

Bukit Batok Secondary School PRELIMINARY EXAMINATION 2018 SEC 4 EXPRESS

CHEMISTRY Paper 1 Multiple Choice

6092/01 24 August 2018 0745 - 0845 1 hour

Additional Materials: Multiple Choice Answer Sheet

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

Do not use staples, paper clips, glue or correction fluid.

Write your name, index number and class on the Answer Sheet in the spaces provided.

There are forty questions on this paper. Answer all questions. For each question there are four possible answers A, B, C and D.

Choose the one you consider correct and record your choice in soft pencil on the separate Answer Sheet.

Read the instructions on the Answer Sheet very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer.

Any rough working should be done in this booklet.

A copy of the Periodic Table is printed at the end of the question paper.

The use of an approved scientific calculator is expected, where appropriate.

This document consists of 15 printed pages.

1 The reaction scheme shows how hydrated copper(II) sulfate, CuSO₄.5H₂O, changes when heated.

A little water was accidentally spilled into a dish containing hydrated copper(II) sulfate. What could be done to remove the water, leaving pure, dry CuSO₄.5H₂O?

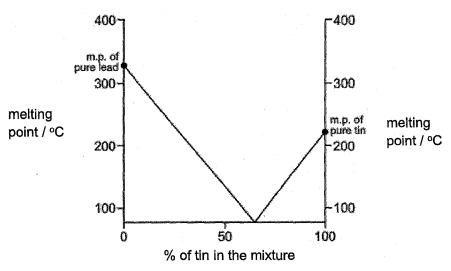
- A Heat the dish over a boiling water-bath.
- B Heat the dish to a constant mass.
- Heat the dish with a Bunsen burner.
- **D** Let the dish stand in direct sunlight.
- 2 Aluminium sulfate is sometimes used in water treatment to remove impurities. Aqueous aluminium sulfate is acidic. The table shows the results of tests on four different samples of treated water.

To which sample had an excess of aluminium sulfate been added?

	sample	pH of sample	reaction with an excess of aqueous ammonia
	Α	3	white precipitate
	В	3	no reaction
	C	7	no reaction
2	D	11	white precipitate

An acid, X, was added to a solution of the nitrate of a metal, Y. A dense white precipitate was formed

What are X and Y?


	acid X	metal Y
Α	hydrochloric	calcium
В	nitric	zinc
C	sulfuric	aluminium
D	sulfuric	barium

A student tested a solution by adding aqueous sodium hydroxide. A precipitate was not seen because the reagent was added too quickly.

What could not have been present in the solution?

- A A/3+
- B Ca²⁺
- C NH₄+
- D Zn²⁺

5 The graph gives the melting points (m.p.) of mixtures of lead and tin.

The graph shows that any mixture of lead and tin must have a melting point that is

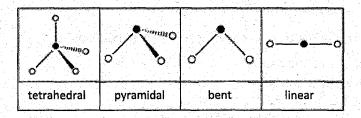
- A above that of tin.
- B below that of lead.
- C below that of both tin and lead.
- D between that of tin and lead.
- 6 The isotopes of carbon and oxygen are given in the table.

Isotopes of carbon	¹² C	¹³ C	¹⁴ C			
Isotopes of oxygen	¹⁶ O	¹⁷ O	¹⁸ O			

A molecule of carbon dioxide with molecular mass 46 could contain

- A one ¹²C atom and two ¹⁶O atoms.
- B one ¹⁴C atom and two ¹⁸O atoms.
- C one ¹²C atom, one ¹⁶O atom and one ¹⁸O atom.
- **D** one ¹⁴C atom, one ¹⁶O atom and one ¹⁸O atom.
- 7 Particles with the same electron arrangement are said to be isoelectronic. Which of the following compounds contains ions which are isoelectronic?
 - A CaCl₂
 - **B** KBr
 - C MgCl₂
 - D Na₂S

8 The table shows information about particles X and Y.


	number of protons	number of neutrons	electronic structure
X Y	9	10 20	2, 8 2, 8, 8

Which statement is correct for both X and Y?

- They are atoms of metals. Α
- В They are atoms of noble gases.
- C They are isotopes of the same element.
- D They are negative ions.
- 9 The table shows some properties of four substances. Which substance is an ionic compound?

	melting point /°C	conducts electricity when solid	dissolves in water	conducts electricity in aqueous solution
A B	-102 801	no no	yes yes	yes Ves
C	842	yes	yes	yes
D	3000	yes	no	no

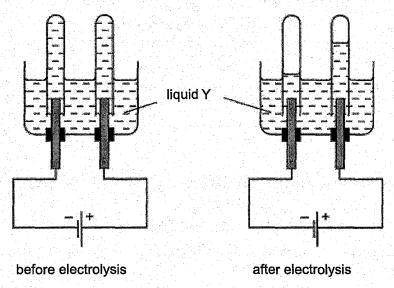
10 The shapes and names of some molecules are shown below.

Phosphine is a compound of phosphorus, an element in Group V, and hydrogen. The shape of a molecule of phosphine is likely to be

- A bent.
- B linear.
- C pyramidal.
- D tetrahedral.

11 Which sulfide contains the greatest mass of sulfur in a 10 g sample?

sulfide	formula	mass of one mole /g
A	NiS	91
В	FeS ₂	120
C	MoS ₂	160
D	PbS	239


12 Two of the reactions used in the manufacture of nitric acid, HNO₃, are shown.

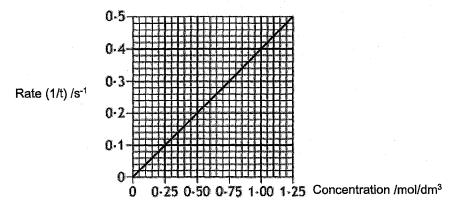
$$2NO + O_2 \rightarrow 2NO_2$$

 $4NO_2 + 2H_2O + O_2 \rightarrow 4HNO_3$

What is the maximum number of moles of nitric acid which could be formed from one mole of nitrogen monoxide, NO?

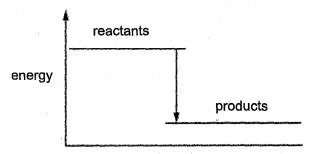
- **A** 0.5
- **B** 1.0
- **C** 2.0
- **D** 4.0
- A piece of chalk has a mass of 23.0 g. Chalk is impure calcium carbonate. When analysed, the chalk is found to contain 0.226 moles of calcium carbonate. What is the percentage purity of the piece of chalk?
 - **A** 0.983%
- **B** 1.02%
- **C** 77.0%
- **D** 98.3%
- Which element requires the smallest number of electrons for one mole of atoms to be liberated during electrolysis?
 - A aluminium
 - **B** calcium
 - C copper
 - **D** sodium

15 The diagrams show an electrolysis experiment using inert electrodes.


Which could be liquid Y?

- 1 aqueous copper(II) sulfate
- 2 aqueous sodium nitrate
- 3 concentrated aqueous sodium chloride
- 4 dilute sulfuric acid
- A 4 only
- B 1 and 4 only
- C 2 and 4 only
- **D** 2, 3 and 4 only
- A student carries out a single experiment to determine the speed of reaction between calcium carbonate and an excess of hydrochloric acid.

Which of the following does not change during the course of the reaction?


- A concentration of the hydrochloric acid solution
- B mass of the calcium carbonate
- C volume of carbon dioxide evolved
- D volume of hydrochloric acid solution

17 The graph shows how the rate of a reaction varies with the concentration of one of the reactants.

What is the reaction time, in seconds, when the concentration of the reactant was 0.50 mol/dm³?

- **A** 0.2
- **B** 0.5
- **C** 2.0
- **D** 5.0
- 18 A diagram for the energy change during a chemical reaction is shown.

For which reaction(s) would this be an appropriate diagram?

- 1 $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$
- 2 $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$
- $3 \quad 2C + O_2 \rightarrow 2CO$
- A 1 only
- **B** 1 and 2 only
- C 1 and 3 only
- **D** 1, 2 and 3

- The oxide of titanium, TiO₂, is used as a 'whitener' in toothpaste. It is obtained from the ore iron(II) titanate, FeTiO₃. What is the change, if any, in the oxidation number of titanium in the reaction FeTiO₃ → TiO₂?
 - A It is oxidized from +3 to +4.
 - **B** It is reduced from +3 to +2.
 - C It is reduced from +6 to +4.
 - D There is no change in the oxidation number.
- The pH of an aqueous solution of hydrochloric acid is 2.

 What will be the pH of the acid after the addition of 10.0 g of sodium chloride?
 - A 2
- **B** 5

C 7

- **D** 9
- Which row in the table correctly shows the properties of 0.100 mol/dm³ hydrochloric acid when compared with 0.100 mol/dm³ ethanoic acid?

	рН	conductivity	Rate of reaction with magnesium
Α	lower	lower	slower
В	higher	higher	faster
C	lower	higher	faster
D	higher	lower	slower

- 22 Consider the three reactions below.
 - reaction between nitric acid and calcium hydroxide
 - ethane burning in air
 - reaction between ethanoic acid and ethanol

A student made three statements about the three reactions above.

- 1 carbon dioxide is produced in all reactions
- 2 water is produced in all reactions
- 3 a salt is produced in all reactions

Which statement(s) is/are true?

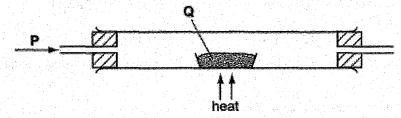
- A 2 only
- B 1 and 2 only
- C 2 and 3 only
- **D** 1, 2 and 3

Methylamine, CH₃NH₂, has very similar chemical properties to ammonia, NH₃. Methylamine reacts with hydrogen chloride to form a white crystalline salt, methylammonium chloride.

CH₃NH₂ + HC*l* → CH₃NH₃+C*l*-

A sample of methylammonium chloride is heated with aqueous sodium hydroxide. What are the products?

- A ammonia, sodium chloride and water
- B ammonia, sodium hydrogencarbonate and sodium chloride
- C methylamine, hydrogen chloride and water
- D methylamine, sodium chloride and water
- 24 A student has five reagents.
 - dilute hydrochloric acid
 - dilute sulfuric acid
 - · dilute nitric acid
 - solid calcium carbonate
 - solid copper(II) carbonate


How many soluble salts can be prepared?

- A 3 B 4 C 5 D 6
- 25 How can a pure sample of barium sulfate be obtained from barium carbonate?
 - A Dissolve it in dilute hydrochloric acid, add dilute sulfuric acid, filter and crystallise.
 - B Dissolve it in dilute hydrochloric acid, add dilute sulfuric acid, filter and wash.
 - C Dissolve it in water, add dilute sulfuric acid, filter and crystallise.
 - **D** Dissolve it in water, add dilute sulfuric acid, filter and wash.
- An alloy of copper and zinc is added to an excess of dilute hydrochloric acid. The resulting mixture is then filtered.

Which observations are correct?

	filtrate	residue
Α	colourless solution	none
В	colourless solution	pinkish brown
С	blue solution	grey
D	blue solution	none

27 In the apparatus shown, gas P is passed over solid Q.

No reaction occurs if P and Q are

.		Р	Q
	Α	hydrogen	lead(II) oxide
	В	hydrogen	magnesium oxide
	С	oxygen	carbon
	D	oxygen	sulfur

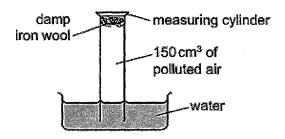
The period 4 elements gallium (Ga), germanium (Ge), arsenic (As) and selenium (Se) are elements below aluminium, silicon, phosphorus and sulfur in the Periodic Table, a portion of which is shown below.

period 3 elements AI Si P S period 4 elements Ga Ge As Se

The properties of each period 4 element resemble those of the period 3 element directly above it.

Which period 4 elements form oxides that dissolve in water to give an acid solution?

- A As and Se
- B Ga and Ge
- C Ga and Se
- D Se only
- When a mineral was heated in a Bunsen flame to a constant mass, a colourless gas that produced a white precipitate in limewater, was given off. The remaining solid was cooled and then added to aqueous hydrochloric acid. Vigorous effervescence was seen. What was the mineral?
 - A aragonite, CaCO₃
 - B artinite, MgCO₃.Mg(OH)₂.3H₂O
 - C barytocalcite, BaCO₃.CaCO₃
 - D dolomite, CaCO₃.MgCO₃


- 30 Listed below are four solutions.
 - 1 aqueous sodium hydroxide
 - 2 aqueous silver nitrate
 - 3 aqueous potassium sulfate
 - 4 dilute hydrochloric acid

Which of the following solution(s) will react with magnesium metal?

- A 4 only
- **B** 1 and 4
- C 2 and 4 only
- **D** 2, 3 and 4 only
- 31 Attaching pieces of magnesium to underground iron pipes can protect the iron from corrosion.

Which reaction protects the iron from corrosion?

- A Fe²⁺(aq) \rightarrow Fe³⁺(aq) + e
- **B** Fe(s) \rightarrow Fe²⁺(aq) + 2e
- C $Mg^{2+}(aq) + 2e \rightarrow Mg(s)$
- **D** $Mg(s) \rightarrow Mg^{2+}(aq) + 2e$
- 32 An experiment to find the percentage of oxygen in 150 cm³ of polluted air is shown.

The apparatus is left for one week.

After this time, the volume of gas in the measuring cylinder is 122 cm³.

What is the percentage of oxygen, to the nearest whole number, in the polluted air?

- A 19 %
- **B** 21%
- C 28 %
- **D** 81%
- The depletion of the ozone layer in the upper atmosphere reduces the Earth's natural protection from harmful ultraviolet radiation.

Which compound would cause the most depletion of the ozone layer?

- ▲ CCI₂F
- B CF
- C CHC/F₂
- D CH₂F₂

34 The compound, C₈H₁₈ undergoes the following process.

Which row in the table correctly identifies Process X and Compound Y?

	Process X	Compound Y
Α	cracking	hexane
В	cracking	hexene
С	distillation	hexane
D	distillation	hexene

- How many moles of hydrogen chloride are formed when one mole of methane is added to a large excess of chlorine in the dark?
 - **A** 0
- **B** 1

- C 2
- D 4
- 36 Three members of the cycloalkene homologous series are shown:

Which of the following is the general formula for this homologous series?

- A C_nH_{2n-4}
- B C_nH_{2n-2}
- C C_nH_{2n}
- D C_nH_{2n+2}

Oil contains carbon-carbon double bonds which can undergo addition reactions with iodine. The iodine number of an oil is the mass of iodine in grams that will react with 100 g of oil.

Which row in the table shows the oil that is likely to have the lowest melting point?

	oil	iodine number
Α	corn	123
В	linseed	179
С	olive	81
D	soya	130

38 A compound has the following structure.

Which reaction(s) will occur with this compound?

- 1 Bromine water will decolourise.
- 2 It will react with an alcohol to form an ester.
- 3 It will react with sodium metal.
- A 1 only
- B 1 and 2 only
- C 2 and 3 only
- **D** 1, 2 and 3
- Polyvinyl chloride (PVC) is a man-made polymer used mainly in the manufacture of pipes. PVC pipes are strong, lightweight and does not rot.

Which statements correctly describe the polymer, polyvinyl chloride, PVC?

- 1 Combustion of PVC waste produces a highly acidic gas.
- 2 PVC molecules are saturated.
- 3 The empirical formula of PVC is the same as the empirical formula of its monomers.
- A 1 and 2 only
- B 1 and 3 only
- C 2 and 3 only

40. A section of a condensation polymer is shown below.

One of the monomers is

$$0 0 0$$

 $H - O - C - C_6 H_4 - C - O - H$

The structural formula of the other monomer is

$$B + B - (CH_2)_2 - O - H$$

End of paper

The Periodic Table of Elements

		<u>. </u>							_				-				-1	_				Γ-				Г			\neg	
	0	2	£	Helium ,	4	ę	ş	neon S	3		Ā	uogae ;	9	99	⋍	krypton	8	%	×	хенон	1 3	86	듄	radon	l					
	₹					တ	u_	fluorine	2	17	ວັ	chlorine	35.5	35	卤	bromine	80	ß		iodine	127	85	¥	astatine	ı					
	5	**************************************				ω	0	dxygen 46	2	9	ဟ	sulfur	33	ਲ	ဆို	selenium	62	25	<u>e</u>	tellurium	128	æ	දු	polonium	ı	116	<u> </u>	[ivermorium	1	
	>					_	z	nitrogen	±=	1 5	<u> </u>	sphorus	હ	83	As	arsenic	75	55	S S	antimony	122	83	Œ	bismuth	500					
	<u> </u> ≥							carbon										Ι				1				1	<u> </u>	ferovium	1	
					,	5		poron	11	13	₩,	luminium	27	31	Ĝ	callium	202	67	: ,5	indian.	115	24	F	thalling.	25					*
		ministerior marchael				L				!				<u> </u>				ļ				+		*********			7 6	C C		
		THE REPORT OF THE PARTY OF THE												28	ة ا	3 6	25	£.P		2	200	3 6	5 ÷	₹ ₹	200		==	KG Canfreniem		***************************************
		THE PERSON NAMED IN TAIL OF TH												28	1 2	i * i	2 G	3 4	₹ 2	ָב : ב	pallagium 406	3 5	e i	1	Plaintin 405	3	-19	SO	I I I I I I I I I I I I I I I I I I I	-
Groin	<u></u>													77	۲ ر	3 7	100 of	3 4	2 6	Ē :	modium 403	22.	-	= :	E co	72	9	M	memerum .	
			- I	r j	1000 T]								90		P .	<u> </u>	3 ;	‡ (₹.	ruthenium	2	٤,	<u>~</u>	majuso ,	3	8	£.	massium	
			**********		=	J								i c	9 =	Ē	langanese	8 3	₹ 1	ပ	echnetium	*	٤,	8	thenium	28	107		millod	
		***************************************					Dei			200				<u> </u>	عسيس	سبس	<u> </u>	4								-	********	Sg	E	-
		***************************************			Kon	Sal.	tomic) nun	atomic symbol	ntomin m					ļ										,						1
	***************************************					*0) 004000	proton (a	aton	1000	reiauve				┡				+				-	22				┢─		E S	1
			The state of the s			L									7	သ	scandium	45	ස	>	yttrium	ස	57 - 71	anthanoids			89 - 103	actinoids		
		=					4	e 1	Derymum	5	5	₽	agnesium										ļ		******	*********	1-	**********	radium	1
		_					8												_								T	i iI		

ころ量段	103
70 Yb ytterblium 173	No nobelium
Tm thullum 169	101 Md mendelevium
68 Er erbium 167	100 Fm femilim
Formium 165	99 Es einsteinium
66 Dy dysprosium 163	ealfornium 1
65 terbium 159	97 BK berkelium
64 Gd gadolinium 157	Cm curium
europium 457	95 Am americium
Sm samarium	94 Pu plutonium
61 Pm promethium	93 Np neptunium
60 Nd neodymium	92 U uranium 238
PT PT praseodymium	91 Pa protactinium 231
ස පී 🖔	용 는 thought
	Ac Ac actinium

lanthanoids

actinoids

BBSS/2018 O Prelim /sec 4E/ Chem 6092 P1

he volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

N I		the second second	Index			
NION	IO.		Indev	NIA .	1 100	S
11011		 	 IIIUGA	INU	· Cara	3
		 	 , , ,			A

Bukit Batok Secondary School PRELIMINARY EXAMINATION 2018 Sec 4 EXPRESS

CHEMISTRY

Paper 2

6092/02 15 August 2018 1030 - 1215 1 hour 45 minutes

Candidates answer on the Question Paper. No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your name, index number and class in the spaces provided at the top of this page. Write in dark blue or black pen

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Section A

Answer all questions in the spaces provided.

Section B

Answer all three questions, the last question is in the form of either/or.

Answer all questions in the spaces provided.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

A copy of the Periodic Table is given at the end of the paper.

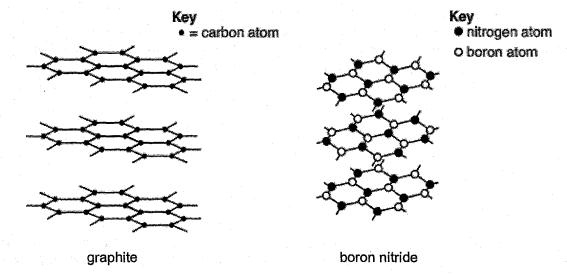
The use of an approved scientific calculator is expected, where appropriate.

For Examiner's use	
Section A	/50
Section B	
B7	
В8	
B9	
Total	/80

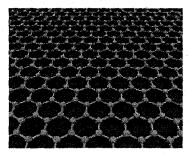
Section A

Answer all the questions in this section in the spaces provided.

The total mark for this section is 50


II) (7 in a	1s.	hiob the me	at reactive		المرمياط ممما			[1]
iii) F		•				l would occu al with the k		sity.	[1] [1]
-			hich could b	e occupie	ed by an ele	ment formir	ng an ampl	noteric	[1]
v) 1	inas	space wh		e occupie	d by an ele	ment with a	n isotope t	hat can b	е
r	epres	ented by	¹⁴ ₆ X.						[1]
1								2	
	1								
3		4	5	6	7	8	9	10	
							ļ		
4.4		40	40	14	45	10	47	40	
11		12	13	14	15	16	17	18	
		· .							
th i) S	e peri	od from	left to right.						[1]
	*******								. [1]
Expl	ain wh	nat is me	ant by the t	erm <i>perio</i>	dicity.				
	r 1 1 3 3 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1	hydrox v) T in a s repres 1 3 11 i) Describ the peri the structur	hydroxide. v) T in a space wherepresented by 1 3 4 11 12 i) Describe how the the period from structure.	hydroxide. v) T in a space which could b represented by ¹⁴ / ₆ X. 1 3 4 5 11 12 13 i) Describe how the metallic of the period from left to right. ii) State how the metallic char structure.	hydroxide. v) T in a space which could be occupied represented by \(^{14}_{6}X\). 1 3	hydroxide. v) T in a space which could be occupied by an ele represented by \(^{14}_{6}X\).	hydroxide. v) T in a space which could be occupied by an element with a represented by ¹⁴ / ₆ X. 1 3 4 5 6 7 8 11 12 13 14 15 16 i) Describe how the metallic character of the elements in Period the period from left to right. ii) State how the metallic character of an element is related to structure.	hydroxide. Y) T in a space which could be occupied by an element with an isotope to represented by \$^{14}_6X\$. 1 3	T in a space which could be occupied by an element with an isotope that can be represented by \(^{14}{6}X\). 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 15 16 17 18 19 15 16 17 18 19 15 16 17 18 19 15 16 17 18 15 16 17 18 18 15 16 17 18 15 16 17 18 18 15 15 16 17 18 15 16 17 18 15 16 17 18 15 16 17 18 18 15 16 17 18 15 16 17 18 15 16 17 18 15 16 17 18 15 15 16 17 18 15 15 16 17 18 15 15 16 17 18 15 15 16 17 18 15 15 16 17 18 15 15 16 17 18 15 17 18 15 15 15 16 17 18 15 15 16 17 18 15 1

Carbon atoms can bond to each other to produce a variety of different structures,

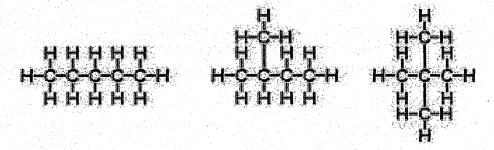

inc	luding diamond, graphite and buckminsterfullerene.	
	nere are similarities and differences in the structure and bonding in diamond and	
(1)	graphite.	r to
	하실 수 있는 사용 사용 사용 사용 수 있는 것이 하실 것이 되었다. 그 사용 기계 등 가장 가장 기계 등 가장 기계 등 수 있다. 	
(ii) Describe two features of the structure and bonding in diamond that are different from graphite.	
		[2]
(b)	Buckminsterfullerene is a form carbon with the formula C ₆₀ . If it is burned completely in oxygen, it forms carbon dioxide as the only product. Calculate the mass of carbon dioxide that is released when 51 g of	
	buckminsterfullerene is completely burned in oxygen.	[2]

A2

(c) The structures of graphite and boron nitride are shown below.

- (iii) The diagram below shows the structure of a solid form of carbon called graphene. Graphene contains one layer of carbon atoms. Graphene is made from graphite but it is harder than graphite.

Explain, using ideas about structure and bonding, why graphene is hard.

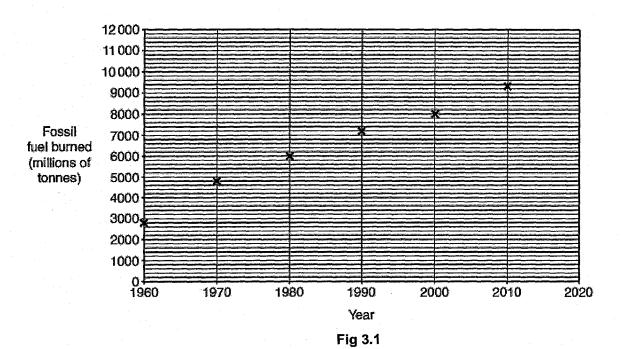

141

- A3 Alkanes like propane and butane are found in Liquefied Petroleum Gases(LPG).
 - (a) An experiment shows that complete combustion of 1.0 dm³ (measured at room temperature and pressure) of butane produces 120 kJ of energy.
 Calculate a value for the enthalpy change of complete combustion (kJ/mol) of butane, giving the correct sign.

[1]

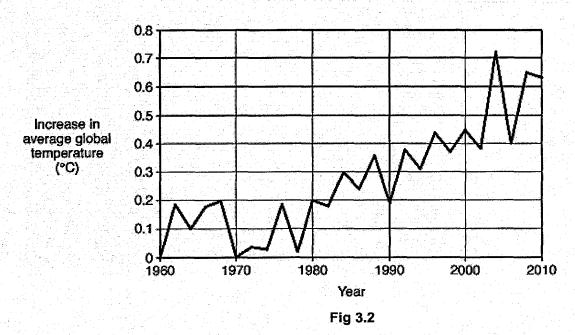
(b)(i) The alkane with 5 carbon atoms, pentane exists as several isomers shown below.

One is straight chain pentane while the other two are branched chain pentane.


Will the two isomers which are branched chain pentane have the same enthalpy change on complete combustion as the straight chain pentane? Explain your reasoning.

(ii) The table shows the enthalpy changes of combustion of hexane and heptane.

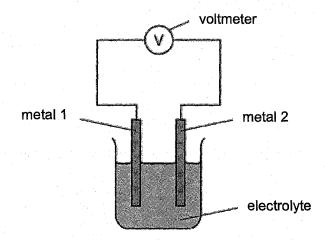
name	formula	enthalpy change of combustion / kJ/ mol
hexane	C ₆ H ₁₄	-4163
heptane	C ₇ H ₁₆	-4817


Using the data given, estimate the enthalpy change of combustion in kJ/mol of octane, C_8H_{18} . Explain the method you use to arrive at your answer.

(c) Some students studied the graph below that shows the amount of fossil fuel burned in the world between 1960 and 2010.

(i)	One student says that the amount of fossil fuels burned has increased by the same amount every ten years.				
	Is the student correct? Use data from the graph to justify your answer.				
	[1]				
(ii)	Another student says that it is very difficult to estimate the amount of fossil fuel we will use in 100 years' time. Suggest reasons the student could give to justify this statement.				
	re:				

(iii) The graph below shows the changes in average global temperature from 1960 to 2010.

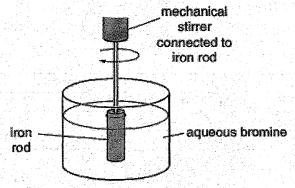

Describe the link between the trends shown in the graphs in Fig 3.1 and Fig 3.2.

7

[Total: 8]

- A4 The diagram shows a simple cell, with two different metals as electrodes dipped in dilute nitric acid. A student did an experiment using the simple cell below.

 The voltages were recorded in the table.
 - If the voltage measured is positive then metal 2 is more reactive than metal 1.
 - If the voltage measured is negative then metal 1 is more reactive than metal 2.


		metal 2				
		beryllium	cobalt	nickel	silver	vanadium
	beryllium	0.0 V	-1.6 V	-1.6 V	not measured	-0.7 V
metal 1	cobalt	a transfer	0.0 V	0.0 V	-1.1 V	0.9 V
	nickel			0.0 V	-1.1 V	0.9 V
	silver				0.0 V	2.0 V
	vanadium	n of the Bullion	in the state of the	1000		0.0 V

(a) (i)	In the simple cell containing nickel and silver, it was observed that the electrolyte slowly turned pale green. Write the ionic equation to explain the colour change.					
(ii)	What happened to the mass of the nickel electrode?	[1]				
(b) (i)	Using the data given, state the most reactive metal in the ta	[1]				
(e) (i)	Explain your reasoning.	abic above.				
	Predict the voltage produced by a simple cell with berylliun	[2]				

as metal 2.

(ii) Briefly describe one simple experiment the student can do which will help I solve the problem in c(i) .	r.
solve the problem in c(i).	im to
성격장 경기 회사 회사 회사 전환 경기 전체 전체 기가 하는 것 같아.	

A5 The rate of reaction of iron with aqueous bromine is determined by using the apparatus shown below.

The iron is removed at regular intervals. It is washed, dried and then weighed. The iron is then replaced in the solution.

The experiment is repeated twice, each time with a different concentration of aqueous bromine at room temperature, 25 °C. The results are shown in the table below.

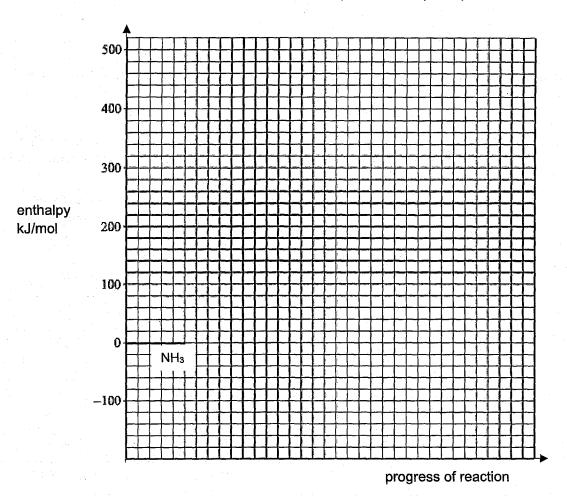
Experiment	concentration of aqueous bromine mol/dm³	speed of reaction mg iron reacted/min
1	0.050	9.2
2	0.10	18.1
3	0.15	27.2

(a)	Describe how and explain why the speed of this reaction changes with	
	concentration of bromine.	-
	수 있는 경기에 함께 생각하고 있다면 하면 하는 것은 말로 하는 것은 것이 되었다. 이 것은 말로 하는 것은 것은 것은 것이다. 	
		•

	(1) (1)	bath to 15°C.
		Predict the speed of reaction, with appropriate unit[1]
	(ii)	Using collision theory, explain your answer in (b)(i).
		[2]
	(c)	Suggest another method for measuring the speed of this reaction.
		[1]
		[Total: 6]
A 6	fro atr pa the	nmonia, NH ₃ , is a colourless, pungent-smelling gas which has been known to man am the beginning of recorded time. Chemists have discovered a novel way of 'fixing' mospheric nitrogen (converting nitrogen gas into its compounds). Moist nitrogen is ssed over a TiO ₂ plate which has been coated with other chemicals. The nitrogen is bught to react with moisture in the air at room temperature and pressure to form monia.
		possible equation for the reaction is given below.
		$5N_2(g) + 6H_2O(g) \iff 4NH_3(g) + 6NO(g) \Delta H = +1808 \text{ kJ/mol}$
	(a) (i)	Explain why there are only a few reactions that 'fix' nitrogen.
		[2]
	(ii)	Suggest and explain one advantage and one disadvantage of the process given in the equation above as a method of making ammonia compared with the Haber process.
		,.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

10

- **(b)** 1.20 dm³ of ammonia gas was dissolved in water to form 200 cm³ of aqueous alkali at room temperature and pressure.
 - (i) Calculate how many moles of NH₃(g) was dissolved in water.


[1]

- (ii) Write the equation for the neutralisation of aqueous ammonia, NH₃(aq) by dilute sulfuric acid.
- (c) The decomposition of ammonia is represented by the following equation.

$$2NH_3(g) \implies N_2(g) + 3H_2(g) \Delta H = +92 \text{ kJ/mol}$$

The activation energy, E_a for the uncatalysed reaction is 335 kJ/mol. The activation energy, E_a " for the reaction when tungsten is used as a catalyst is 163 kJ/mol.

(i) On the grid provided on page 12, draw a **labelled** energy profile diagram for the uncatalysed and catalysed reactions. [3] Include the necessary information given.

		**********	*******	************	**************************************	************	*********
)	State the				uncatalyse		

Section B

Answer all three questions in this section.

The last question is in the form of an either/or and only one of the alternatives should be attempted.

B7 Composition of sea water

The Earth's ocean holds about 1.5 x 10¹⁸ tonnes of water, which in turn contains 0.05 x 10¹⁸ tonnes of dissolved salts. The table below shows eight most common jons in the sea.

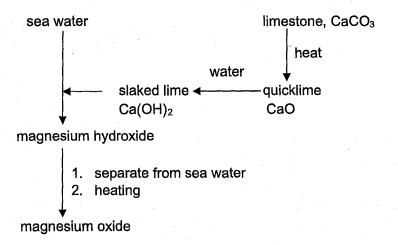
ion	% by mass of total dissolved solids	concentration in mol/dm ³		
Chloride, CI	55.04	0.535		
Sodium, Na+	30.42	0.457		
Sulfate, SO ₄ ²⁻	7.69	0.028		
Magnesium, Mg ²⁺	3.91	0.056		
Calcium, Ca ²⁺	1.16	0.010		
Potassium, K+	1.10	0.0097		
Carbonate, CO ₃ ²⁻	0.41	0.0023		
Bromide, Br	0.19	0.00081		

The dissolved ions in the sea form an essentially free source of materials to anyone with access to the sea. Evaporation of sea water produces sodium chloride and potassium chloride. The two other elements that can be obtained from sea water are bromine and magnesium.

Uses of Magnesium

Magnesium is the lightest structural metal used today, some 30% lighter than aluminium. Magnesium is the third most used metal in construction (after iron and aluminium). Nearly 70% of the world production of magnesium is used to make allovs. One example is Magnox which is an alloy of magnesium with small amount of aluminium and other metals.

Extraction of magnesium


The first stage in the production of magnesium is to mix the sea water with a slurry of calcium hydroxide. This precipitates magnesium hydroxide.

This reaction can be represented as follows.

 $Mg^{2+}(aq) + Ca(OH)_2(aq) \rightarrow Mg(OH)_2(s) + Ca^{2+}(aq)$

13

The flow chart summarises the process mentioned

Conversion to magnesium chloride is achieved by heating the oxide, mixed with carbon, in a stream of chlorine at a high temperature in the furnace.

$$2MgO(s) + C(s) + 2Cl_2(g) \rightarrow 2MgCl_2(s) + CO_2(g)$$

The resulting anhydrous magnesium chloride is fed into electrolytic cells. A schematic diagram of the electrolytic cell is shown below in Fig 7.1

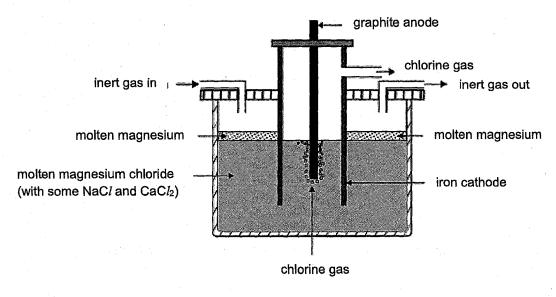


Fig 7.1

The design of this cell considers the following properties of both magnesium metal and magnesium chloride:

- molten magnesium reacts vigorously with oxygen
- at the temperature of molten magnesium chloride, magnesium is a liquid
- molten magnesium has a lower density than molten magnesium chloride and forms a separate layer on the surface.

(a)	Name the most abundant ionic compound in sea water and determine the effective concentration of this compound in mol/dm ³ .	
		[4]
		[1]
(b) (i)	From the information given, deduce the trend in solubility of the Group II metal hydroxide as the proton number increases.	
		٠.
		[1]
(ii)	Calculate the mass of magnesium hydroxide precipitated when an excess of calcium hydroxide is added to 1000 dm³ of sea water.	[2]
	and the second of the second o	
(c) (i)	Write an ionic equation for the reaction at the cathode in the electrolytic cell.	
		[1]
		Ľ .
(ii)	How does the design of the cell shown in the Fig 7.1, take into consideration the reaction of molten magnesium with oxygen?	
		[1]
(d)	Electrolysis is an expensive process as high consumption of energy is needed.	
	Using the information given, what is being done to lower the cost in industrial	
	process?	

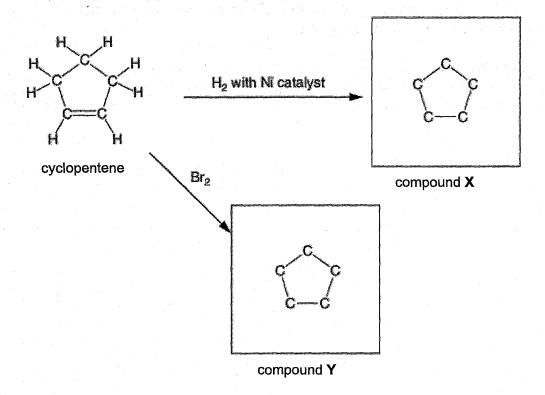
	How would the products of electrolysis be affected? Explain your answer. Write an ionic equation to support your answer.	
		• •
		[3
f)	State an example of recycling that is given in the information.	
		•••
		. [1]
g)	The aluminium atoms in Magnox form a metallic structure with magnesium.	· ['.
9)	The figure below represents a simple illustration of the bonding in Magnox.	
	Use your knowledge of atomic structure and metallic bonding to label the boxes.	[1
	buxes.	۲,
****	ion (2+) (2+) (2+)	
micoronim		
	$\begin{pmatrix} 2+ \\ 2+ \end{pmatrix} \begin{pmatrix} 2+ \\ 3+ \end{pmatrix} \begin{pmatrix} 3+ \\ 3+ \end{pmatrix}$	

[Total: 12]

[1]

B8 (a)	A student reacted together an alcohol and a carboxylic acid under appropriate
	conditions to produce an ester.
- 100	A sweet smelling organic liquid, Q, with the empirical formula C ₂ H ₄ O was produced.
	The M _r of Q was found by experiments to be 87.5.

(i) What is the molecular formula of **Q**? Show the necessary calculation.


(ii) In the boxes below, draw the structural formula of **two** isomers with this formula that are **straight chain** esters. [2]

A sample of **Q** was heated with aqueous sulfuric acid. The product obtained was a mixture of the original alcohol and carboxylic acid. This mixture was heated under reflux with acidified potassium manganate(VII) to give a **single** product, **R**. The product, **R**, was collected and subjected to the following tests:

- A sample of **R** gave no reaction with aqueous bromine.
- A second sample of R gave an effervescence with sodium carbonate.
- A third sample of R is completely miscible with water.

(III) VVI	nat is the identity of	single organic co	mpouna R ?		
					r 4 1
	*****************			*****************	[

- (b) Cyclopentene is a cyclic alkene with the formula C₅H₈. It is a colourless liquid with a petrol-like odour. It is used as a monomers for synthesis of plastics.
 The figure below shows some reactions involving cyclopentene
 - (i) Complete the partial structures of compounds **X** and **Y** which are the products of the reactions. [2]

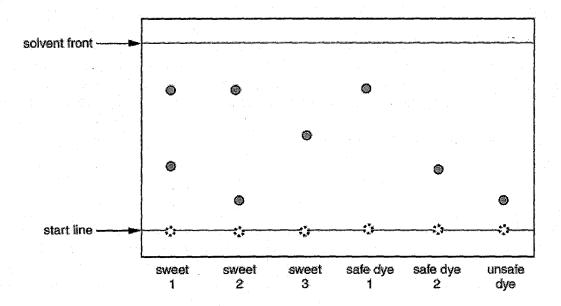
(ii) Write a balanced chemical equation to show the reaction between cyclopentene and aqueous bromine.

.....[1]

(iii) Cyclopentene can be polymerised to give poly(cyclopentene). Draw a section of poly(cyclopentene) to show two repeat units. [1]

B9 Either

Aqueous iron(II) bromide is a pale green solution containing iron(II) ions and bromide ions. When chlorine is passed into aqueous iron(II) bromide, the colour of the solution changes from pale green to orange-red.


When the orange-red solution is heated, it gives off a brown vapour, leaving a yellow solution **S**. The brown vapour forms a dark orange liquid **T** on cooling. When ethene gas is bubbled into **T**, the dark orange colour disappears. Sodium hydroxide solution is added to solution **S** and a reddish brown precipitate was obtained.

(a) (i)	Name liquid T.	[1]
(ii)	Draw 'dot-and-cross' diagram to show the electron arrangement in T.	
	Show only the outer electrons.	[1]

(b)	Name the yellow compound present in solution S.	
		[1]
(c) (i)	Construct a balanced chemical equation for the reaction in which S and T are f	ormed.
		[1]
(ii)	In this reaction in which S and T are formed, name the oxidising agent. Explain your answer, using electron transfer .	

		ı

(d) A student uses chromatography to analyse the food dyes used in a packet of sweets. The packet contains three different coloured sweets. He tests one sweet of each colour. He uses two known safe food dyes and one known unsafe dye as references.

The chromatogram below shows his results.

)	The student looks at the results and makes this statement: "The results show that it is possible that two of the sweets contain an unsafe dye." Explain how the results of the chromatogram support the student's conclusion.								
		. **							
							[

(ii) Calculate the R_f value of the unsafe dye given in the chromatogram above.

[1]

(iii) The student also uses chromatography to identify the flavourings used in the sweets. He sprays his chromatogram with a locating agent. Why does he need to use a locating agent?

B9 Or

Both calcium and barium are elements in Group II of the Periodic Table. The trend of the reactivity of the elements in Group II is similar to that in Group I. Like Group I elements, calcium and barium form salts with the halogens.

The salt, calcium chloride, $CaCl_2$, can be made by different reactions. A student prepared hydrated calcium chloride by carrying out the following experiment.

Step	The student added an excess of a solid calcium compound, X , to dilute hydrochloric acid. The mixture fizzed as the solid reacted.	
Step	The student filtered the mixture to give an aqueous solution of $CaCl_2$.	
Step	On evaporation, colourless crystals of hydrated calcium chloride were formed	1.
(a)	Why is calcium chloride an example of 'salt'?	
		[1]
(b)	A friend of the student suggested that solid X was calcium oxide. State one reason why the student's friend was incorrect and suggest a possible identity of solid X .	
		••
		[2]
		[~]
(c)	Hydrated calcium chloride has a molar mass of 219 g/mol.	
	Determine the formula of hydrated calcium chloride. You must show your working.	[2]

****************				,		********
				********	***********	[2
				-	•	
			is correct			
Sive two reasons	willy the ou	nor student	10 0011000			
*******************						•••••
	************			••••••		********
				•••••		[
	The student decide of dilute sulfuric action of the salt, in the salt,	The student decided to prepa o dilute sulfuric acid . Anoth prepare the salt, barium sulfa Give two reasons why the ot	The student decided to prepare barium so o dilute sulfuric acid . Another student so prepare the salt, barium sulfate. Give two reasons why the other student	The student decided to prepare barium sulfate, BaS o dilute sulfuric acid . Another student said this me prepare the salt, barium sulfate. Give two reasons why the other student is correct.	The student decided to prepare barium sulfate, BaSO ₄ , by addional of dilute sulfuric acid. Another student said this method should brepare the salt, barium sulfate. Give two reasons why the other student is correct.	Give two reasons why the other student is correct.

End of paper

	5	∾:	¥	Jen m	4	4	2	neon	8	∞	Ar	uo Cre	€	x	*	knypton	\$	あ	æ	xenon 131	w W	8 &	nadon	ſ				
	 				***************************************	G	LL.	fluorine	19	17	ಠ	chlorine	S.5.5	જ્	ത്	bromine	8	SS S	,	iodine 127	94	₹	astatine	1				
	>					8	0	oxygen	16	16	တ	anifor	35	ষ্ঠ	တိ	selemium	2	25	P	tellurium 128	2 2	5 £	notonium	-	116	2	fivermonium	1
	>				-	~	z	nifrogen	14	15	۵.	smoudsoud	5	8	As	arsenic	75	ক	යි	antimony 122	25	3 ič	hiemith	209		:		
***************************************	<u>→</u>					မှ	ပ	carbon	12	44	Ö	silicon	83	8	Ů	germanium	22	ස	5	\$ \$	2 6	3 6	t ea	207	114	ir	flerovium	1
						ις.	ω	potou	*	13	₹	aluminium	27	ਨ	eg O	gallium	٤	64	E	indium 445	2 2	5 F	thallism.	204				
***************************************										J,				೫	5	Zinc	65	48	ਲ	cadmium 113	7 00	3 5	200	201	112	5	coperniclum	1
***************************************														প্র	ਠੋ	seddoo	64	47	Å	silver	2 5	ρ×	3 5	197	111	2	roentgenium	1
9														8	2	nicket	නු	46	2	palladium	2 8	۵ 9	- Latinization	195	110	ദ്	darmstadilum	1
Crond		***************************************												27	ප	copall	8	45	듄	milpou	301	<u> </u>		197 192	109	¥	meilnerlum	
		+	I	hydrogen	, _							, 		82	n e	<u>s</u>	22	44	2	ruthenium	2 5	ღ გ	3	190 190	108	£	hasslum	1
				******	**********)								25	Z	mandanese	K	43	ည	technetium		ပ င်) 2	menium 186	107	8	bohrium	1
		***************************************				mbar		······································	Jass					24	Ö	chromium	23	42	9	molybdenum	95	4 5	*	tungsten 184	106	တ္တ	seaborgium	
		***************************************			Kev	aroton (afamic) number	mic sumh	name name	relative atomic mass								ភ	+				•		tantatum 181	1		dubnium	
		***************************************				proton (200		relativ					22	 =				7	zirconium	56	2	Ē	hafnium 178	104	ă	Rutherfordium	
	***************************************	***************************************				1				!				21	i č	erandium	45	30	>	yttrium	88	57 - 71 Laborated	entol lean lead		89 – 103	actinoids		
	_					-	. d	Pon diam	o de la constante de la consta	, [2 5	Magnesium	75	30	3 8	*********		┪~				**********		barium 137	T			
	-	-				6	» <u>:</u>	J		* *	= 5			1			98	100	ි සි	ubidium	8	18	ප	caesium 133	367	ù	rancium	_

70 71			_			m nobelium lawren	1
8	E	thulium	169	101	N N	mendelevium	ı
88	Ш	erbium	167	100	ᇤ	fermium	Ĭ
67	욷	holmium	165	86	យ	einsteinium	ı
99	රි	dysprosium	163	88	ರ	californium	ı
65	₽	terbium	128	97	英	berkelium	1
64	8	gadolinium	157	96	క్	curium	i
		٠		8		e**	1
62	ES.	samanum	120	28	ā	plutonium	1
61	£	promethium	J	93	- QV	neptunium	ļ
9	2	neodvinium	144	65	=	uranium	238
29	ά	praseodymam	141	6	20	protactinium	2
58	ථ	wijim v	140	8	; <u>F</u>	Horium	232
57	<u> </u>	Militariim	130	g	A	actinium	

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

actinoids

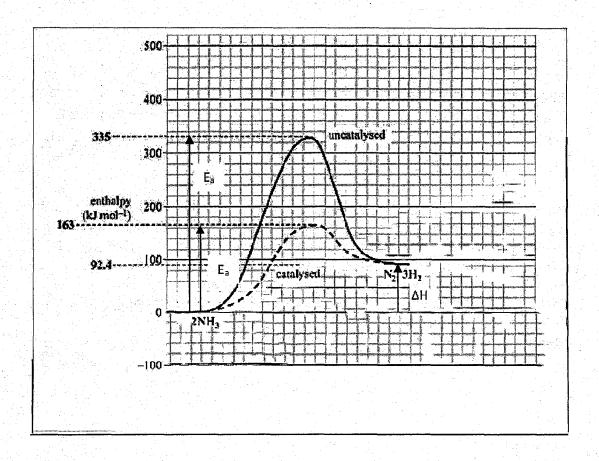
lanthanoids

2018 GCE O Prelim sec 4E Chemistry 6092 Paper 1

Answer & mark scheme

No.	Ans	Remarks
1	D	(A) A boiling water bath has a temperature of 100°C, so if heat over water bath,
		CuSO ₄ .H ₂ O obtained (see eqn)
		(B) This will convert hydrated copper(II) sulfate to the anhydrous form.
		(C) Same as (B)
2	Α	(See QA notes)
3	D	X has sulfate ion reacts with barium ion to form insoluble barium sulfate. This
		is not the reaction of the hydrogen ion in the acid.
4	В	Both aluminium ion and zinc ion forms white ppt which dissolves in excess aq
	1 .	NaOH giving colourless solution. Calcium ion forms white ppt that does not
		dissolve in excess aq NaOH.
5	В	
6	С	(add up nucleon no. given in the options and compare to 46)
7	D	(write down electron arrangement of ions given in the option and compare)
		Electron arrangement for:
		Ca ²⁺ 2,8,8 Cl ⁻ 2,8,8
8	D	(compare no. of protons and no. of electrons)
	1 1 1	X: 9 protons, 10 electrons so X is negative ion
	}	Y: 17 protons, 18 electrons, so Y is negative ion
9	В	(see the column for ability to conduct electricity in solid and in aq state)
10	С	(compare with N which is in Group V, compound of N and H is NH ₃ , so
		compound of P and H is PH ₃ Check the no. of white dots which represent
		hydrogen atoms)
11	В	Mass of $S = \underline{no. of S atom x Ar of S} x mass of sample$
		Mr
12	В	
13	D	Mass of calcium carbonate in the chalk = 0.226 x 100 = 22.6g
		% purity = 22.6 / 23.0 x 100 = 98.3%
14	D	(compare the charge of the positive ion, eg Na+ + e → Na)
15	С	Oxygen and hydrogen gas given off (see volumes of gas produced), so
		hydroxide ion and hydrogen ion discharged.
		In (1), copper(II) ion discharged instead of hydrogen ion.
		In (3), chloride ion discharged instead of hydroxide ion due to higher [Cl-]
16	D	As reaction progresses:
]	(A) Concentration of acid drops
		(B) More carbonate used
		(C) More gas produced
17	D	Reaction time, t = 1 / rate = 1 / 0.2 = 5.0 s
18	D	(2) is respiration which is exothermic. (see glucose react with oxygen.
		Both (1) and (3) are combustion of fuel so exothermic

No.	Ans	Remarks
19	D	(assign oxidation numbers)
		In FeTiO ₃ , oxidation number of Ti is +4, in TiO ₂ , oxidation number is +4
20	Α	Sodium chloride is neutral, does not react with hydrogen ions in the acid, so
		pH unchanged
21	C	Hydrochloric acid is strong acid, total ionization, ethanoic acid is weak acid,
		partial ionization.
22	A	Carbon dioxide is only produced in 2 nd reaction. Salt is produced in 1 st
		reaction.
23	D	(Recall properties of ammonium compound, apply this to methyl ammonium
		chloride) when ammonium chloride react with aq NaOH, ammonia gas, salt
		(sodium chloride) and water produced.
24	С	With calcium carbonate, soluble salts will be calcium chloride, calcium nitrate.
		NOT calcium sulfate as it is insoluble
		With copper(II) carbonate, soluble salts will be copper(II) chloride, copper(II)
	3,50	sulfate, copper(II) nitrate
25	В	Barium sulfate is insoluble, so need two soluble starting reagents. Barium
		carbonate is also insoluble.
		Add barium carbonate to dilute hydrochloric acid to form soluble barium
	1	chloride, before reacting with the second soluble reagent.
26	В	Copper will not react, remain as residue. Zinc react with dil hydrochloric acid
		to form colourless solution zinc chloride.
27	В	(A) Lead(II) oxide will be reduced by hydrogen gas to form lead and water
		(B) Magnesium is higher up in the reactivity series, so hydrogen is not able to
		reduce magnesium oxide
		(C) Carbon react with oxygen to form carbon dioxide
		(D) Sulfur react with oxygen to form sulfur dioxide
28	Α	Both P and S are non-metals, so form acidic oxides which dissolves in water to
		form an acid.
29	С	Going down group II, the carbonate becomes more difficult to decompose.
		Both magnesium carbonate and calcium carbonate decomposes, but not
		barium carbonate.
30	C	(2) magnesium will displace silver from silver nitrate
		(4) magnesium will react with acid to form salt and hydrogen
31	D	Magnesium is a more reactive metal, so loses electron more easily.
32	Α	Rusting uses up oxygen. Volume of oxygen used = 150 - 122 = 28 cm ³
		% of oxygen = 28 / 150 x 100 = 18.7%
33	Α	Chlorine atom reacts with the ozone molecules, so choose the option with
		largest no. of chlorine atoms.
34	Α	Y is C ₆ H ₁₄ , so it is hexane
35	A	Absence of uv light, so no substitution occurs
36	В	Cyclobutene – C ₄ H ₆ , cyclopentane – C ₅ H ₈ , cyclohexene – C ₆ H ₁₀
37	В	The oil with the lowest bp will have the largest no. of C=C bonds.


No.	Ans	Remarks
38	D	It has C=C so will react with aq bromine
1.		With the -COOH, it is an organic acid, soreact with metal and alcohol
39	D	(1) True, Hydrogen chloride gas produed
	1	(2) True, no more C=C in addition poymers
		(3) True, only the polymer is produced
40	В	

Sec 4E GCE O Prelim Chemistry 6092 Answers & mark scheme

The paper was

) P - box 2; Q - box 9; R - box 3; S - box 13	T – box 6	[1] each
(b) (i)			
) metallic elements have fewer outer / valence electrons. [•	
(c) p	periodicity is a repeating pattern (across different periods) [1]	
			[Total: 8]
A2a(i)		nt bonds;	[1]
	Both have giant lattice (or giant molecular)		[1]
ii.	In diamond every carbon atom is bonded to four other ca	rbon atoms, bi	ut in graphite,
	each carbon atom is bonded to 3 atoms,		
	diamond has a tetrahedral arrangement of atoms but gra	phite has alay	ered
	аптangement;		
	graphite has delocalised electrons unlike diamond which	i do not	[any 2]
b.		0 00 404	
	No. of mole of $CO_2 = 60 \times no$. of mole of $C_{80} = 0.070$	8 x 60 = 4.24	[1]
- (1)	Mass of C ₆₀ = 4.24 x 44 = 187 g		[1]
c(i)	BN		[1]
ii.	weak Van der Waal (or intermolecular) forces of attracti	on between la	
	layers of atoms can slide over each other.	than atoms	[1]
iii.	graphene has many strong covalent bond between car	DOIT ALOITIS.	[1]
			[Total: 10]
АЗа.	$\Delta H = -24 \times 120 = -2880 \text{kJ/mol}$ [reject if no unit and sign	1	- [1]
b(i)	Yes, same(not similar) type bond and same number of b		[1]
ii.	difference in ΔH = 4817 - 4163 = 654 kJ		[1]
	from hexane to heptane, increase in one CH2 group		• •
	from heptane to octane, same increase of one CH2 group)	
	so ΔH for octane = -(4187 + 654) = -5471 kJ/mol		[1]
c(i)	No, quote any two data that shows a difference for every	ten years.	[1]
	Egs of data that can be used: 1960 -70, 2000 millions of	tons bigger th	at 1970 to 80
	which has increase 1200 millions of tons, or 1990 - 2000	O, increase of	800 millions of
	tons smaller than 2000 - 2010 increase of 1300 millions	of tons.	
ii.	alternative / renewable forms of energy being used;		[1]
	fossil fuel running out.		[1]
iii.	As the amount of fossil fuel burnt increase, the increase	average global	
	higher.		[1]
			[Total: 8]

b(i)	beryllium;	[1]
	It has the largest voltage with cobalt/nickel	[1]
ii.	-2.7 V (V + Ag) + (V + Be)	[1]
c(i).	both nickel and cobalt has the same reactivity	[1]
ii.	Place a piece of nickel in cobalt nitrate solution. If nickel displaces cobalt, i	nickel is
	more reactive than cobalt.	[1]
		[Total: 7]
A5a.	As concentration increases, the speed of this reaction increases. When	
	concentration increases, there is greater number of particles in the same vo	olume [1]
	Particles are closer to each other so frequency of effective collision increas	
b(i)	4.5 – 5.0 mg iron reacted/min (units needed)	
ii.	As temperature drops, particles loses energy, move slower.	[1]
···	Number of particles with energy equal to or greater than activation energy of	
	Frequency of effective collision decreases.	b - : . [·]
C.	measure the colour intensity of aqueous bromine.	[1]
٠.	modelate the colon interiors of aquicous profiline.	[Total: 6]
		[rotal. o]
A6a(i)	N≡N triple bond;	[1]
	A lot of energy is needed to break the (strong covalent) bond	[1]
ii.	Advantage: lower temperature / lower pressure so save energy, lesser for	
	water, instead of hydrogen, water is used, so cheaper	[1]
	Disadvantage: nitrogen oxide produced, reacts with oxygen to form	1.13
	nitrogen dioxide which contribute to acid rain / an air pollutant	[1]
h/i)	no. of moles of ammonia = 1.20 / 24 = 0.05	[1]
b(i)		
(ii)	$2NH_3(aq) + H_2SO_4(aq) \rightarrow (NH_4)_2SO_4(aq)$ (state symbols not need	u c u)
-(I)	[1]	Idea again1
c (i)	correct shape and location for both graphs	[1m each]

- b(ii) Tungsten: with it, the reaction has a **lower activation energy**; which means the **higher** proportion of collisions that are successful between ammonia molecules will be higher (not more collisions, both points needed) [1]
- (iii) Ea = 243 kJ/mol (units needed) [1]

[Total: 11]

Section B

- B7a. sodium chloride, $Conc(mol/dm^3) = 0.457$ (sodium ion is the limiting reactant) [1]
- b(i) as the proton number increases, the group II metal hydroxide becomes more soluble [1]
- ii. no. of mol of Mg^{2+} in 1000 dm³ sea water = 0.056 x 1000 = 56 mols no. of mol of $Mg(OH)_2$ = no. of mol of Mg^{2+} = 56 mol
- mass of Mg(OH)₂ = 58 x 58 = 3248 g c(i) Mg²⁺(I) + 2e \Rightarrow Mg(I) [1]
- ii an inert gas, instead of air, is blown through the cathode compartment above molten magnesium [1]
- d. sodium chloride and calcium chloride is added to molten magnesium chloride to lower the melting point, saving energy.
- e. at the anode, silver will be oxidised instead of chloride ion. Silver ion would be produced rather than chlorine at the anode.
 [1] Ag(s) → Ag⁺(I) + e
 - the silver ion would move to the cathode, get discharged and silver is produced instead

- f. chlorine gas produced during electrolysis is used to convert magnesium oxide to magnesium chloride at the furnace. [1]
- g. magnesium ion, aluminium ion, delocalised electron [all three correct -1]

[Total: 12]

[1]

B8a(i) relative mass of $C_2H_4O = 44$

$$M_r \sim 88$$

$$N = 88 / 44 = 2$$

Relative molecular formula is C₄H₈O₂

ii. ethyl ethanoate

H O H H H-C-C-O-C-C-H H H H H H O H | | || | H - C - C - C - O - C - H | | H H H

Methylpropanoate

[any 2]

iii. ethanoic acid b(i)

H C C H

Compound X

compound Y

[1m for each, all H atoms needed]

 $C_5H_8 + Br_2 \rightarrow C_5H_8Br_2$

[1]

[1]

ii. iii.

[Must have at least two repeat units and the free bonds at the end. All carbon-carbon bonds in the polymer chain must be shown.]

B9 E	Either - I nefice a chost of the control of the least of the	
a(i) ii	(dot-cross diagram of bromine molecule, Br x Br x x	[1] [1]
b. c(i)	iron(III) chloride $3Cl_2 + 2FeBr_2 \rightarrow 2FeCl_3 + 2Br_2$	[1]
U (1)		
ii.	chlorine	[1]
	chlorine removes electrons from iron(II) ion and bromide ion.	[1]
d(i)	sweet 2 contains an unsafe dye; unknown dye in sweet 3 does not match up with a safe dye	[1] [1]
ii.	0.8 / 5.2 = 0.154 (or 0.15)	[1]
iii.	to see the spots / make the colourless spots visible (ignore 'find / identify the spots')	[1]
		[Total: 10]
B9 (on the state of the	
a.	Hydrogen ion / H+ ion in acid replaced by calcium ion / Ca2+ ion or metal	
b.	The reaction produced a gas / calcium oxide does not produce a gas in re	
	acid. calcium carbonate.	[1] [1]
C.	Mr of $CaCl_2 = 111$.	
		141
	No. of water molecules = <u>219 – 111</u> 18	[1]
	= 6	
	Formula: CaCl ₂ .6H ₂ O [6 and CaCl ₂ .6H ₂ O score the 2 nd mark, allow no	
	CaCl ₂ 6H ₂ O]	[1]
d.	Calcium is oxidised as oxidation state of calcium increases from 0 to +2 Chlorine is reduced as oxidation state of chlorine decreases from 0 to -1	[1] [1]
e	barium is very reactive metal, so react violently with the acid, reaction not barium sulfate formed is insoluble, so form a barrier on barium, preventing	safe; [1]
	reaction.	[1]
(ii)	2, 8 , 18, 18, 8	[1]
		[Total:10]