	Register No.	Class	l
Name			

Bendemeer Secondary School Bendemeer Secondary S nool Bendemeer Secondary School Bendemeer Secondary School Bendemeer Secondary School B BENDEMEERERSEGG NDARYSS & HOB Lemeer Secondary School Bendemeer Secondary School Bendemee emeer Secondary School Bendemeer Secondary School Bendem 2018 Sepre Loo Minaras Y Expanding Adry On endemeer Secondary School Bendemeer Secondary School Bendem Bender Bende SECONDARY ender EXPRESS near 50 NTORMALE (ACADEMIC) condary School SECONDARY dender EXPRESS near 50 NTORMALE (ACADEMIC) condary School Bender Bender chool Bendemeer Secondary School Bendemeer Secondary S Benden Bendemeer Secondary School Bendemeer Secondary S Bendemeer Secondary School Bendemeer Secondary S

29th August 2018 DATE

DURATION 1 hour

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

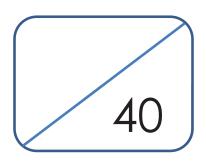
Write your name, class and register number on the work you hand in.

Do not use paper clips, glue or correction fluid.

There are **forty** questions on this paper. Answer **all** questions. For each question, there are four possible answers A, B, C and D.

Choose the one you consider correct and record your choice in 2B pencil on the OTAS sheet.

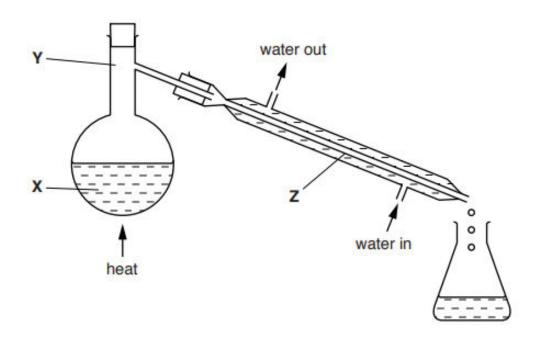
Read the instructions on the OTAS sheet very carefully.


Each correct answer will score one mark. A mark will not be deducted for a wrong answer.

Any rough working should be done on the guestion paper.

A copy of the Data Sheet is printed on page 20.

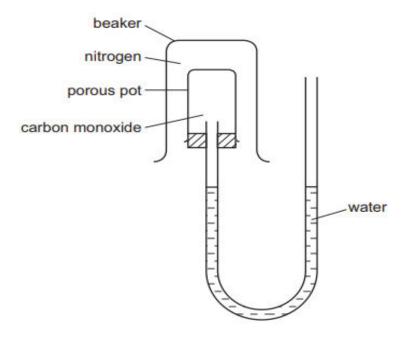
A copy of the Periodic Table is printed on page 21.


The use of an approved scientific calculator is expected, where appropriate.

This document consists of **21** printed pages.

[Turn over

21 The diagram shows the apparatus used to distil seawater.

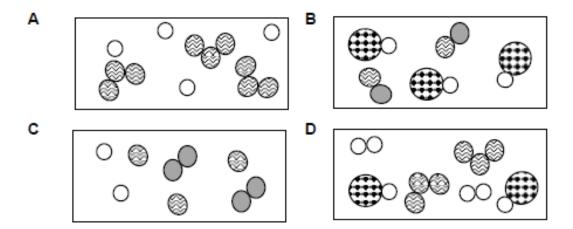


While water is being collected, at which point(s) is the temperature 100°C?

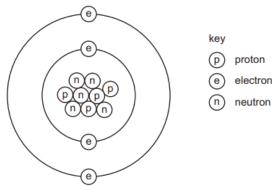
- **A** X
- В Υ
- **C** X and Z
- D X,Y and Z

[Turn over

22 Gases can diffuse through porous pots. The diagram shows a beaker full of nitrogen inverted over a porous pot containing carbon monoxide.


The water level does not move.

Which statement explains this?


- Both gases have two atoms in a molecule.
- Neither gas is soluble in water.
- Nitrogen is almost inert.
- The two gases have equal molecular masses.
- 23 Which statement(s) best explain(s) that air is a mixture, not a compound?
 - П Air does not have a fixed composition.
 - Ш It is a colourless and odourless gas.
 - Ш It is made up of more than two elements.
 - IV The gases making up air can be separated by fractional distillation.
 - II only I and IV III and IV Α I only

[Turn over

24 Which diagram correctly represents a mixture of element(s) and compound(s)?

25 The diagram shows the atomic structure of an element X.

What is X?

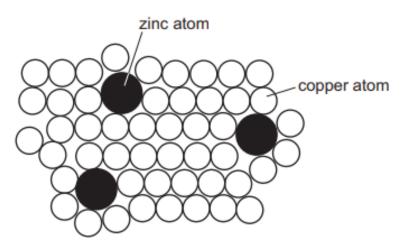
- aluminium
- beryllium В
- C boron
- D fluorine
- 26 What happens when a bond is formed between a green gaseous element and a soft metallic element?
 - The gaseous atoms gain an electron.
 - В The gaseous atoms lose an electron.
 - C The metal atoms gain an electron.
 - The two elements share a pair of electrons.

[Turn over

- Which salt can be prepared by an acid-alkali titration method? 27
 - aluminium carbonate
 - ammonium chloride
 - calcium nitrate
 - iron(II) sulfate
- The oxide of element X dissolves in water to form a solution which when tested with Universal Indicator paper gives a pH of 14. The oxide does not react with potassium hydroxide. Where is X mostly likely to be found in the Periodic Table?
 - A Group I
 - **B** Group VI
 - **C** Group VII
 - D Group 0
- 29 25 cm³ of 0.1 mol / dm³ hydrochloric acid exactly neutralise 20 cm³ of aqueous sodium hydroxide. The equation for this reaction is:

What is the concentration of the sodium hydroxide solution?

- A 0.080 mol / dm³
- **B** 0.125 mol / dm³
- **C** 0.800 mol / dm³
- 1.250 mol / dm³


[Turn over

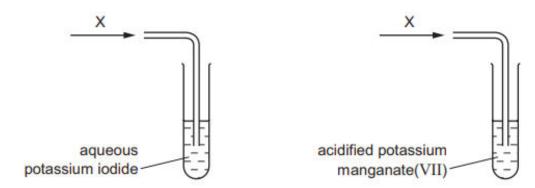
- **30** W, X and Y are metals, one of which is copper and one of which is iron.
 - W has a coloured oxide which can be reduced by carbon.
 - X has a black oxide and is also found in nature as a pure metal.
 - Y has an oxide which cannot be reduced by carbon.

Which metal is the most reactive and what is the possible identity of W?

	most reactive metal	possible identity of W
Α	Х	Cu
В	X	Fe
С	Y	Cu
D	Υ	Fe

The diagram shows the structure of brass. 31

Why is brass harder than pure copper?

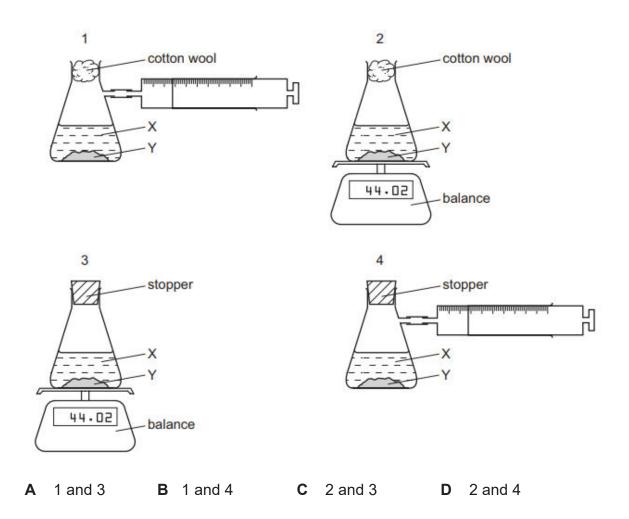

- **A** The zinc atoms form strong covalent bonds with copper atoms.
- **B** The zinc atoms have more electrons than the copper atoms.
- **C** The zinc atoms prevent the 'sea of electrons' from moving freely in the solid.
- The zinc atoms prevent the layers of copper atoms from sliding over each other.

[Turn over

32	The	e following statements are about elements in the Periodic Table.								
	I II III IV	Their atoms have a full outer shell of electrons. They are found in Group 0. They are present in small quantities in the air. They form basic oxides.								
	Wh	nich statements are correct for the noble gases?								
	A	I, II and III B I, II and IV C I, III and IV D II, III and IV								
33	The labels on two bottles fell off. One bottle was known to contain sodium chlorid solution and the other bottle contained sodium nitrate solution.									
	Which test would most likely identify the solutions?									
	A addition of aqueous ammonia									
	B addition of aqueous silver nitrate									
	C addition of blue litmus paper									
	D	addition of dilute sulfuric acid								
34	Wh	nich reagent when reacted with ammonium sulfate, liberates ammonia?								
	A	acidified potassium dichromate(VI)								
	В	aqueous bromine								
	С	dilute hydrochloric acid								
	D	limewater								

[Turn over

35 Gaseous compound X is an oxidising agent. X is bubbled through separate solutions of aqueous potassium iodide and acidified potassium manganate(VII).


Which row shows the colour changes when X is bubbled through these two solutions?

	aqueous potassium iodide	acidified potassium manganate(VII)
Α	brown to colourless	no change
В	brown to colourless	purple to colourless
С	colourless to brown	no change
D	colourless to brown	purple to colourless

[Turn over

36 A liquid X reacts with solid Y to form a gas.

> Which two diagrams show suitable methods for investigating the rate (speed) of the reaction?

37 A thermometer is placed in water and the temperature is measured to be 43.0 °C. An endothermic change takes place as a solid is dissolved in the water. The temperature changes by 4.5 °C.

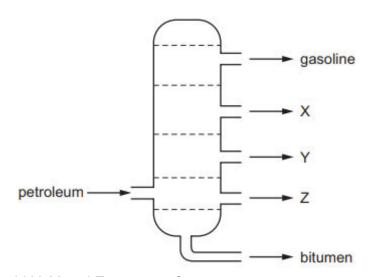
What is the thermometer reading now?

A 38 °C

B 38.5 °C

C 47 °C **D** 47.5 °C

[Turn over


38 A new planet has been discovered and its atmosphere has been analysed.

The table shows the composition of its atmosphere.

gas	percentage by volume / %
carbon dioxide	4
nitrogen	72
oxygen	24

Which gases present in the atmosphere of the new planet are in a higher percentage than they are in the Earth's atmosphere?

- A carbon dioxide and nitrogen
- В carbon dioxide and oxygen
- **C** carbon dioxide, nitrogen and oxygen
- D nitrogen and oxygen
- 39 The diagram shows the separation of petroleum into fractions.

What could X, Y and Z represent?

	X	Y	Z
Α	diesel oil	lubricating fraction	paraffin
В	lubricating fraction	diesel oil	paraffin
С	paraffin	lubricating fraction	diesel oil
D	paraffin	diesel oil	lubricating fraction

[Turn over

40 The diagram shows a molecule of an organic compound W.

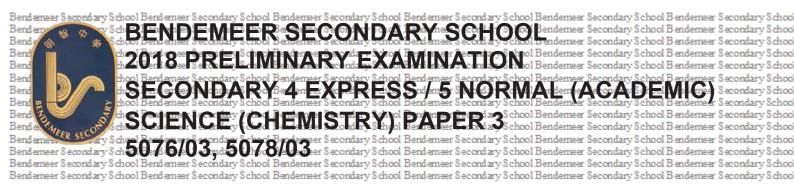
Which statement is not correct?

- **A** A solution of W in water has a pH greater than 7.
- **B** A solution of W in water reacts with sodium hydroxide solution.
- When copper(II) carbonate is added to a solution of W, a gas is produced.
- When magnesium is added to a solution of W, a gas is produced.

[Turn over

Data Sheet Colours of Some Common Metal Hydroxides

calcium hydroxide	white
copper(II) hydroxide	light blue
iron(II) hydroxide	green
iron(III) hydroxide	red-brown
lead(II) hydroxide	white
zinc hydroxide	white


[Turn over

ľ			. o =	0	o = -	2 ~	, _	uo		0	_	ton		ø	no 1	- 10	_	uo			
	C	ر	He helium	= 2	Je Z	7	4	arg	4	ř	X	kryp 8,	2	×	nex 4.2	2 80	a.	rad			
	III			6 L	fluorine	17	C	chlorine	35.5	32	à	bromine	53	Н	iodine	85	¥	astatine			
	5	\ \		∞ (oxygen	16	ွတ	sulfur	32	34	Se	selenium 70	52	o	tellurium	84	8	polonium	116	^	ivermorium
	^	>		-		-		10	-				+					bismuth 209	i –		_
	M	^		9(carbon	14	S	silicon	28	32	g G	germanium 73	50	S	tin 140	82	В	lead 207	114	FI	flerovium
	=	=		5	boron 14	- 2	A	aluminium	27	31	Ga	gallium	49	H	indium	2 2	11	thallium 204			
ents	88	- 20		S					8	30	Z	zinc 65	48	8	cadmium	80	무	mercury 201	112	5	copernicium
e Periodic Table of Elements	53	00								29	S	copper	47	Ag	silver	62	Au	plog 197	1111	Rg	roentgenium
ple of	dno	200							33	28	Z	nickel 50	46	Pd	palladium	78	盂	platinum 195	110	Ds	darmstadtium
IIC la	Group									27	ර	cobalt 50	45	돲	modium	77	=	iridium 192	109	M	meitnerium
erioc	25	8	1 H hydrogen 1						0.0	26	Fe	iron 76	44	Ru	ruthenium	92	SO	nosmium 190	108	Hs	hassium
lhe									80	25	M	manganese 55	43	Ľ	technetium	75	Re	rhenium 186	107	Bh	pohrium
	24	5		umber	00	IIdas			85	24	ပ်	chromium 52	42	Wo	m molybdenum technetium	74	>	tungsten 184	106	Sg	seaborgium b
	25	30	Key	proton (atomic) number	atomic symbol name	e alumin			50	23	>	vanadium 5.1	41	S	miobium	73	Ta a	tantalum 181		Op	=
	26	3		proton	ato	leidil				22	F	titanium 48					Ξ	hafnium 178	104	¥	Rutherfordium
	55	35							36	21	လွ	scandium 45	39		yttrium	57 - 71	lanthanoids		89 - 103	actinoids	
	=	=		4 0	beryllium	10	Mg	magnesium	24	20	Ca	calcium	38	ഗ്	strontium	56	Ba	barium 137		Ra	radium
	Si e	-		e ::	lithium 7		Na	sodium	23	19	×	potassium 30					S	caesium 133	87	ů.	francium

anthanoids	25	58	26	09	61	62		64	65	99	29	89	69	20	71
	La	O	P	PN	Pm	Sm		В	10	ò	웃	ய்	Тш	Υb	n'
	lanthanum 139	140	praseodymium 141	neodymium 144	promethium	samarium 150	europium 152	gadolinium 157	terbium 159	dysprosium 163	holmium 165	erbium 167	thulium 169	ytterbium 173	Intetium 175
actinoids	89	06	91	92	93	94	1	96	26	98	66	100	101	102	103
	Ac	느	Pa	>	S.	Pu		Cm	ă	₽	Es	F	Md	2	ב
	actinium	thorium	protactinium	uranium	neptunium	plutonium	-	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrenc
	Î	232	231	238	Ĭ	ï		1	Ĩ.	1	Ī	Î	ı	ï	1

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

	Register No.	Class
Name		

20th August 2018 DATE 1 hour 15 minutes **DURATION**

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number on the work you hand in. You may use a 2B pencil for any diagrams, graphs, tables or rough working. Write in dark blue or black pen. Do not use paper clips, glue or correction fluid.

The use of an approved scientific calculator is expected, where appropriate. You may lose marks if you do not show your working or if you do not use appropriate units.

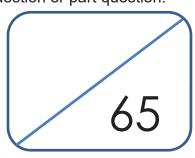
Section A

Answer all questions.

Write your answers in the spaces provided on the question paper.

Section B

Answer any **two** questions.


Write your answers in the spaces provided on the question paper.

A copy of the Data Sheet is printed on page 14.

A copy of the Periodic Table is printed on page 15.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

This document consists of **15** printed pages.

Section A

Answer **all** the questions in the spaces provided.

1 The structures of some substances containing chlorine are shown in Fig. 1.1.

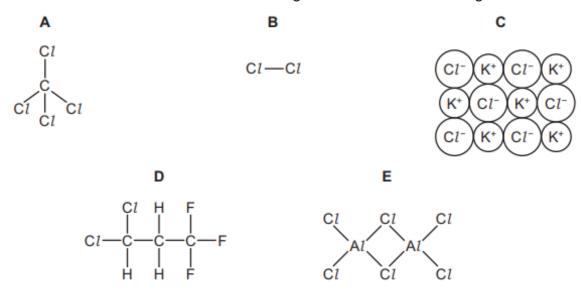


Fig. 1.1

Answer the following questions about these substances. Each of these letters A to E can be used once, more than once or not at all.

(a)	Which substance conducts electricity in molten or aqueous state only?	
		[1]
(b)	Which substance is a diatomic molecule?	
		[1]
(c)	Which substance is an element?	
	Explain your answer.	
		[2]
(d)	Which substance is the product of substitution of methane?	
		[1]

2 Table 2.1 gives the composition of three particles.

Table 2.1

particle	number of protons	number of electrons	number of neutrons
А	15	15	16
В	15	18	16
С	15	15	17

a)	What is the evidence in Table 2.1 for each of the following?	
	(i) Particle A is an atom.	
	(ii) A, B and C are all particles of the same element.	[1]
	(iii) Particles A and C are isotopes of the same element.	[1]
(b)	(i) What is the electronic structure of particle C?	
	(ii) Is element C a metal or a non-metal? Give a reason for your choice.	[1]
		[1]

- 3 Coal-burning power stations generate a large amount of heat from the combustion of coal to convert steam which in turn drives turbine generators to produce electricity. Flue gas that is produced contains sulfur dioxide and oxides of nitrogen. These two gases cause acid rain.
 - Oxides of nitrogen generally consist of a mixture of nitrogen monoxide and (a) nitrogen dioxide. In flue gas, nitrogen monoxide is the main component in the oxides of nitrogen produced.

explain now hitrogen monoxide causes acid fain even though it is a neutral oxide.	
	[2

(b) Acid rain impacts farming greatly as it often causes the soil to be overly acidic and results in leaching of nutrients. In order to alleviate the effects of acid rain, a farmer has been advised to treat the soil to reduce the acidity.

Table 3.1 gives the solubility of some calcium compounds.

Table 3.1

	calcium hydroxide	calcium oxide	calcium carbonate
solubility in water (g per 100 ml of	0.173	immediately reacts with water on contact to form	6.17 x 10 ⁻⁴
water)		an alkaline solution	

	Using the information in Table 3.1, suggest why calcium carbonate is less effective at reducing acidity than calcium hydroxide and calcium oxide.	
		[2]
(c)	Another source of oxides of nitrogen is from car engines.	
	Explain how the oxides of nitrogen are formed in car engines.	
		[2]

	(d)	Besides acid rain, name two other harmful effects of oxides of nitrogen and sulfur dioxide.	
			[2]
4	Solu	ıble salts can be made by using a base and an acid.	
	(a)	Complete this method of preparing dry crystals of the soluble salt cobalt(II) chloride from the insoluble base cobalt(II) carbonate.	
		step 1 Add an excess of cobalt(II) carbonate to hot dilute hydrochloric acid.	
		step 2	
		step 3	
		step 4	
		step 5	
			[3]
	(b)	5.95 g of solid cobalt(II) carbonate is added to 40 $\rm cm^3$ of hydrochloric acid, concentration 2.0 mol / $\rm dm^3.$	
		(i) Write a balanced chemical equation, including state symbols, for the above reaction.	
			[2]
		(ii) Show that the cobalt(II) carbonate is added in excess.	

5 The reactivity of different metal oxides was compared by heating them with metals in a crucible. This is shown in Fig. 5.1.

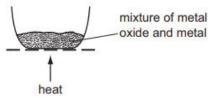


Fig. 5.1

The results are shown in Table 5.2.

Table 5.2

mixture	observations
iron(III) oxide + metal X	reacts
lead(II) oxide + iron	reacts
magnesium oxide + metal X	no reaction

(a)	Use the results in Table 5.2 to suggest the order of reactivity of the metals iron, lead, magnesium and X, starting with the most reactive metal.	
		[1]
(b)	Predict whether iron will react with zinc oxide.	
	Explain your answer.	
		[1]
(c)	Write down two observations when lead(II) oxide reacts with iron.	
		[2]
(d)	In the mixture, iron(III) oxide reacts with metal X.	
	Which element is reduced in the reaction? Use ideas about oxidation state to explain your answer.	
		[2]

6 Fig. 6.1 shows how the ions present in solution A are separated.

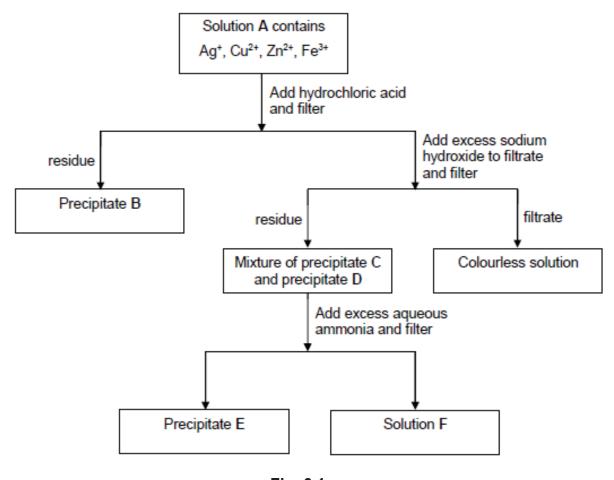


Fig. 6.1

(a)	(i)	It is known that solution A contains one anion. Suggest the identity of this anion. Give a reason for your answer.	
			[2]
	(ii)	Describe a test to confirm the anion named in (a)(i).	
			[4]
/h\		gest the identity of substances B and C.	[1]
(b)	Sug	gest the identity of substances B and C.	
	В.		
	C .		[2]

(a)

(c)	Describe the movement and arrangement of particles in precipitate E which has been dried.				
		[2]			

7 Fig. 7.1 shows a molecule of cyclohexane, C_6H_{12} , which is a cycloalkane and a saturated hydrocarbon. Cycloalkanes react in a similar way to alkanes.

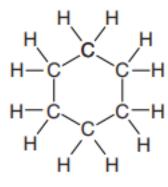
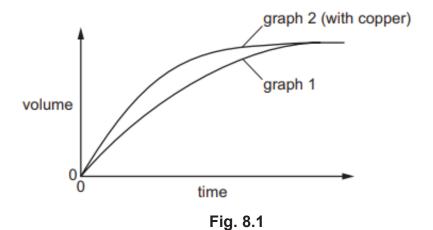


Fig. 7.1


(a)	(i)	Define the term saturated.	
			[1]
	(ii)	Define the term hydrocarbon.	
			[1]
(b)	Con	struct the equation for the complete combustion of cyclohexane.	
			[1]
(c)	subs	ohexane reacts with chlorine in the presence of ultraviolet light. This is a stitution reaction. Write the molecular formulae of two products of this tion.	
			[2]

Section B

Answer any two questions in this section. Write your answer in the spaces provided.

- 8 Metals undergo different chemical reactions to produce different products.
 - The rate of reaction between a metal and an acid is investigated.

A piece of zinc foil is added to 50 cm³ of hydrochloric acid, of concentration 2.0 mol / dm³. The acid is in excess. The hydrogen evolved is collected in the gas syringe and its volume measured every minute. The results are plotted and labelled as graph 1. This is shown in Fig. 8.1.

The experiment is repeated to show that the reaction between zinc metal and hydrochloric acid is catalysed by copper. A small volume of aqueous copper(II) chloride is added to the acid before the zinc is added. The results of this experiment are plotted on the same grid and labelled as graph 2 in Fig. 8.1.

(a)	(i)	Explain why the reaction mixture in the second experiment contains copper metal. Include an equation in your explanation.	
			[2]

	(ii)	If the first experiment is repeated using ethanoic acid, CH₃COOH, instead of hydrochloric acid, explain how and why the graph would be different from graph 1. Indicate the speed of this reaction on Fig. 8.1 and label it as graph 3.	
			[3]
(b)		en lithium reacts with water, it moves about on the surface of the water. bles are seen and the lithium disappears slowly.	
		dict how the reaction of potassium with water compares with the reaction of um with water.	
	In y	our answer, include	
	• the	y three differences in observations, e names of the products formed when lithium and potassium react with ater.	
			[5]

9			oratory, scientists are always doing research and conducting experiments to ducts for mankind.	make
	(a)		such useful product is phosphine, PH ₃ , which is used as a fumigant. It has smell of garlic and is effective in pest control.	
		(i)	Predict two physical properties of phosphine at room conditions.	
			Explain your answer.	
		•••••		
		•••••		
				[5]
		(ii)	Draw the electronic structure of phosphine. Show outer electrons only.	
				[2]
	(b)		ntists also make margarine from vegetable oils. List the conditions and ain how vegetable oils are used to make margarine for use in foods.	
				[3]

- 10 Thermal decomposition of compounds breaks them down into smaller substances when sufficient heat is applied.
 - (a) Air bags are used to protect passengers in a car during an accident. When the crash sensor detects an impact, it causes a mixture of chemicals to be heated to a high temperature. Reactions take place which produce nitrogen gas. The nitrogen fills the air bag. This is shown in Fig. 10.1.

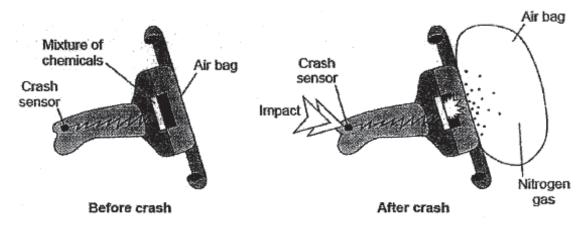


Fig. 10.1

The mixture of chemicals contains solid sodium azide, NaN_3 which decomposes to form sodium and nitrogen as follows.

.....
$$NaN_3$$
 (......) \rightarrow Na (......) + N_2 (......)

- (i) Balance the chemical equation and complete the state symbols in the chemical equation above.
- (ii) Draw the electronic structure of nitrogen gas. Show outer electrons only.

[2]

[2]

(iii) An air bag consists of 130 g of sodium azide. When the sodium azide decomposed, 60 dm³ of nitrogen was obtained at room temperature and pressure.

Show, using calculations, if the thermal decomposition of sodium azide has been efficient in producing nitrogen to fill up the air bag.

[3]

A student used the apparatus in Fig. 10.2 to investigate what happens when (b) liquid paraffin is heated to a high temperature.

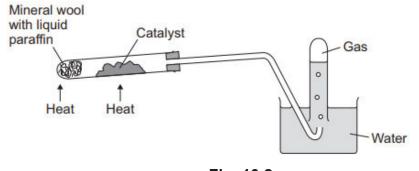


Fig. 10.2

Liquid paraffin contains alkanes. The most abundant alkane has a chemical formula of C₂₀H₄₂.

Name the reaction shown in Fig. 10.2. Describe, with the aid of a chemical

equation, what happens to the alkane molecules in the reaction.

END OF PAPER

[3]

Data Sheet

Colours of Some Common Metal Hydroxides

calcium hydroxide	white
copper(II) hydroxide	light blue
iron(II) hydroxide	green
iron(III) hydroxide	red-brown
lead(II) hydroxide	white
zinc hydroxide	white

www.KiasuExamPaper.com

	0	2	He	4	10	Ne	neon 20	18	Ā	argon	36	3 2	Ż :	krypton 84	54	×e	xenon	131	98	R	radon																					
					6	ட	fluorine 19	17	C	chlorine	35.5	3 6	<u>ā</u>	80	53	Н	iodine	127	85	A	astatine			_																		
	>				8	0	oxygen 16	16	ဟ	sulfur	37	5 6	oo .	Zelenium 79	52	<u>ө</u>	tellurium	128	84	Ъ	polonium	116	۲	Wormon I																		
	>				7	z	nitrogen 14	15	<u>a</u>	phosphorus	33	2	As	arsenic 75	51	Sb	antimony	122	83	ö	bismuth 209																					
	2			3	9	O	carbon 12	14	S	silicon	33	4 (e S	germanium 73	20	S	tin	119	82	В	lead 207	114	FI	TIOLOGIC																		
	=				5	В	boron 11	13	A	aluminium	31	5 (g F	gaillum 70	49	I	indium	115	81	11	thallium 204			_																		
Group											30	3 1	L	Zinc 65	48	8	cadmium	112	80	H	mercury 201	112	Cn																			
											00	3 (3	copper 64	47	Ag	silver	108	62	Au	gold 197	111	Rg																			
Q	2										38	27	Z :	59	46	Pd	palladium	106	78	古	platinum 195	110	DS																			
Group	5	•									77	1	3	59	45	윤	mnipou	103	11	H	indium 192	109	Mt																			
	Se	-	H	, -							36	N L	9 .	110H	44	Ru	ruthenium	101	9/	SO	osmium 190	108	Hs																			
	S4 6										26	3	MIN	manganese 55	43	ے ا	technetium		75	Re	rhenium 186	107	Bh																			
	X	Kev	5	umber	lo	nass	200			NC.	, (52		Mo	molybdenum	96	74	>	tungsten 184	106	Sg																				
	2 7 9		Key	Key		Key		Key	Key	Key	Key	Key	Key	Key	Key	Key	Key	Key	Key	Key	Key	Key	Key	proton (atomic) number	atomic symbol	name relative atomic mass				23	2	>	vanadium 51	41	S				Ta	tantalum 181		Db
	24 9	•			proton	ato	relativ	100			22	7 F	= ;	utanium 48	40	Zr	zirconium	91	72	Ξ	hafnium 178	104	ች.	Contraction of the contraction o																		
	3 8										24	1 (သ ်	scandium 45	39	>	yttrinm	89	57-71	lanthanoids		89 - 103		-																		
	=				4	Be	beryllium 9	12	Ma	magnesium	24	9 (ر د د	calcium 40	38	Š	strontium	88	99	Ba	barium 137		Ra	-																		
	_			9	3	:=	lithium 7	11	Na	sodium	10	2 2	۷.	39	37	윉	mpiqin	85	55	Cs	caesium 133	87	正	COLLEGE																		

lanthanoids	22	58	59	09	61	62	63	64	65	99	19	89	69	70	71
	La	8	Ā	N	Pm	Sm	ш	B	Tb	ò	운	ய்	Tm	Υb	ריי
	lanthanum	cerium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	Intetium
	139	140	141	144	j	150	152	157	159	163	165	167	169	173	175
actinoids	89	90	91	92	93	94	95	96	26	86	66	100	101	102	103
	Ac	드	Pa	>	N	Pu	Am	S	益	℧	Es	Fm	Md	2	ב
	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	perkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium
	1	232	231	238	Ĭ	Ţ	1	10	Ţ	Ţ,	I	Ĩ	j.	ï	ı

he volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

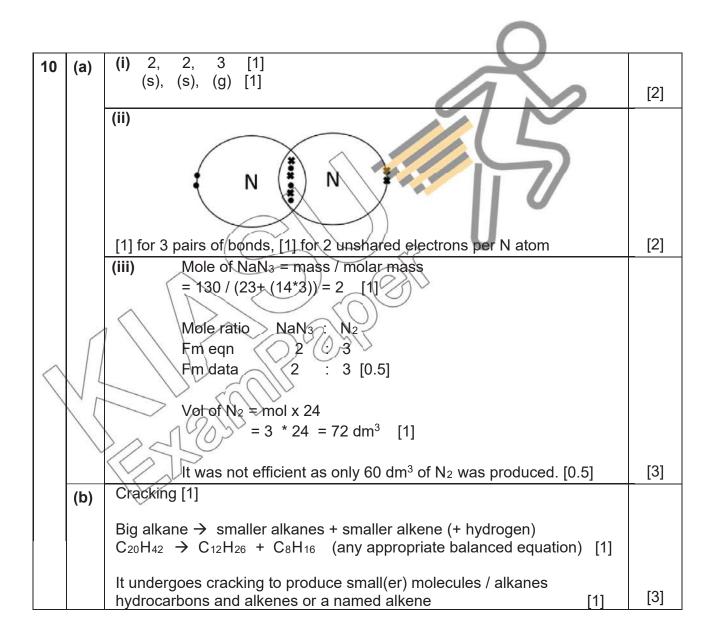
Prelim Exam 2018 4E/5N Sc(Chem) Marking Scheme

Section A [1 mark each; 20 marks total]

1	2	3	4	5	6	7	8	9	10
В	D	С	D	В	Α	В	Α	В	D
11	12	13	14	15	16	17	18	19	20
D	Α	В	D	С	D	В	В	D	Α
ction B [45 mark	s total]						7	

Section B [45 marks total]

		[40 marks total]	72				
1	(a)	С	[1]				
	(b)	В	[1]				
	(c)	B [1]					
		It has only one type of atom. [1]	[2]				
	(d)	A	[1]				
2	(a)	(i) It has the same number of protons and electrons; 15 each.	[1]				
		(ii) All have the same number of protons (15) / same proton number /					
	50-0	same atomic number	[4]				
			[1]				
		(iii) same number of protons (15) / same proton number / same atomic					
		number [4];					
		Different number of neutrons / different nucleon number / different mass					
		number [1]					
		Humberth	[2]				
	(b)	(i) 2.8.5 2,8,5 [1]					
		(ii) non-metal because it accepts electrons / needs 3 electrons to					
		complete valence electron shell / because it is in Group V or 5 electrons					
		in valence shell [1]					
		Note: need both non-metal and reason for one mark	[2]				


3	(a)	NO will be oxidised by oxygen in air to form nitrogen dioxide. [1]					
		Nitrogen dioxide will then dissolve in rainwater to form nitric acid which caused acid rain. [1]	[2]				
	(b)	Calcium carbonate is very much less soluble than calcium hydroxide and calcium oxide. [1]					
		Thus, CaCO ₃ reacts slowly with acid / effective only in reducing acidity of soil / surface in contact / cannot penetrate soil to neutralize acid					
		deeper down. [1]	[2]				
	(c)	The high temperatures of the car engines causes[1]					
		nitrogen in the air to react with oxygen in the air producing oxides of nitrogen. [1]	[2]				
	(d)	irritates the eyes and lungs and cause breathing difficulties [1]					
		high levels lead to inflammation of the lungs (bronchitis) [1]	[2]				
4	(a)	Step 2 Filter to remove excess cobalt(II) carbonate; [1]					
		Step 3 Heat the filtrate till saturation; [1]					
		Step 4 Cool to allow crystals to form, [0.5]					
		Step 5 Rinse crystals with a little distilled water to remove impurities and					
		dry between sheets of filter paper; [0.5]	[3]				
	(b)	(i) $CoCO_3$ (s) + 2HCl (aq) \rightarrow $CoCl_2$ (aq) + CO_2 (g) + H_2O (l)					
		State symbols [1]; balanced chemical equation [1]	[2]				
		(ii) no of moles of HCl = cv = 2 * (40/1000) = 0.08 mol [1]					
		Mole ratio CoCO₃ : HCl Fm egn 1 : 2					
		Fm data 0.04 : 0.08 [1]					
		Mana of O. OO					
		Mass of CoCO ₃ = mol * molar mass = 0.04 * (59+12+48) = 0.04 * 119 = 4.76 g [1]					
		4.76 g of CoCO₃ needed but 5.95 g was used. Hence, CoCO₃					
		was in excess.	[3]				
			[~]				

(a)	$magnesium \rightarrow X \rightarrow iron \rightarrow lead / \\ Mg > X > Fe > Pb$	[1]					
(b)	no / it will not react and zinc is more reactive / iron is less reactive; [1]						
	ignore: zinc is reactive / iron is unreactive	[1]					
(c)	A greenish ppt/solid [1]						
	and a grey/silver solid are formed. [1]	[2]					
(d)	Iron is reduced.[1]						
	The oxidation state of iron decreases from +3 in iron(III) oxide to 0 in						
	iron. [1]	[2]					
(a)	(i) Nitrate [1]						
	All nitrates are soluble. [1] or						
		FO1					
		[2]					
	Gas produced turns moist red litmus paper blue. [0.5] or						
	Add barium pitrate / barium chloride [0.5]						
		[1]					
(b)		[.,]					
(2)		[2]					
(c)							
(0)							
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	[2]					
(a)	(i) Contains only carbon-carbon single bonds	[1]					
	(ii) Contains only carbon and hydrogen atoms	[1]					
(b)	$C_6H_{12} + 9O_2 \rightarrow 6CO_2 + 6H_2O$	[1]					
(c)	HCI (1)	[2]					
	C ₆ H ₁₁ CI (1)						
	(b) (c) (d) (b) (c) (a) (b)	 (b) no / it will not react and zinc is more reactive / iron is less reactive; [1] ignore: zinc is reactive / iron is unreactive (c) A greenish ppt/solid [1] and a grey/silver solid are formed. [1] (d) Iron is reduced.[1] The oxidation state of iron decreases from +3 in iron(III) oxide to 0 in iron. [1] (a) (i) Nitrate [1] All nitrates are soluble. [1] or Sulfate [1] All Ag*, Cu²*, Zn²* and Fe³* sulfates are soluble. [0.5] Gas produced turns moist red litmus paper blue. [0.5] or Add barium nitrate / barium chloride. [0.5] A white precipitate is seen. [0.5] (b) B: silver chloride / AgCl [1] C: copper(II) hydroxide / Cu(OH)₂ / iron(II) hydroxide / Fe(OH)₂ [1] They are closely pecked in a orderly manner. [1] (a) (i) Contains only carbon and hydrogen atoms (b) C₆H₁₂ + 9O₂ → 6CO₂ + 6H₂O (c) HCI (1) 					

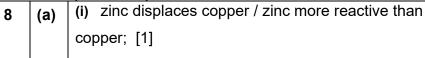
Section C (20 marks)

Sect	ion C	(20 marks)					
8	(a)	 (i) zinc displaces copper / zinc more reactive than copper; [1] Zn + CuCl₂ → ZnCl₂ + Cu / Zn + Cu²⁺ → Cu + Zn²⁺; [1] (ii) less steep (line) or lower gradient / (because of) decreased rate; [1] 					
		ethanoic is a weak(er) acid / only partially ionised / dissociated / lower					
		concentration of hydrogen ions; [1];					
		graph 3 is below graph 1 and ends at the same volume as graph 1 [1]					
			[5]				
	(b)	3 marks from any 3 differences in observations e.g.					
		• more bubbles with K;					
		• it /K moves faster (on water surface);					
		• Li does not catch fire/K catches fire/K bursts into flame;					
		• it /K fizzes more than Li;					
	<	•it /K disappears rapidly;					
		• K explodes lithium does not explode;					
		K melts / ball with K/ lithium does not melt/ does not go into ball [3]					
		Trilloto Jean Vilarito Janiani deservier generale income [e]					
		Products: lithium hydroxide [0.5]					
		potassium hydroxide; [0.5]					
		hydrogen/H ₂ [1]	[5]				

9	(a)	(i)	Phosphine is a liquid / gas at room condition [1] It is made up of 2 non-metals [1] which will form a covalent compound which is a liquid / gas at room conditions. [1] / Phosphine has low melting and boiling points [1] It is a simple covalent molecule [1] with weak intermolecular forces of attraction. Hence little energy is needed to overcome them. [1] /	
			Phosphine does not conduct electricity in any state [1] It has no mobile ions [1]or mobile electrons to carry the current to conduct electricity. [1] Any 2 points with explanations maximum [5]	[5]
		(ii)	H P H	
	$\langle \rangle$		[1] for P, [1] for H	[2]
	(b)	in to	the presence of a nickel catalyst at 60 °C (allow 50-200 °C) [1] cause vegetable oils are unsaturated or have carbon-carbon double not (vegetable oils are hardened) to make them solid at room apperature or to make them useful as spreads/spreadable [1]	[3]
<u></u>		ton	inpolataio di to make triorii addiai ad oprodadioprodadio [1]	_

Prelim Exam 2018 4E/5N Sc(Chem) Marking Scheme

Section B [45 marks total]


		[+5 marks total]		
				Marker's Comments
1	(a)	С	[1]	
	(b)	В	[1]	
	(c)	B [1]		
		It has only one type of atom. [1]	[2]	
	(d)	Α \	[1]	
2	(a)	(i) It has the same number of protons and		
		electrons; 15 each.	[1]	U
		(ii) All have the same number of protons (15)	11	
		same proton number / same atomic number		
		(iii) same number of protons (15) / same proton		
		number / same atomic number [t];		
		Different number of neutrons / different nucleon		
		number / different mass number [1]		
		vicinities ramo (1)	[2]	
	(b)	(i) 2.8.5 / 2.8,5 [1]		
		(ii) non-metal because it accepts electrons / needs		
		3 electrons to complete valence electron shell /		
		because it is in Group V or 5 electrons in valence		
		shell [1]		
		Note: need both non-metal and reason for one mark	[2]	

3	(a)	NO will be oxidised by oxygen in air to form nitrogen dioxide. [1]		
		Nitrogen dioxide will then dissolve in rainwater to		
		form nitric acid which caused acid rain. [1]	[2]	
	(b)	Calcium carbonate is very much less soluble than calcium hydroxide and calcium oxide. [1]	0	
		Thus, CaCO₃ reacts slowly with acid / effective only		
		in reducing acidity of soil / surface in contact / cannot		
		penetrate soil to neutralize acid deeper down. [1]	[2]	
	(c)	The high temperatures of the car engines causes[1]		
		nitrogen in the air to react with oxygen in the air		
		producing oxides of nitrogen. [1]	[2]	0
	(d)	 irritates the eyes and lungs and cause breathing difficulties [1] 		
		▶ high levels lead to inflammation of the lungs	7.0	
	1	(bronchitis) [17]	[2]	
4	(a)	Step 2 Filter to remove excess cobalt(II) carbonate;		
2	/ '	Step-3 Heat the filtrate till saturation; [1]		
		Step 4 Cool to allow crystals to form; [0.5]		
		Step 5 Rinse crystals with a little distilled water to		
		remove impurities and dry between sheets of filter paper; [0.5]	[3]	

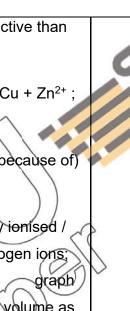
	(b)	 (i) CoCO₃ (s) + 2HCl (aq) → CoCl₂ (aq) + CO₂ (g) + H₂O (l) State symbols [1]; balanced chemical equation [1] 	2]	0
		(ii) no of moles of HCl = cv = 2 * (40/1000) = 0.08 mol [1] Mole ratio CoCO ₃ : HCl Fm eqn 1 : 2 Fm data 0.04 : 0.08 [1] Mass of CoCO ₃ = mol * molar mass = 0.04 * (59+12+48) = 0.04 * 119 = 4.76 g		
		[1] 4.76 g of CoCO ₃ needed but 5.95 g was used. Hence, CoCO ₃ was in excess.	3]	
5	(a)	magnesium \rightarrow X \rightarrow iron \rightarrow lead \nearrow Mg \gg X > Fe > Pb	1]	
	(b)\	no / it will not react and zinc is more reactive / iron is less reactive; [1] ignore: zinc is reactive / iron is unreactive [1]	
-	(c)	A greenish ppt/solid [1] and a grey/silver solid are formed. [1]	2]	
	(d)	Iron is reduced.[1]		
		The oxidation state of iron decreases from +3 in iron(III) oxide to 0 in iron. [1]	2]	

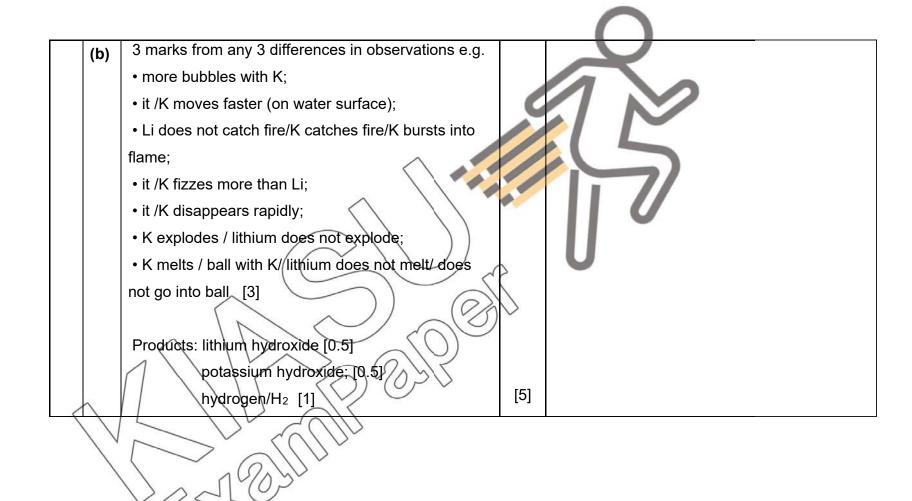
6	(a)	(i) Nitrate [1]		
		All nitrates are soluble. [1] or	-	
		Sulfate [1]		
		All Ag ⁺ , Cu ²⁺ , Zn ²⁺ and Fe ³⁺ sulfates are soluble.		
		[1]	[2]	
		(ii) Add sodium hydroxide, aluminium foil and warm. [0.5]		
		Gas produced turns moist red litmus paper blue.		
		[0.5] or	ì	7/
		Add barium nitrate / barium chloride. [0,5]	ш	0
		A white precipitate is seen. [0.5]	[1]	
	(b)	B: silver chloride / AgCl [1]		
		C: copper(II) hydroxide / Cu(OH) ₂ / iron(N) hydroxide / Fe(OH) ₂ [1]	[2]	
	(c)	The particles are in solid state.		
1	/,	They vibrate at their fixed positions, [1]		
		They are closely packed in a orderly manner. [1]	[2]	
7	(a)	(i) Contains only carbon-carbon single bonds	[1]	
		(ii) Contains only carbon and hydrogen atoms	[1]	
	(b)	$C_6H_{12} + 9O_2 \rightarrow 6CO_2 + 6H_2O$	[1]	
<	(c)	HOI (4)	[2]	
	$\backslash \tilde{\ }$	C6H11Cl (1)		

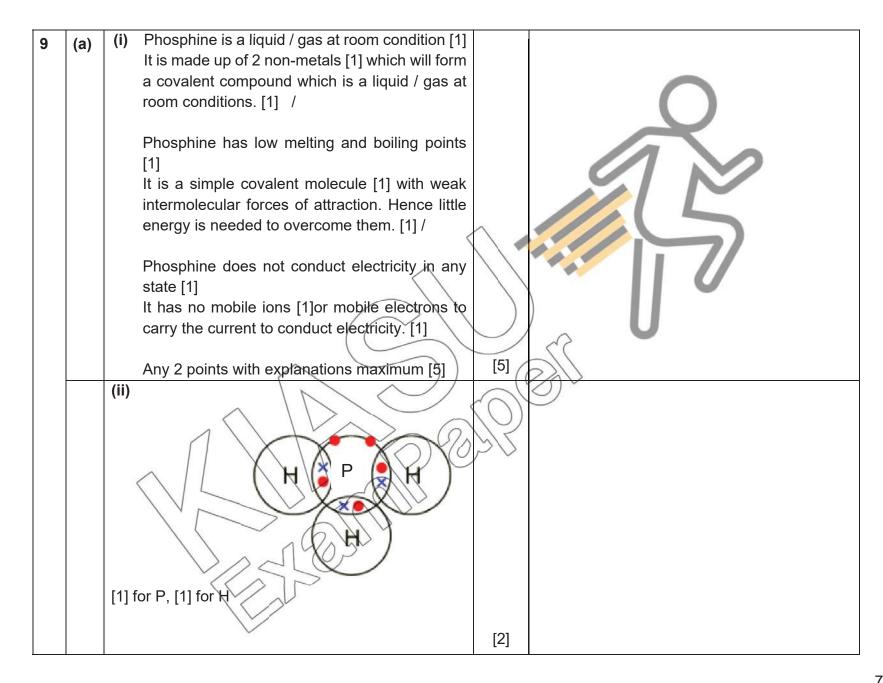
Section C (20 marks)

 $Zn + CuCl_2 \rightarrow ZnCl_2 + Cu / Zn + Cu^{2+} \rightarrow Cu + Zn^{2+};$ [1]

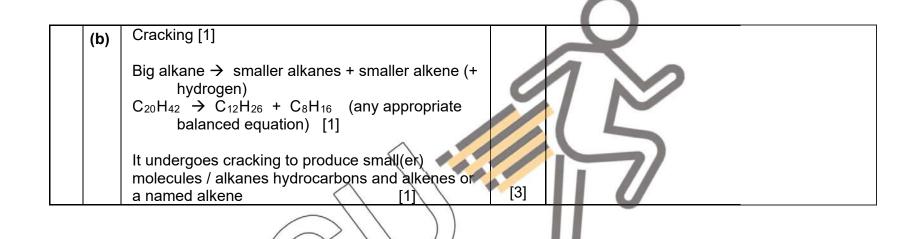
(ii) less steep (line) or lower gradient / (because of) decreased rate; [1]


ethanoic is a weak(er) acid / only partially ionised / dissociated / lower concentration of hydrogen ions;


[1];


3 is below graph 1 and ends at the same volume as

graph 1 [1]


[5]

	(b)	react with hydrogen or hydrogenation [1]		
	()	in the presence of a nickel catalyst at 60 °C (allow		
		50-200 °C) [1]		
		because vegetable oils are unsaturated or have		
		carbon-carbon double bonds (vegetable oils are		
		hardened) to make them solid at room temperature	101	
		or to make them useful as spreads/spreadable [1]	[3]	
				—)
10	(a)	(i) 2, 2, 3 [1]		
		(s), (s), (g) [1]	[2]	
			L ² 1	
		(ii)	- U	
		N I N		
	1			
		[1] for 3 pairs of bonds, [1] for 2 unshared electrons	101	
		per N atom	[2]	
		(iii) Mole of NaN ₃ = mass / molar mass		
V	1	= 130 / (23+ (14*3)) = 2 [1]		
		Note of National Alexander		
183	/)	Mote ratio NaN ₃ : N ₂ Fm eqn 2 : 3		
	//			
		Fm data 2 : 3 [0.5]		
		Vol of $N_2 = \text{mol } \times 24$		
		$= 3 * 24 = 72 \text{ dm}^3 [1]$		
		- 5 24 - 12 uiii ⁻ [i]		
		It was not efficient as only 60 dm³ of N ₂		
		was produced. [0.5]	[3]	
		พลร คางนนงธน. [ง.ง]	[~]	

