| Additional ma | terials: Multiple Choice Answer Sheet | | 1 hou | |-------------------|---------------------------------------|-----------------|---------------| | Paper 1 Multipl | | | 11 May 2018 | | Science (Phy | /sics / Chemistry / Biology) | | 5076, 5078/01 | | CLASS | | INDEX
NUMBER | | | CANDIDATE
NAME | | | | ### **READ THESE INSTRUCTIONS FIRST** Write your name, class and register number in the spaces provided. Write in soft pencil. Do not use staples, paper clips, glue or correction fluid. There are **forty** questions on this paper. Answer all questions. For each equation there are four possible answers A, B, C and D. Choose the **one** you consider correct and record your choice in **soft pencil** on the separate Answer Sheet. Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any rough working should be done in this booklet. A copy of the Data Sheet is printed on page 8. A copy of the Periodic Table is printed on page 9. The use of an approved scientific calculator is expected, where appropriate. This document consists of 9 printed pages, including the cover page. ### **Multiple Choice Questions (40 marks)** Answer all questions. - A student mixes 25 cm³ samples of acid solution with different volumes of alkali solution. At every 30 seconds, the student measures the change in temperature. Which piece of apparatus is **not** needed? - gas syringe Α - В measuring cylinder - C thermometer - D stop watch - A separation technique is shown below. Which pair of mixtures can best be separated by the above technique? - Α aqueous sodium chloride and aqueous copper(II) sulfate - В dilute hydrochloric acid and aqueous potassium hydroxide - С magnesium carbonate and dilute nitric acid - D zinc oxide and aqueous calcium nitrate - 3 The table shows the melting and boiling points of four substances. Which of the following substances contains particles that are sliding past each other at room temperature (25 °C)? | | melting point / °C | boiling point / °C | |---|--------------------|--------------------| | Α | – 110 | – 55 | | В | - 20 | 15 | | С | 0 | 100 | | D | 744 | 1214 | **4** Aqueous sodium hydroxide is added to aqueous salt Z and a white precipitate formed. The white precipitate dissolved when excess sodium hydroxide is added. When this reaction was completed, aluminium foil is added to the solution. The gas given off turned damp red litmus blue. What is aqueous salt Z? - A calcium nitrate - B lead(II) sulfate - **C** zinc nitrate - D zinc sulfate - **5** The symbols for two ions are shown below. ²¹₁₁Na⁺ Which of the following statements is correct? - **A** Both the ions contain the same number of electrons. - **B** Both the ions contain the same number of protons. - **C** The fluoride ion contains more electrons than the sodium ion. - **D** The sodium ion contains more neutrons than the fluoride ion. - 6 Statement 1: Non-metals share electrons to attain electronic configuration of a noble gas. Statement 2: Non-metals share electrons to form covalent compounds. Which of the following is true? - A Both statements are correct, and statement 2 explains statement 1. - **B** Both statements are correct, but statement 2 does not explain statement 1. - **C** Statement 1 is correct but statement 2 is incorrect. - **D** Statement 2 is correct but statement 1 is incorrect. - 7 Which change occurs when magnesium bonds with chlorine? - A Chlorine loses seven electrons to form a noble gas configuration. - **B** Chlorine shares electrons with magnesium to form a molecule of magnesium chloride. - C Magnesium gains two electrons for form Mg²⁺ ions. - **D** Magnesium loses two electrons to form Mg²⁺ ions. **8** 50 cm³ of nitrogen gas reacts with 50 cm³ of oxygen gas to produce nitrogen dioxide. The chemical equation for the reaction is given below: $$N_2(g) + 2 O_2(g) \rightarrow 2 NO_2(g)$$ What are the volumes of the gases remaining at room temperature and pressure? | | | volume of gases / cm ³ | | |---|----------|-----------------------------------|------------------| | | nitrogen | oxygen | nitrogen dioxide | | Α | 0 | 0 | 100 | | В | 0 | 25 | 50 | | С | 25 | 0 | 50 | | D | 25 | 25 | 50 | **9** 20 g of magnesium oxide, MgO, reacts completely with 500 cm³ of dilute nitric acid. The chemical equation of the reaction is as follows: MgO (s) + 2 HNO₃ (aq) $$\rightarrow$$ Mg(NO₃)₂ (aq) + H₂O (l) What is the concentration of the acid used? [relative atomic masses, A_r: O, 16; Mg, 24] - **A** 0.002 mol/dm³ - **B** 0.008 mol/dm³ - C 2 mol/dm³ - **D** 8 mol/dm³ - **10** Which substance below will **not** react with aqueous potassium hydroxide but will react with dilute hydrochloric acid to form a salt and water? - A aluminium oxide - B carbon monoxide - C copper(II) oxide - D nitrogen dioxide - 11 Which pair of reagents can be best used to prepare insoluble magnesium carbonate? | | reagent 1 | reagent 2 | |---|--------------------|---------------------| | Α | magnesium | ammonium carbonate | | В | magnesium chloride | calcium carbonate | | С | magnesium oxide | potassium carbonate | | D | magnesium sulfate | sodium carbonate | 12 Which of the following reactions will have the slowest rate of reaction? - 13 What determines the Group of an element in the Periodic Table? - Α The number of completely filled electron shells. - В The number of electrons in the valence shell. - С The number of electron shells containing electrons. - D The number of protons in the nucleus. - **14** Caesium and potassium are both in Group I of the Periodic Table. Which of the following statements about the elements is correct? - Α Caesium has a higher density than potassium. - Caesium reacts violently with water but potassium reacts explosively with water. В - C Potassium atoms are larger than caesium ions. - D Potassium has a lower melting point than caesium. - **15** Chlorine is in Group VII of the Periodic Table. Which of the following statements is a property of chlorine? - Α It can displace bromine from aqueous sodium bromide. - В It forms a basic oxide. - C It has a darker colour than iodine. - D It is a monoatomic element. **16** The pie-chart shows the composition of pure air. Which of the following rows correctly identifies gases F, G and H? | | F | G | Н | |---|--------------|----------------|----------------| | Α | nitrogen | carbon dioxide | oxygen | | В | nitrogen | oxygen | argon | | С | oxygen | nitrogen | carbon dioxide | | D | water vapour | oxygen | hydrogen | - 17 Which of the following statement(s) is/are true for all metals? - 1 They conduct electricity. - 2 They form basic oxides. - 3 They have high melting points. - 4 They have high densities. - A 1 only - B 1 and 2 only - **C** 1, 3 and 4 only - **D** 1, 2, 3 and 4 - 18 Excess dilute nitric acid is added to brass. Which of the following observations is correct? - A A blue solution is observed. - **B** A colourless solution is observed. - **C** A grey deposit is observed and a blue solution is formed. - **D** A reddish-brown deposit is observed and a colourless solution is formed. ### **19** A metal X reacts as follows: - X + dilute acid → salt + hydrogen gas - X + cold water → no reaction - X + aqueous silver nitrate → silver metal + nitrate of X By comparing X with calcium and silver, which of the following shows the correct order of reactivity of the metals, starting with the least reactive? - A calcium, silver, X - B calcium, X, silver - C silver, X, calcium - D X, calcium, silver - 20 An experiment was set up as shown below to investigate the rate of rusting under different conditions. Which of the following predicts the order of the test-tubes in which rust would first appear? - **A** 1, 2, 3, 4 - **B** 1, 3, 2, 4 - **C** 4, 2, 3, 1 - **D** 4, 3, 2, 1 ### **End of Paper** **Data Sheet Colours of Some Common Metal Hydroxides** | calcium hydroxide | white | |----------------------|------------| | copper(II) hydroxide | light blue | | iron(II) hydroxide | green | | iron(III) hydroxide | red-brown | | lead(II) hydroxide | white | | zinc hydroxide | white | ### www.KiasuExgamPaper.com # The Periodic Table of Elements | _ | |-------|----|-----|-------------|-----|------------------------|---------------|-----------|----------------------|----|----|------------|--------|----|-----|-----------|----|----|----------------|------------|-----|---------|-------------|----------|-----|----------|-----------|---------------|---| | | 0 | 7 - | peliging Te | 4 | 10 | Se | пеоп | 2 | 18 | Ā | argon | 8 | 38 | 조 | krypton | 84 | 54 | × | xenon | 131 | 86 | 쬬 | radon | ı | | | | | | | II | | | | 6 | u. | fluorine | 5 | 17 | õ | chlorine | 35.5 | 35 | ä | bromine | 8 | 53 | П | iodine | 127 | 85 | ¥ | astatine | t | | | | | | | I, | | | | 80 | 0 | oxygen | 16 | 16 | ဟ | sulfur | 35 | 34 | Se | selenium | 79 | 52 | <u>Б</u> | tellurium | 128 | 8 | 8 | polonium | ì | 116 | <u>ک</u> | livermorium | 1 | | | > | | | | 7 | z | nitrogen | 14 | 15 | ۵. | phosphorus | 31 | 33 | As | arsenic | 75 | 51 | Sp | antimony | 122 | 83 | ä | bismuth | 508 | | | | | | | 2 | | | | 9 | O | carbon | 12 | 14 | က | silicon | 28 | 32 | g | germanium | 73 | 50 | S | ŧ | 119 | 82 | 6 | lead | 202 | 114 | ĭ | flerovium | ı | | | = | | | | 2 | Ω | boron | 11 | 13 | Ϋ́ | aluminium | 27 | 31 | g | gallium | 20 | 49 | Ľ | indium | 115 | 81 | ï | thallium | 504 | | | | | | | | | | • | | | | | | | | | 30 | Z | zinc | 92 | 48 | ပ္ပ | cadmium | 112 | 80 | 웃 | mercury | 201 | 112 | ວົ | copernicium | ı | | | | | | | | | | | | | | | 59 | õ | cobber | 64 | 47 | Ag | silver | 108 | 79 | Αn | plog | 197 | 111 | Ba | oentgenium | 1 | | dn | | | | | | | | | | | | | 28 | Z | nickel | 29 | 46 | В | palladium | 106 | 78 | ă. | platinum | 195 | 110 | S | darmstadtium | ı | | Group | | | | | | | | | | | | | 27 | රි | cobalt | 59 | 45 | 돈 | rhodium | 103 | 11 | 1 | iridium | 192 | 109 | ž | meitnerium | 1 | | | | - 3 | hydrogen | - | | | | | | | | | 56 | æ | iron | 56 | 44 | 2 | ruthenium | 101 | 9/ | ő | osmium | 190 | 108 | 뫈 | hassium | ı | | | | | | | | | | | | | | | 52 | Ĕ | manganese | 52 | 43 | ည | technetium | • | 75 | æ | rhenium | 186 | 107 | 듄 | bohrium | 1 | | | | | | | umber | ō | | nass | | | | | 24 | ပ် | chromium | 52 | 42 | W ₀ | molybdenum | | 74 | | | 184 | 106 | Sg | seaborgium | ı | | | | | 1 | Key | proton (atomic) number | atomic symbol | name | relative atomic mass | | | | | 23 | | | 21 | | | | ı | | | | 181 | 105 | 음 | dubnium | ı | | | | | | | proton | ato | | relativ | | | | | 52 | F | titanium | 48 | 9 | Ž | zirconium | 9 | 72 | Ï | hafnium | 178 | 104 | č | Rutherfordium | į | | | | | | • | | | | 1 | | | | | 21 | တ္တ | scandium | 45 | 99 | > | yttrium | 88 | 57 - 71 | lanthanoids | | | 89 - 103 | actinoids | | | | | = | | | | 4 | Be | beryllium | 6 | 12 | ğ | magnesium | | | | | | | | | | 26 | | barium | | 88 | | radium | 1 | | | - | | | | | | | \neg | | | | \neg | | | | | | | | | 22 | | caesium | | 87 | ŭ. | francium | ı | | 71 | 3 | lutetium | 175 | 103 | | awrencium | ı | |-------------|----|--------------|-----|-----------|----|--------------|-----| | 70 | Υp | ytterbium | 173 | 102 | 8 | nobelium k | 1 | | 69 | Ē | thulium | 169 | 101 | Md | mendelevium | 1 | | 89 | ய் | erbinm | 167 | 100 | F | fermium | 1 | | 67 | 운 | holmium | 165 | 66 | Ж | einsteinium | ı | | 99 | 2 | dysprosium | 163 | 86 | ວັ | californium | ı | | 65 | ۵ | terbium | 159 | 97 | ă | berkelium | ì | | 64 | ဗ | gadolinium | 157 | 96 | S | curium | 1 | | 83 | Ш | europium | 152 | 92 | Am | americium | 1 | | 62 | Sm | samarium | 150 | 94 | ď | plutonium | ı | | 61 | Pm | promethium | ı | 93 | ď | neptunium | 1 | | 8 | 2 | neodymium | 144 | 92 | _ | uranium | 238 | | 23 | ፚ | praseodymium | 141 | 91 | Ъа | protactinium | 231 | | 28 | ő | cerium | 140 | 80 | £ | thorium | 232 | | 57 | -B | lanthanum | 139 | 89 | Ac | actinium | ı | | lanthanoids | | | | actinoids | | | | The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.). | CANDIDATE
NAME | | | | |-------------------|-----------|-----------------|-------------------| | CLASS | | INDEX
NUMBER | | | Science (Che | emistry) | | 5076, 5078 / 03 | | Paper 3 | | | 7 May 2018 | | | | 1 ho | ur and 15 minutes | | No additional | materials | | | ### **READ THESE INSTRUCTIONS FIRST** Write your name, class and register number in the spaces above. Write in dark blue or black pen. You may use an HB pencil for any diagrams, graphs, tables or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. The use of an approved scientific calculator is expected, where appropriate. You may lose marks if you do not show your working or if you do not use appropriate units. ### Section A Answer all questions. Write your answers in the spaces provided on the question paper. ### **Section B** Answer any two questions. Write your answers in the spaces provided on the question paper. A copy of the Data Sheet is printed on page 15. A copy of the Periodic Table is printed on page 16. The number of marks is given in the brackets [] at the end of each question or part question. This document consists of **16** printed pages, including the cover page. ### Section A [45 marks] Answer all the questions in the spaces provided. 1 Name the substances needed for the following purposes. | purpose | name of substance | |--|-------------------| | reducing the acidity in soil | | | testing for presence of carbon dioxide gas | | | testing for presence of chloride ions in water | | [3] [Total: 3 marks] 2 The diagrams N, P, Q, R, S and T in Fig 2.1 represent the particles in different substances. Fig 2.1 Use the diagrams N, P, Q, R, S and T to answer the questions below. Which of the following above best represents liquid water? (a) [1] (b) Which of the following above best represents a mixture containing fluorine and chlorine gases? [1] (c) Which of the following above best represents air? [1] (d) Which of the following above best represents neon gas? [Total: 4 marks] [1] 3 The atomic structures of atoms **W**, **X**, **Y** and **Z** are shown below. The elements are found in Period 3 of the Periodic Table. The letters do not represent the elements and only the valence electrons of the elements are shown. | (a) | State | e and explain which group does atom Z belongs to in the Periodic Table. | | |-----|-------|---|---------| | | | | | | (b) | (i) | Write the chemical formula of the compound formed between atoms ${f W}$ and ${f X}$. | [2] | | | | |
[1] | | | (ii) | The compound formed between $\bf W$ and $\bf X$ has a melting point of 1100 °C. In term structure and bonding of the compound formed, explain why it has a high melting point of 1100 °C. | | | | | | | | | | | | | | | |
[2] | | (c) | Expl | ain why atom $oldsymbol{Y}$ is the least chemically reactive as compared to the other atoms. | [4] | | | | | | | | | | | | | | | [1] | [Total: 6 marks] | obta | ined i | furnace reaction is an industrial process used to obtain iron from its ore. The iron susually used to produce stainless steel, an <i>alloy</i> , which is harder and stronger than Stainless steel is an important material in construction building. | |------|--------|---| | (a) | (i) | Define the term, alloy. | | | | | | | (ii) | Apart from its hardness and strength, state another advantage of using stainless stee as an industrial material. | | | | | | (b) | | oon, also known as coke, is added to the Blast furnace reaction for the extraction of iron chemical equation for this reaction is given below. | | | | $2 \operatorname{Fe_2O_3}(s) + 3 \operatorname{C}(s) \rightarrow 4 \operatorname{Fe}(l) + 3 \operatorname{CO_2}(g)$ | | | [rela | tive atomic masses, A _r : C, 12; O, 16; Fe, 56] | | | | mass of carbon required =[3] | | | | i c | | c) | Silicon dioxide, SiO ₂ , is an impurity produced in Blast furnace.
Explain how silicon dioxide is removed from the Blast furnace. | |----|--| | | | | | | | | [2] | | d) | During the production of iron, sulfur dioxide gas is produced. Explain why sulfur dioxide gas produced pose an environmental threat to water bodies. | | | | | | | | | [2] | | | [Total: 9 marks] | | Chlo | rine gas, a member of the halogens, is an element in Group VII of the Periodic Table. | |------|--| | (a) | State two physical properties of chlorine, other than existing as a gas at room temperature and pressure. | | | | | | [2] | | (b) | Explain, using its electronic structure, why chlorine is found in Period 3 of the Periodic Table. | | | | | | [2] | | (c) | Chlorine gas reacts vigorously with hot zinc metal to produce solid zinc chloride. Construct a balanced chemical equation, including state symbols, for the reaction. | | | [2] | | (d) | When chlorine gas is bubbled into aqueous potassium bromide, potassium chloride and bromine solution is obtained. Explain why this reaction occurs. | | | | | | | | | [2] | | | [Total: 8 marks] | | | | 5 6 (a) Metals A, B and C are placed in salt solutions as shown in the table. | metal | result of placing metal in solution of | | | | | | |---------|--|------------------|------------------|--|--|--| | Illetai | salt of A | salt of B | salt of C | | | | | Α | | no reaction | C displaced | | | | | В | A displaced | | C displaced | | | | | С | no reaction | no reaction | | | | | | | Arrange the reactivity of the metals, starting with the least reactive metal. | |----|---| | | [1] | | b) | Explain why carbon can be used to obtain zinc from zinc oxide but not to obtain sodium from sodium oxide. | | | | | | | | | [2] | | c) | Sodium metal is kept in oil to prevent it from corrosion. Explain how the oil prevents the sodium metal from corrosion, stating clearly the conditions that cause the corrosion of sodium. | | | | | | | | | [3] | | | [Total: 6 marks] | 7 The figure below describes the reactions between colourless solution **A** and grey solid **B**. (a) Identify A, B, C, D, E and F. | Λ | | |---------------|--| | $\overline{}$ | | **(b)** Construct a balanced ionic equation for the formation of precipitate **E**. State symbols are **not** required. |
 | |------| | [2] | (c) Explain why grey solid **B** cannot be a metal carbonate. [Total: 9 marks] [6] ### Section B [20 marks] Answer any **two** questions in this section. Write your answers in the spaces provided. | 8 | | ogen, oxygen and argon gases can be extracted from compressed liquefied air (mixture of cible liquids) at –200 °C. | | | | | |---|-----|--|--|--|--|--| | | (a) | (i) | State the separation method used to obtain the gases separately at –200 °C. | | | | | | | | [1] | | | | | | | (ii) | Describe the changes in movement of the air particles as it is compressed and cooled from room temperature to $-200\ ^{\circ}\text{C}$. | | | | | | | | | | | | | | | | [1] | | | | | | (b) | Oxygen is a reactive non-metal. | | | | | | | | Desc | cribe, in terms of the number of electrons gained, lost or shared, what happens when | | | | | | | (i) | an oxygen atom combines with magnesium atom(s). | | | | | | | | | | | | | | | | [2] | | | | | | | (ii) | an oxygen atom combines with fluorine atom(s). | | | | | | | | | | | | | | | | [2] | | | | | _ | | . | | 4.5 | - | | |---|-----|------------------|----------|------------|----------|----------| | 9 | (a) | State two | physical | properties | of coppe | r metal. | | Property 2: | Property 1: | | |-------------|-------------|-------------| | | Property 2: |

[2] | - **(b)** Describe a way to prepare a pure sample of copper(II) sulfate crystals, from copper metal. Use the following information to help you - · copper does not react with dilute acids - copper burns in oxygen to form a black solid, which is copper(II) oxide - copper(II) oxide is insoluble in water - copper(II) sulfate is soluble in water |
 | |------------| |
 | |
 | |
 | |
 | |

4] | (c) 10 g of copper(II) carbonate lumps were reacted with excess 1.0 mol/dm³ hydrochloric acid and the carbon dioxide gas produced was collected. The experiment was repeated again but using excess 2.0 mol/dm³ hydrochloric acid. The graph of the data collected is plotted and shown below. experiment 1: 10 g of copper(II) carbonate lumps with excess 2.0 mol/dm³ hydrochloric acid experiment 2: 10 g of copper(II) carbonate lumps with excess 1.0 mol/dm³ hydrochloric acid | (i) | State why the production | of carbon | dioxide gas | stopped af | ter a period | of time | |-----|--------------------------|-----------|-------------|------------|--------------|---------| | | | | | | | | [1] | Use your knowledge of reacting particles to explain why a higher concentration of acid results in a faster rate of reaction. | | | | |--|--------|--|--| | | | | | | | | | | | [2 |
2] | | | The experiment is repeated using 5 g of powdered copper(II) carbonate and excess 2.0 mol/dm³ hydrochloric acid. Add to Fig. 9.1 the graph you would expect. The original graphs are already included. Label the new graph as 3. Fig. 9.1 [Total: 10 marks] 10 (a) The diagram below shows the atomic radius of the first 20 elements in the Periodic Table. | i) | Use the diagram above to describe the change in atomic radius across the Period and | |----|---| | | down the Group. | |
 |
 | |------|------| |
 |
 | (ii) Describe the change in the character of the elements across Period 3 and how it affects the respective oxides formed. |
 | |--------| | | |
[2 | (b) Lithium, potassium and sodium are Group I elements.State one physical property trend and one chemical property trend of these elements. | physical property trend | | |-------------------------|--| | chemical property trend | | | magnesium and silver in the reactive answer the question. | vity series. You may include a diagram if it helps you to | |---|---| | <u>Diagram</u> | [4] | | | [Total: 10 marks] | | | | Describe a laboratory investigation that can be used to justify the relative positions of iron, **End of Paper** (c) ### **Data Sheet** ### **Colours of Some Common Metal Hydroxides** | calcium hydroxide | white | |----------------------|------------| | copper(II) hydroxide | light blue | | iron(II) hydroxide | green | | iron(III) hydroxide | red-brown | | lead(II) hydroxide | white | | zinc hydroxide | white | ## The Periodic Table of Elements | | 0 | 2 | <u>ф</u> | m 4 | 0 | e | uoe
C | 8 | <u>-</u> | argon
40 | ထ္ | 5 | pton | 7. | 4 | e) | non | 31 | 92 | 문 | uop | ı |--|----|-----|----------|---------------|------------------------|--------------|------------------------------|----------|----------|------------------|-------|-----|-----------|-----|----|--------|------------|-----|---------|-------------|----------|-----|--------------|-----------|---------------|---------------|----|---|-----------|----|----|---|----|-----|----|---|------|-----|-----|---|-----------|---| | | | | | | - | | | + | | | ╀ | | _ | | _ | | | 1 | | | _ | ₹ | | | | 6 | u_ | fluorine
19 | 17 | ö | chlorine
35.5 | 35 | ሟ | bromin | 8 | 53 | П | iodine | 127 | 82 | ¥ | astatin | ١ | IN | | | | 80 | 0 | oxygen
16 | 16 | တ | sulfur
32 | 34 | Se | selenium | 79 | 25 | e
L | tellurium | 128 | 8 | 6 | polonium | ì | 116 | _ | livermorium | ı | | | | | | | | | | | | | | | | | | | > | | | | 7 | z | nitrogen
14 | 15 | ۵ | phosphorus
31 | ಜ | As | arsenic | 72 | 51 | gs | antimony | 122 | 8 | ä | bismuth | 508 | 2 | 9 | ပ | carbon
12 | 4 | Ö | silicon
28 | 32 | ő | germanium | 73 | 20 | S | Ē. | 119 | 85 | 8 | lead | 202 | 114 | ĭ | flerovium | ı | | and control co | = | | | | 5 | ω | boron
11 | 13 | ¥ | aluminium
27 | 31 | ga | gallium | 20 | 49 | Ľ | indium | 115 | 8 | ĭ | thallium | 204 | 30 | Z | zinc | 92 | 48 | S | cadmium | 112 | 8 | 운 | mercury | 201 | 112 | ວົ | copernicium | ı | | | | | | | | | | | | | | | | | | our franchischer constant of the t | | | | | | | | | | | 53 | õ | copper | 64 | 47 | Ag | silver | 108 | 29 | ΡΠ | plog | 197 | 111 | B | oentgenium | ŧ | | | | | | | | | | | | | | | | | | dn | | | | | | | | | | | 28 | z | nickel | 29 | 46 | Б | palladium | 106 | 78 | ă. | platinum | 195 | 110 | S | darmstadtium | ı | | | | | | | | | | | | | | | | | | Group | | | | | | | | | | | 27 | ပိ | cobalt | 29 | 45 | 돐 | rhodium | 103 | 11 | 1 | iridium | 192 | 109 | ž | meitnerium | 1 | - | I | hydrogen
1 | | | | | | | 26 | æ | iron | 29 | 44 | 2 | ruthenium | 101 | 92 | ő | osmium | 130 | 108 | £ | hassium | ı | , | | | | | | 25 | M | manganese | S | 43 | ည | technetium | | 75 | æ | rhenium | 186 | 107 | 듑 | pohrium | 1 | umber | <u> </u> | nass | | | | 24 25 | ဝ | chromium | 52 | 45 | Mo | molybdenum | 8 | 74 | > | tungsten | 184 | 108 | Sg | seaborgium | ı | Key | Key | Key | proton (atomic) number | atomic symbo | name
relative atomic mass | | | | 23 | > | E | 21 | | 윤 | | | | ā | tantalum | 184 | 105 | | dubnium | 1 | proton | ato | relativ | | | | 22 | F | titanium | 48 | | Ž | zirconium | 5 | 72 | Ī | hafnium | 178 | 104 | č | Rutherfordium | 1 | 4 | | | 21 | တ္တ | scandium | 45 | 39 | > | yttrium | 8 | 57 - 71 | lanthanoids | | | 89 – 103 | actinoids | = | | | | 4 | Be | beryllium
9 | 12 | Mg | magnesium
24 | Į. | Ö | | - 1 | 38 | Š | strontium | 8 | 20 | Ba | barium | | 88 | | radium | 1 | | | | | | | | | | | | | | | | | | | _ | | | | က | | lithium
7 | \vdash | Sa | sodium n | 19 | × | potassium | ස | 37 | 윤 | | | | | caesium | 133 | 87 | <u>i.</u> | francium | - | | | | | | | | | | | | | | | | | | 71 | 3 | lutetium | 175 | 103 | ڌ | lawrencium | ı | |-------------|----|--------------|-----|-----------|-------------|--------------|-----| | 70 | χp | ytterbium | 173 | 102 | 8 | nobelium | 1 | | 69 | Ę | thulium | 169 | 101 | Md | mendelevium | ı | | 89 | ய் | erbinm | 167 | 100 | Fm | fermium | 1 | | 67 | 운 | holmium | 165 | 66 | В | einsteinium | ı | | 99 | ۵ | dysprosium | 163 | 86 | ັວ | californium | ı | | 65 | Ω | terbium | 159 | 97 | á | berkelium | 1 | | 64 | g | gadolinium | 157 | 96 | ű | curium | 1 | | 63 | П | europium | 152 | 95 | Am | americium | 1 | | 62 | Sm | samarium | 150 | 94 | Pu | plutonium | ı | | 61 | Pm | promethium | ı | 93 | ď | neptunium | 1 | | 90 | 용 | neodymium | 144 | 35 | > | uranium | 238 | | 29 | ፚ | praseodymium | 141 | 91 | Pa | protactinium | 231 | | 28 | ဗီ | cerium | 140 | 80 | £ | thorium | 232 | | 22 | g | lanthanum | 139 | 88 | Ϋ́ | actinhum | ı | | lanthanoids | | | | actinoids | | | | The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.). . . ### Secondary 4 Express and 5 Normal Academic Science(Chemistry) **Mid-Year Examination Mark Scheme** | Qn no. | | | A | nswer Sche | me | | | Marks
Allocated | | | |----------|--|------------------------------------|----------|--------------------------------|------------------------------|----------------|----------------------------|--------------------|--|--| | 1 | Α | 6 | В | 11 | D | 16 | В | [1] each | | | | 2 | D | 7 | D | 12 | D | 17 | A | 20 m max | | | | 3 | C | 8 | C | 13 | B | 18 | D | | | | | 4 | С | 9 | С | 14 | Α | 19 | C | | | | | 5 | Α | 10 | С | 15 | Α | 20 | D | | | | | 1 | | purpose | | | name of su | | roxide/ | | | | | | | the acidit | - | time / slak | | | | | | | | | | for prese
on dioxide | | limewa | ater / calci | um hydro | oxide | | | | | | _ | for preser
de ions in v | | acidifie
lead(II) nit | d silver nit
rate / acidi | | | | | | | | 1m each | 1 | | | | | - 75 | [3] | | | | 3 | | emical fo | rmula of | substances | 7 | | | Total: 3 | | | | 2(a) | S | > | | 77 | | | | [1] | | | | 2(b) | N | 35 | 0,50 | | | | | [1] | | | | 2(c) | Q / | | | | | | | [1] | | | | 2(d) | Р | | | | | | | [1] | | | | | | | | | | | | Total: 4 | | | | 3(a) | Z belongs t | | | | | | | | | | | | it contains the lit has two | | | <u>ons</u> . OR
termost ele | ctron shel | <u>I</u> . [1] | | [2] | | | | 3(b)(i) | X ₂ W ₃ (reje | ect: W ₃ X ₂ |) | | | | | [1] | | | | 3(b)(ii) | The compound formed has a <u>giant lattice structure</u> [1]. Thus, large amount of energy is needed to <u>overcome strong electrostatic forces of attraction between the oppositely charged ions</u> [1]. | | | | | | | | | | | | | | • | ostatic force
"oppositely | | | break ionic
molecules / | | | | | 3(c) | It has eight valence electrons / a completely filled valence shell / does not need to take in, give out or share electrons with other elements. | [1] | |----------|--|----------| | | | Total: 6 | | 4(a)(i) | An alloy is a <u>mixture containing</u> at least <u>one metal with other elements</u> <u>/ substances</u> . | [1] | | 4(a)(ii) | It is more corrosion-resistant / does not rust easily. | [1] | | 4(b) | Mass, Fe ₂ O ₃ , present = 30% x 1000 = <u>300 kg</u> [1] | | | | Mole, Fe ₂ O ₃ = (300 x 1000) ÷ (2 x 56 + 3 x 16) = 1875 mol [1] | | | | Mole ratio: 2 Fe ₂ O ₃ : 3 C
1875 : 2812.5 | | | | Mass, C = 2812.5 x 12 = <u>33 750 q / 33.75 kg</u> [1] | [3] | | | Note: 1. Allow ECF for wrong answer. 2. –1 if no/wrong units written for final answer. | | | 4(c) | <u>Limestone</u> [1] is used to remove silicon dioxide. It <u>decomposes at high</u> <u>temperature</u> in Blast furnace to produce basic <u>calcium oxide</u> [1], which reacts with silicon dioxide. | [2] | | 4(d) | Sulfur dioxide gas dissolves in rainwater, producing acid rain [1]. This causes the water bodies to be more acidic, killing marine/aquatic lives / fishes [1]. | [2] | | | | Total: 9 | | 5(a) | Low melting point / low boiling point / light-green in colour / does not conduct electricity / exist as diatomic molecules [Any two] | [2] | | 5(b) | Chlorine has an electronic structure of <u>2.8.7</u> [1], hence it contains <u>3</u> <u>electrons shells</u> [1] filled with electrons. Therefore, it is in period 3. | [2] | | 5(c) | $\frac{Cl_2(g) + Zn(s) \rightarrow ZnCl_2(s)}{1m - correct balanced equation; 1m - correct state symbols}$ | [2] | | 5(d) | Chlorine is more reactive than bromine [1]. Hence, it can displace bromine [1] to form potassium chloride and bromine. | [2] | | | | Total: 8 | | 6(a) | C, A, B (only answer) | [1] | |------|---|----------| | 6(b) | Carbon is more reactive than zinc [1], but less reactive than sodium [1]. Hence it displaces zinc from zinc oxide but not sodium from sodium oxide. | [2] | | 6(c) | By keeping sodium in oil, the oil <u>creates a physical barrier</u> [1] that | | | | prevents the surface of sodium metal to come in contact with oxygen gas [1] and water / water vapour [1], which causes corrosion. | [3] | | | | | | | | Total: 6 | | 7(-) | A series and an UNIO | | | 7(a) | A – nitric acid or HNO ₃ B – iron metal or Fe | | | | C – hydrogen gas or H ₂ | | | | D – iron(II) nitrate or Fe(NQ ₃) ₂ | | | | E – iron(II) hydroxide or Fe(OH)2) | | | | F – ammonia or NH ₃ | | | | 1m each, accept chemical formula | [6] | | | | | | 7(b) | $Fe^{2^{2}} + 2 OH^{-} \rightarrow Fe(OH)_{2}$ | [0] | | | 1m – correct equation, 1m – balanced equation | [2] | | 7(c) | A metal carbonate will produce carbon dioxide gas , instead of hydrogen | | | | gas. OR A metal carbonate does not produce hydrogen gas when | [1] | | | reacted with acid. | Tatali O | | | | Total: 9 | | | | | | | | 1 | |------------------------|---|-----------| | 9(a) | High density / High melting and boiling points / conducts electricity / conducts heat / malleable / ductile / shiny surface / Solid at room temperature / Pink/brown solid [Any two] | [2] | | 9(b) | Heat/Burn copper metal in air / in oxygen to produce copper(II) oxide. [1] To an excess amount of CuO, add a fixed volume of sulfuric acid and stir the mixture. [1] Filter to remove the excess CuO from the mixture. [1] Warm/Heat the filtrate to saturation and then allow it to cool for crystallization to occur. [1] | [4] | | 9(c)(i) | Copper(II) carbonate is used up. | [1] | | 9(c)(ii) | At a higher concentration, there are more reactant particles per unit volume [1]. Hence, the frequency of effective collisions between particles increases [1], leading to a faster rate of reaction. | [2] | | 9(c)(iii) | Graph showing half the volume of carbon dioxide gas and faster rate of reaction compared to Graph 1. Graph must be labelled. | [1] | | | | Total: 10 | | 10(a)(i) | Atomic radius increases down the group [1] and decreases across the period [1]. | [2] | | 10(a)(ii
)
10(b) | The elements changes from metals to non-metals across the period / becomes less metallic across the period metallic to non-metallic character across the period [1] and the oxides changes from basic to acidic across the period [1]. Physical property trend: melting or boiling point decreases / density increases [1] | [2] | | | Chemical property trend: chemical reactivity increases [1] | [2] | 10(c) Reaction condition [1]: state the use of either water / steam / dilute acids Data collection [1]: counting the number of bubbles produced / measure volume of gas produced at regular intervals I measure lost in mass over regular intervals Comparison of data [1]: The beaker / test-tube / boiling-tube with more bubbles produced wi be magnesium, followed by iron. Silver will not have any bubbles produced as it is unreactive towards acid. OR Measure the gas collected at regular intervals and plot a graph of volume of gas produced over-time / Measure the lost in mass at regular intervals and plot a graph of mass reading on scale balance against time. The graph with steepest gradient will be magnesium. followed by iron followed by silver which shows a horizontal line due to its chemical unreactivity. Justification of relative positions [1]: Hence, magnesium is the most reactive, followed by iron, and silver is the least reactive. (or vice versa) [4] Total: 10