.2 \text{ dm}^3$	1
	(c)(i) 16 cm ³	1
	(ii) Hydrochloric acid is used up. (reject: reactant/s is/are used up)	1
	(iii) As the reaction proceeds, the concentration of hydrochloric acid	1
	decreases. There are lesser particles per unit volume. This led to a lower number of successful collisions to form products. Hence speed decreases.	1
	(iv) Increase concentration of hydrochloric acid/ use powdered calcium	Any 1
	carbonate/ increase temperature of the reaction mixture	1
10	(a)(i) zinc ions, Zn ²⁺	1
10	(ii) copper(II) ions, Cu ²⁺	1
		1 1
	(b)(i) silver chloride, AgCl	<u>'</u>
	(ii) iron(III) hydroxide, Fe(OH) ₃	1
	(c)(i) copper(II) oxide/ copper(II) carbonate/ copper(II) hydroxide	Any 1
	(ii) CuO(s) + 2HNO ₃ (aq) \rightarrow Cu(NO ₃) ₂ (aq) + H ₂ O (I)	1m for equation, 1m
	$CuCO_3(s) + 2HNO_3 (aq) \rightarrow Cu(NO_3)_2 (aq) + CO_2 (g) + H_2O (l)$ $Cu(OH)_2(s) + 2HNO_3 (aq) \rightarrow Cu(NO_3)_2 (aq) + 2H_2O (l)$	for state symbols

	 (iii) - Add excess copper(II) oxide/ copper(II) carbonate/ copper(II) hydroxide to nitric acid - Filter to remove excess copper(II) oxide/ copper(II) carbonate/ copper(II) hydroxide - Heat filtrate to obtain saturated solution of copper(II) nitrate - Cool the hot, saturated copper(II) nitrate solution to form crystals - Wash crystals with a little distilled water and dry in between 2 	1 ½ ½ ½ ½ ½
	pieces of filter papers.	
11	(a)(i) zinc displaces copper metal from copper(II) chloride. Zn (s) + CuCl₂ (aq) → ZnCl₂ (aq) + Cu (s)	1 1 (no need state symbols)
	(ii) By filtration	1
	(iii) Reaction would be slower as ethanoic acid is a weak acid.	1
	graph 2 (with Graph 3	1
	time	
	(b) Potassium daits on the charace of water explosively. A lot of heat is given off.	1
	2K (s) + 2H ₂ O (l) → 2KOH (aq) + H ₂ (g)	1
	Zinc has no reaction with water but reacts with steam.	1
	$Zn (s) + H2O (I) \rightarrow ZnO (s) + H2 (g)$	1
	Copper has no reaction with water or steam.	1
	Hence the reactivity is: (most reactive) potassium, zinc, copper (least reactive)	1