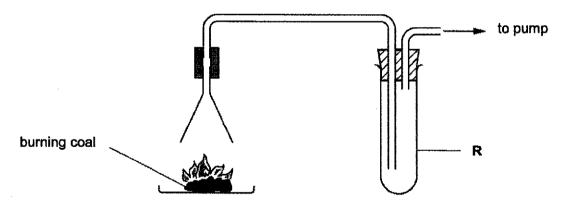
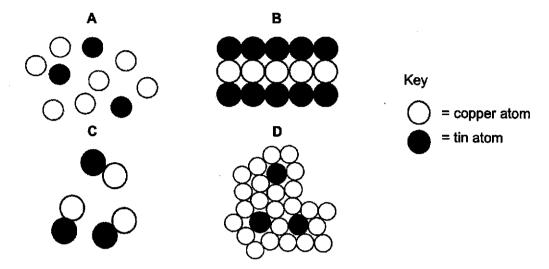

21 Which of the following apparatus is most suitable to measure exactly 25.40 cm3 of aqueous sodium hydroxide into a beaker?

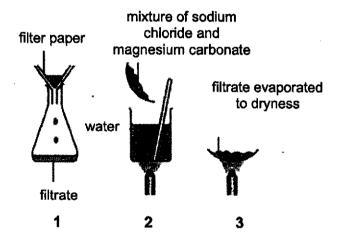


22 Mercury is a liquid at 25 °C.

What is the melting point and the boiling point for mercury?

	melting point/ °C	boiling point/°C
Α	45	108
В	- 5	- 90
С	- 89	- 4
D	-39	357

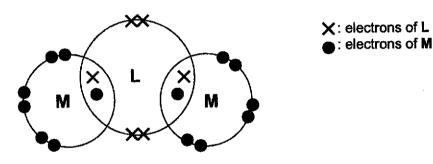

23 The diagram shows the apparatus used to test for the gases produced by burning coal.


Which reagent should be placed in test tube R to show that sulfur dioxide is formed?

- Α aqueous potassium iodide
- acidified potassium manganate(VII)
- C aqueous calcium hydroxide
- aqueous sodium hydroxide

24 Which diagram best shows the arrangement of atoms in bronze at room temperature?

25 A solid mixture of sodium chloride and magnesium carbonate is separated using the steps shown below.


In which order should the steps be carried out to separate the two chemicals?

- A $2 \rightarrow 1 \rightarrow 3$
- $B \quad 1 \rightarrow 2 \rightarrow 3$
- C $3 \rightarrow 1 \rightarrow 2$
- D $2 \rightarrow 3 \rightarrow 1$

Two naturally occurring isotopes of uranium can be represented as $^{235}_{92}$ U and $^{238}_{92}$ U.

Which of the following statements is correct?

- A They have the same number of electrons and protons.
- **B** They have the same number of neutrons and protons.
- C They have the same number of neutrons and electrons
- **D** They have the same number of nucleons and electrons.
- 27 The diagram shows the arrangement of electrons in the valence shell of the atoms in the compound LM₂.

Which of the following pairs of elements could L and M be?

	L	М
A	carbon	fluorine
В	fluorine	sulfur
C	sulfur	hydrogen
D	oxygen	chlorine

28 Metal P and non-metal Q react together to form an ionic compound P₃Q₂.

Which of the following correctly describes the electrons gained and lost by each atom?

	electrons lost by each atom of P	electrons gained by each atom of Q
A	1 .	3
В	2	3
С	3	2
D	2	1

29 Sodium, aluminium and sulfur are in the same period of the Periodic Table.

Which trend in types of oxides occur across this period?

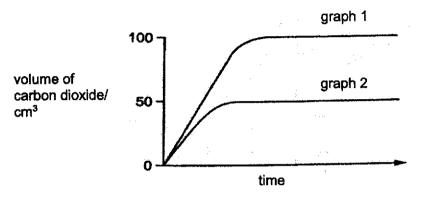
	left		right
Α	acidic	amphoteric	basic
В	amphoteric	basic	acidic
С	basic	amphoteric	acidic
D	basic	acidic	amphoteric

Four aqueous solutions, J, K, L and M have the pH values as shown in the table.

solution	J	K	L	М
pН	2	6	8	10

Which pair produces an alkaline solution when mixed?

- A J and K
- B J and M
- C K and L
- D L and M
- 31 Which of the following salts can be prepared using titration?
 - A potassium chloride
- B copper (II) chloride


c calcium sulfate

D silver nitrate

Some crystals of zinc carbonate were added to an excess of sulfuric acid at room 32 temperature.

The volume of carbon dioxide produced was measured over a period of time. The results are shown in graph 1.

The experiment was repeated and graph 2 was obtained.

Which change was used to obtain the results shown in graph 2?

- Acid of the same volume and half the original concentration was used.
- Larger pieces of zinc carbonate was used in the reaction. В
- The mass of zinc carbonate used was decreased by half.
- A lower temperature was used.
- Element G can form an ion G* which has an electronic structure of 2,8,8. 33

Which of the following statements about element G are correct?

- G can be cut with a knife.
- G is a strong oxidising agent. П
- G is in Period 4 of the Periodic Table. Ш
- G reacts with cold water.
- I and II only

I and III only В

I, III and IV only

II, III and IV only D

34 The results of three halogen displacement experiments are shown in the table.

experiment	halogen		halide solution	
experiment	added	Q ⁻	R-	S-
1	Q₂	-	R ₂ displaced	S₂ displaced
. 2	R ₂	no reaction	-	no reaction
3	S ₂	no reaction	R ₂ displaced	-

Which row correctly shows the identity of halogens Q, R and S?

	Q	R	S
A	CI	l	Br
В	CI	Br	l
С	Br	· CI	I
D	l	Br	CI

35 Steel is an alloy of iron and carbon.

Which of the following statements is correct?

- Steel cannot conduct electricity. Α
- В The iron in steel can react with hydrochloric acid.
- C Steel can be represented with a chemical formula.
- D Steel is formed by a chemical reaction between iron and carbon.

36 The table shows some reactions of metals P, Q, R and S.

metal	action of hydrochloric acid on metal	action of carbon on heated metal oxide	action of hydrogen gas on heated metal oxide
P	a lot of effervescence seen immediately	reduced	not reduced
Q	a lot of effervescence seen immediately	not reduced	not reduced
R	some effervescence after a long time	reduced	reduced
S	no reaction	reduced	reduced

What is the order of reactivity for metals P, Q, R and S?

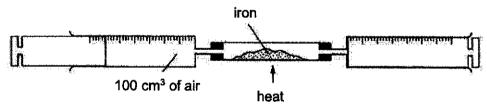
least reactive —	ve most reactiv		
Р	Q	R	S
Q	Р	R	S
S	R	Р	Q
S	R	Q	Р
	P Q S	P Q Q P S R	P Q R Q P R S R P

The following passage describes some reactions that take place during the extraction of 37 iron in the blast furnace.

"An ore of iron, W, is mixed with coke and limestone, and added into a blast furnace.

Hot **X** is blasted in through a ring of pipes from the bottom of the furnace.

The coke burns, producing gas Y, which is reduced by reaction with more coke to give gas Z. Gas Z then reduces the iron ore to iron."


Which row correctly shows the identity of substances W, X, Y and Z?

	W	X	Y	Z
A	haematite	air	carbon monoxide	carbon dioxide
В	haematite	air	carbon dioxide	carbon monoxide
С	carbon	carbon monoxide	carbon dioxide	oxygen
D	carbon	carbon monoxide	oxygen	carbon dioxide

- 38 Which statement is not a reason for recycling copper?
 - A Recycling decreases the energy requirement to obtain metals.
 - B Recycling decreases the environmental damage due to mining.
 - C Recycling decreases the amount of natural resources available.
 - D Recycling decreases the amount of scrap metal accumulating in the environment.
- 39 The reaction between iron (III) ions and calcium metal is represented by the equation.

Which statement is correct?

- A Fe³⁺ ions are oxidised by loss of electrons.
- B Fe³⁺ ions are reduced by gain of electrons.
- C Calcium metal is reduced by loss of electrons.
- D Calcium metal is oxidised by gain of electrons.
- A 100 cm³ sample of air is trapped in a syringe. The air is slowly passed over heated iron in a tube until there is no further decrease in volume.

When cooled to the original temperature, what is the volume of gas that remains in the syringe?

- A 1 cm³
- **B** 21 cm³
- C 78 cm³
- D 100 cm³

)

Name:	
Class:	
Preliminary Examinations 2020 Secondary 4 Express / 5 Normal Academic	
Science (Chemistry)	5076/03 5078/03

Monday 31 August 2020

Paper 3

1 hour 15 minutes 0800 - 0915

READ THESE INSTRUCTIONS FIRST

- Write your name, class and register number on the Question paper. 1.
- 2. This paper consists of 2 sections:

Section A [45 marks]

Answer ALL questions in the spaces provided on pages 2 to 8.

Section B [20 marks]

Answer ALL questions in the spaces provided on pages 9 to 11.

- The use of a calculator is allowed. 3.
- A copy of the colours of common metal hydroxides is given on page 12. 4.
- A copy of the Periodic Table is given on page 13. 5.

The number of marks is given in brackets [] at the end of each question or part 6. auestion.

Section	Marks
Section A	45
Section B	20
Total	65

This question paper consists of 13 printed pages including the cover page.

Section A [45 marks]

Answer all questions in the spaces provided.

1 Fig. 1.1 shows a few types of reactions.

complete combustion	precipitation	displacement	neutralisation					
incomplete combustion	decom	position	reduction					
	Fig. 1.1							

With reference to Fig. 1.1, state the reaction that best describes the following changes: (a) silver nitrate + potassium chloride → silver chloride + potassium nitrate[1] (b) calcium carbonate → calcium oxide + carbon dioxide (c) magnesium hydroxide + sulfuric acid -> magnesium sulfate + water [1] (d) copper (II) sulfate + zinc → zinc sulfate + copper[1] (e) methane + oxygen → carbon monoxide + water[1]

2 Complete Table 2.1 to describe the composition and electron arrangement of the following particles.

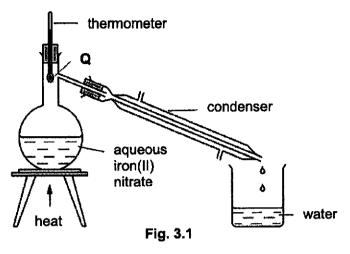

symbol of particle	number of protons	number of neutrons	electron arrangement
23 11 Na	The state of the s	12	2.8.1
¹⁹ F -			

Table 2.1

[Total: 4]

[Total : 5]

3 A student is asked to obtain water from aqueous iron (II) nitrate, using the following set-up as shown in Fig. 3.1.

(a)	State the name for this method of separation.	
		[1]
(b)	Explain why the thermometer is placed next to the opening of the condenser.	
	***************************************	[1]
(c)	Explain why the thermometer shows a range of temperatures rather than at a single temperature as separation takes place.	
	***************************************	[1]
(d)	Describe the arrangement and movement of particles at point Q.	
	***************************************	••••
	***************************************	****
		[2]
(e)	Describe how water can be obtained from the above set-up.	

	1002	
	111070000000000000000000000000000000000	[2]
	[Tota	ıl : 7]

4	Calc	calcium metal reacts with chlorine to form calcium chloride, CaCl ₂ . Calcium chloride exists as a solid at room temperature and pressure, and is able t										
	Calcium chloride exists as a solid at room temperature and pressure, and is able conduct electricity when molten.											
	(a)	Name the type of chemical bonding present in calcium chloride.										

	(b)	Draw in Ca	a 'dot-and-cross' diagram to show the arrangement of the outer shell electrons Cl_2 .									
			•									
			[3]									
	(c)	Evols	ain why calcium chloride is able to conduct electricity when molten.									
	(-)	·										

		•••••	[1]									
	(d)	(d) Chlorine exists as a gas at room temperature and pressure. The chloride is formed from a chlorine atom.										
		(i)	Write an ionic equation for the formation of a chloride ion, C/-, from a chlorine atom. State symbols are not required.									
			[1]									
		(ii)	Chlorine has a relative atomic mass of 35.5.									
			Explain why the relative atomic mass of chlorine is not a whole number.									

			[1]									
			[Total : 7]									

5	Antacid tablets containing magnesium carbonate are used to relieve the stomach
	indigestion symptoms caused by excess hydrochloric acid in the stomach as shown in the
	following equation:

$$MgCO_3 + 2HCl \rightarrow MgCl_2 + H_2O + CO_2$$

One may often experience some burping after consuming the antacid tablets containing magnesium carbonate.

(a) A girl took some antacid tablets to relieve her stomach indigestion. Each tablet contains 0.21 g of magnesium carbonate.

It was discovered that her stomach contains 100 cm³ of excess hydrochloric acid with a concentration of 0.15 mol/dm³.

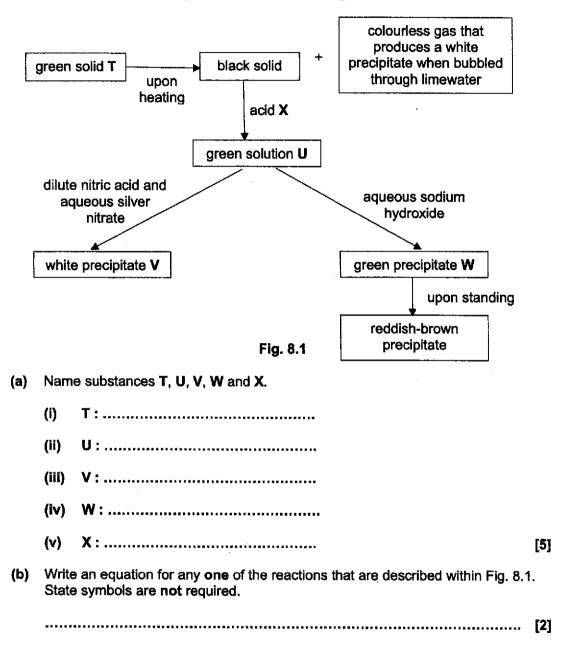
(i) Calculate how many moles of hydrochloric acid are present in 100 cm³ of hydrochloric acid with a concentration of 0.15 mol/dm³.

number of moles of hydrochloric acid =[1]

(ii) Calculate how many moles of magnesium carbonate are needed to neutralise the acid.

number of moles of magnesium carbonate =[1]

(iii) Calculate the number of antacid tablets that the girl needs to take to neutralise the acid.


number of antacid tablets =[1]

	(b)		in why one may experience some burping after consuming the antacid tablets ining magnesium carbonate.

			[1]
			[Total : 4]
6	Whe	en lead	(II) oxide is heated with carbon, the following reaction takes place.
-			2PbO + C → 2Pb + CO ₂
	(a)	State	e, with a reason, which substance acts as the reducing agent.
		redu	cing agent:
		reaso	: : nc
		******	[2]
	(b)	In the	e above reaction, lead is extracted from its oxide when heated with carbon.
		(i)	Explain why carbon can be used to extract lead from lead (II) oxide, but not to extract magnesium from magnesium oxide.
			[2]
		(ii)	Suggest how magnesium is extracted from its compounds.
			[1]
			[Total : 5]

Emis	sions	from coal fired power stations contain sulfur dioxide which causes acid rain.												
(a)	Suggest how sulfur dioxide gas is formed.													
	»»													
(b)	Acid	rain causes soil to be acidic, and affects the growth of crops.												
	(1)	Explain how the excess acidity in the soil can be removed, and how the pH of the soil changes during this removal.												
		101173103131031310313103131031310313103												
		[2]												
	(ii)	State one other effect of acid rain.												
		[1]												
		her air pollutant that can be produced from coal fired power stations is carbon oxide. Explain why carbon monoxide can be dangerous to people.												
	•••••													
		[2]												
		[Total : 6]												

7

8 Fig. 8.1 shows a series of experiments carried out on green solid T.

[Total: 7]

Section B [20 marks]
Answer all questions in this section in the spaces provided.

9	Piece gas.	es of m This re	agnesium ribbon was added to excess dilute nitric acid to produce a action completes in five minutes.
	(a)	(i)	List the measurements that you would make to determine the speed of this reaction.
			[2]
		(ii)	On the axes below, label the axes and draw a graph for the measurements made in (a)(i) that would show how the speed of the reaction changes.
			[2]
		(iii)	Describe how you would use your graph in (a)(ii) to determine the speed of reaction at two minutes.

			[2]
	(b)	On the	ne same set of axes in the above graph, sketch another graph when the riment is repeated at a lower temperature. Label your graph as "B". [1]

(c)		the Collision Theory, explain how and why the rate of reaction changed nitric acid of a higher concentration was used.
	,	
	*******	***************************************
		[2]
(d)	An inc	crease in temperature of the resulting solution was also recorded.
	Expla	in what this indicates about the reaction.
	••••	[1]
		[Total : 10]
10 (a)		im and the element of proton number 18 are in the same period of the dic Table, but have very different chemical properties.
	(i)	Explain why when moving across the Periodic Table from sodium to the element of proton number 18, the character of these elements changes from being metallic to non-metallic.
		[1]
	(ii)	Explain why these two elements are placed in the same period of the Periodic Table.
		[1]
	(iii)	Sodium and the element of proton number 18 have very different chemical properties. Use their electronic structures to explain this difference.

		······································
		[3]

(b) Metals can be placed in a reactivity series. Magnesium and zinc are listed in the

react	ivity series.										
(i)	Magnesium and zinc require different conditions to react with water. By referring to these reaction conditions, justify the relative positions of magnesium and zinc in the reactivity series.										

	[3]										
(ii)	Brass is an alloy made of zinc and copper.										
	Explain why brass is harder than either of the pure metals.										

	[2]										
	[Total : 10]										

- End of Paper -

Data Sheet Colours of Some Common Metal Hydroxides

calcium hydroxide	white
copper (II) hydroxide	light blue
iron (II) hydroxide	green
iron (III) hydroxide	red-brown
lead (II) hydroxide	white
zinc hydroxide	white

The Periodic Table of Elements

		2	~ 5	ne helium 4	ç	2 5	900	5 28	18	2 ₹	argon	5 8	9 5	krypton	84	75	×	Kenon	131	8	5	radon	ı					71	=	Intetium	175	103	ב	lawrencium	I		
		Ĭ,			٥	b U	- di	19 6	47	: ប	chlorine	50.00	8 &	bromine	80	ß	_	ecipo	127	86	₹	astatine	ŀ		•	•		202	ę	ytterbium	173	102	₽:	nobelium	ł		
	-	ī			0	• C	0 50	16	45	2 თ	suffur	7 7	\$ 8	selenium	79	52	₽	tellurium	128	2	ď	polonium	ı	118	د	INGERMODIUM	1				169	101	Md	mendelevium	1		
];	>			,	- 2	Z de la	4	4.	2 0.	phosphorus	5 8	? o	arsenic	75	5	æ	antimony	122	83	œ ,	bismuth	208								167	100	Ē		1		
***************************************		≥			4	o (٠	12			silicon						Š	Ē	119	82	£ ,	ead	207	114	Ε,	flerovium		- 67	운	holmium	165	66		einsteinium	ı		
					-	םמ	0 1		ç	2 &	aluminium	/2	<u>.</u> و	gallium	70	49	٤	indium	115	81								98	à	dysprosium	163	86			1		
0				·								8	3.5	zinc	65	48	3	cadmium	112	80	ij	mercury	201	110 111 112	δ ⁻	соретісти	ı	99	1	terblum	128	97	æ,	berkelium	ı		
													₹ ∂	copper	3				108	82	₹	poß	197	111	B	roentgenium	•	28	8	gadolinium	157	8	Š	CUTUT	ı		
													₹ 2	nicke	29	46	Pa	palladium	106	78	£	platinum	195	110	S	darmstadtium	1	63	ш	europium	152	95	Ę	americium	1		
able of	dnows												N 6	cobatt	59	45	듄	modium	103	11					¥	ቜ	1	62	ŝ	samerium	150	35	2	plutonium	ı		
2001			- :	hydrogen 1									2 3	<u> </u>	26		2	ruthenium	101	92	ő	osmium	190	108	£	hassium		61	E.	promethium		93	문	neptunium	ı		
					J								8 5	mandanese	52,	43		technetium	1	75	ş	menium	186	107	£	pohrium	ı	09	ž	n neodymium	<u>‡</u>	35	>	uranium	88 238		
				ber		92	S	88							\$ 6	chramium	52	42	Mo	molybdenum	86	74	₹	tungsten	184	106	Ŝ	seaborgium	1	- 28	à	praseodymium neodymium	141	6	Pa	protactinium	231
			Key	proton (atomic) number atomic symbol name		relative atomic mass							8 2 >	vanadium	5	41	£	niobium	83	82	Та	tantalum	1 8	105	ಕೆ	dubnium	-	82	පී	cerinm	140	8	Ę	thorium	232		
				proton at		relativ							2 F	fitanium	48	40	7.	zirconium	56	72	ŧ	hafnium	178	201	Œ.	Rutherfordium	ı	57	2	lanthanum	139	8	Ac	actinium	ı		
			-			_							÷ 5	Scandium	45	88	>	ytturn	68	57_71	lanthanoids	•••		89 103	actinoids				w								
		=				∢ ,	8	peryllium		2 2	magnesium	24	86	5 ig	đ	88	ŏ	strontium	8	98	Ba	barium	137	88	ů.	radium	I	;	anthanoids			actinoide	acil Idus				
		_				m :	3		,	- 2	F	23	<u> </u>	Filesepoo	eg.	37	2	rubidium	85	55	ర	caesium	133	87	ì	francium	I	•	≃								

The volume of one mole of any gas is 24 dm3 at room temperature and pressure (r.t.p.).

East Spring Secondary School 4E5N Sc(Chem) Prelim 2020 Marking Scheme

Paper 1 (20M)

21	22	23	24	25	26	27	28	29	30
В	D	В	D	Α	Α	D	В	C	D
31	32	33	34	35	36	37	38	39	40
A	С	С	Α	В	С	В	С	В	С

Paper 3 Section A (45m)

Qn. No		Marks			
1a	Precipitation	1			
1b	Decompositio	n			1
1c	Neutralisation				1
1d	Displacement				1
		luction as reactio		action. Reduction does	
1e	Incomplete co				1
-	-	luction as reactio cribes the chemi		action. Reduction does	
2	symbol of	number of	number of	electron	1M each
	particle	protons	neutrons	arrangement	
	23 11 Na	11	12	2.8.1	Total 4M
	¹⁹ F -	9	10	2.8	
3a	Simple Distill	ation/ Distillatio	<u> </u>		1
3b	To ensure that the thermometer measures the boiling point of the substance being distilled.				1
3c	It is a mixture/ not pure.				1
3d	Particles are far apart in a random manner;			3c –2M 1 – 2c – 1M	
	And are movi	ng at a <u>high spe</u>	<mark>ed in <u>random</u> dire</mark>	ections	
3е	Aqueous iron (II) nitrate / solution is heated. At 100°C, water boils;				3c – 2M 1 – 2c – 1M
	Hot water va				

	Hat water veneralists are to a called the analysis of the principles which is	
	Hot water vapour/steam is cooled / condenses into pure water, which is collected as the distillate.	
	Collected as the distillate.	
4a	lonic bonding	1
44	Torric boriding	
46		Pack to de
4b	$\begin{bmatrix} C_{I} \\ C_{I} \end{bmatrix}$	Each ion – 1m Total 3M
	Key ■ Electrons of Ca X Electrons of Cl	
	Penalise 1m if chloride ion has a repeated error (instead of 2m). Penalise 1m if charge for ions are written wrongly.	
4c	Giant ionic lattice structure breaks down, hence there are <u>presence of</u> <u>free moving / mobile ions</u> to carry electrical charges.	1
	REJECT: Charge carriers	
4di	CI + e ⁻ → CI -	1
4dii	There are presence of isotopes in different relative abundance.	1
1011	The sale processes of the sale processes and the sale processes of	<u> </u>
5ai	No. of mol. of HCI/H ⁺ = (100/1000) x 0.15	
00.	= 0.015 mol	1
	210 10 11101	'
5aii	No. of mol. of MgCO ₃ required = 0.015 / 2	
	= <u>0.0075 mol</u>	1
	<u> </u>	'
5aiii	No. of mol. of MgCO ₃ in one tablet = 0.21 / 84	
	= 0.0025 mol	
	No. of tablets = 0.0075 / 0.0025	
	= 3	1
		'
5b	The magnesium carbonate / antacid reacts with the acid to produce	1
1	carbon dioxide gas, thus leading to the burping.	
6a	Reducing agent : carbon/C	1
	· · · · · · · · · · · · · · · · · · ·	.1

	Reason: It is oxidized as it gains oxygen to form carbon dioxide / The	1
	oxidation state of carbon increased from 0 to +4 in carbon dioxide /	
	Lead (ii) oxide is reduced as it loses oxygen to form lead / The	
	oxidation state of lead decreased from +2 in lead (II) oxide to 0. / Lead	
	(II) ion gained two electrons to form lead metal.	
6b	Carbon is more reactive than lead, hence it can reduce	4c – 2M
	lead (II) oxide to lead;	2 - 3c - 1M
	they may solve to less resulting they may region house it earned	1c – 0M
	whereas <u>carbon is</u> <u>less reactive than magnesium</u> , hence it <u>cannot</u>	
OL::	reduce magnesium oxide. Electrolysis / By using electricity/By using a more reactive metal to	1
6bii	displace the less reactive metal from its metal ore.	•
	displace the less reactive metal from its metal ore.	
	O I I I I I I I I I I I I I I I I I I I	1
7a	Coal contains <u>sulfur</u> as an impurity, hence when coal is burnt, <u>sulfur</u> reacts with oxygen to form sulfur dioxide.	•
	reacts with oxygen to form suital dioxide.	
	Also accept: Volcanic eruptions	
7bi	Add slaked lime / calcium hydroxide to neutralize the acidic soil/	1
	neutralize acid in soil;	
	pH of soil increases	1
	·	
	Also accept: quicklime / calcium oxide.	
7bii	Corrodes marble/limestone buildings	Any 1 - 1
	<u>OR</u>	
	Lakes become acidic, killing the fishes/marine life	
7c	Carbon monoxide is poisonous/toxic ;	1
	reacts with haemoglobin in the blood to form carboxyhaemoglobin, a	1
	stable compound which reduces the ability of blood to carry oxygen.	1
8ai	Iron (II) carbonate	1
8aii	Iron (II) chloride	1
8aiii	Silver chloride	1
8aiv	Iron (II) hydroxide	1
8av	Hydrochloric acid	1
8b	FeCO ₃ → FeO + CO ₂ /	corr. chemical
	FeO + 2HCl → FeCl ₂ + H ₂ O /	formulas – 1M
	$FeCl_2 + 2AgNO_3 \rightarrow Fe(NO_3)_2 + 2AgCl/$	Balanced - 1M
	FeCl ₂ + 2NaOH → 2NaCl + Fe(OH) ₂	
	Ca(OH) ₂ + CO ₂ → CaCO ₃ + H ₂ O	

Section B (20 M)

Qn. No	Answer	Marks
9ai	- volume of hydrogen gas produced over fixed intervals of time / mass of	1
	reaction mixture over fixed intervals of time	
	- <u>time taken</u> for the reaction to complete	1
9aii	volume of gas produced method:	1 – corr axes with units
	1 values of the produced I don't	units
	whene of the produced our 3 Machine completes have.	1 – corr shape of graph
	1 Ame/man	
	OR	
	mass of reaction mixture method:	
	p mass of reaction mixture /g.	
	existion completes have time win	
9aiii	Draw a tangent to the curve at 2 minutes.	1
	Measure/calculate the gradient/slope of the tangent to determine the speed of tangent to	1
9b	volume of gas produced method:	1
	+ volume of the produced of one 3	
	- Groupin B	
	0 (3) Fine/min	
	OR	

	mass of reaction mixture method:	
	A music of reaction mixture of	
ļ		
	Cont. O	
	Graph & Sime min	
	time min	
	0 5	
0-	Superior increases / is higher	3c – 2M
9c	Speed of reaction increases / is higher;	1 2c
	Because concentration of hydrochloric acid increases / is higher , therefore	1M
	there are more reactant particles per unit volume;	
	A 10 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	And thus there is a <u>higher rate of</u> collision and <u>effective collisions</u> between	
	reactant particles.	1
9d	Reaction is exothermic/reaction produce heat/gives out heat.	<u> </u>
40-:	Moving from sodium to element with proton number 18 (argon), the atoms	1
10ai	change from losing electrons to gaining electrons to achieve the stable	•
	noble gas electronic configuration.	
10aii	Both have 3 electron shells.	1
10aiii	The element with proton number 18 is chemically inert/ unreactive and potassium is reactive.	E .
	potassium is reactive.	
1	This is because the element with proton number 18 has an electronic	1
	structure of 2.8.8, hence it has a completely filled valence shell. It does	•
	not need to lose, gain or share electrons with other elements.	
	However, sodium has an electronic structure of <u>2.8.1/1 valence electron</u>	1
	and it needs to lose 1 electron to achieve a stable electronic	
	configuration of noble gas /need to lose 1 electron to achieve a	
	completely filled valence shell.	
	1m for e.c of both elements.	
	1m for e.c of both elements. 1m for discussing how argon has a completely filled shell.	
	1m for discussing how argum needs to lose 1 electron.	
10bi	Zinc does not react with cold water but reacts with steam;	1
	Magnesium <u>reacts</u> (slowly) <u>with cold water</u> ;	1
	As zinc requires a higher temperature to react with water compared to	
	magnesium; therefore magnesium is above zinc / zinc is below	
	magnesium in the reactivity series;	1
		L

10bii	In brass, the atoms are of different sizes.	3c – 2m
	This disrupts the <u>orderly arrangement of the zinc/pure metal atoms</u>	2c 1m 0-1c -0m
	and it is difficult for the layers of atoms to slide over each other when a force is applied.	
	This makes brass harder than pure zinc and pure copper.	