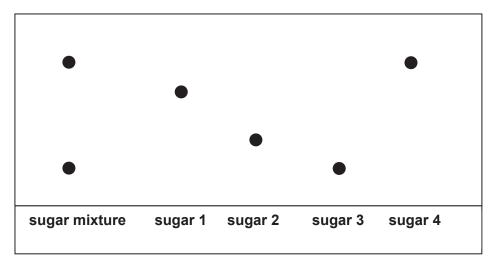

The diagram shows some laboratory apparatus.

Which apparatus are needed to produce and collect pure water from seawater?

Α 2 and 5 В 3 and 5

C 1, 2 and 4


- D 1, 4 and 5
- 22 Which substance, A to D undergoes changes in physical states from room temperature to 0°C?

	Melting point/°C	Boiling point / °C
Α	-2	65
В	-23	4
С	50	250
D	-187	-165

- 23 Which statements are true about compounds?
 - They can be made from another compound.
 - 2 They can be made from metals alone.
 - They can be made from non-metals alone.
 - They can be made from a metal and a non-metal.
 - 1, 2 and 3 Α

В 1, 2 and 4

C 1, 3 and 4 D 2, 3 and 4 24 A sugar mixture was compared with four different simple sugars using chromatography. The results are shown in diagram below. What types of sugars does the mixture contain?

A sugar 1 and 2

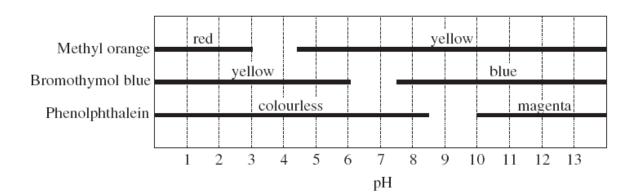
B sugar 1 and 4

C sugar 2 and 3

- **D** sugar 3 and 4
- 25 Which compound contains three atoms?
 - $\textbf{A} \qquad H_2O$

B HC/

C CaSO₄


- **D** NO
- 26 Which of the following compounds has the highest percentage of nitrogen by mass?
 - A NH₄NO₃

B (NH₄)₂CO₃

 \mathbf{C} CO(NH₂)₂

- D NH₄C/
- 27 A student dissolved 14.9g of potassium chloride, KCl, in 100 cm³ of water. What is the concentration of the resulting potassium chloride solution in mol/dm³?
 - **A** 0.002 mol/dm³
 - **B** 0.01 mol/dm³
 - **C** 0.15 mol/dm³
 - **D** 2.0 mol/dm³

28 The graph below shows the colour ranges of the acid-base indicators methyl orange, bromothymol and phenolphthalein.

A solution, when placed in the three indicators separately, is yellow in methyl orange, yellow in bromothymol and colourless in phenolphthalein. What is the pH range of the solution?

A 2.5 to 3.5

B 4.5 to 5.5

C 7.5 to 8.5

- **D** 9.5 to 10.5
- Which of the following elements burns in air to produce a substance which can react with both hydrochloric acid and sodium hydroxide?
 - A lead

B hydrogen

C iron

- **D** phosphorous
- **30** Which of the following reagents **cannot** be used to differentiate sodium hydroxide solution from sodium chloride solution?
 - A Aqueous iron(III) nitrate
 - B Aqueous copper(II) nitrate
 - **C** Aqueous lithium nitrate
 - **D** Aqueous ammonium nitrate

31 Separate samples of hydrogen peroxide are added to aqueous potassium iodide and to acidified potassium manganate(VII). It is known that hydrogen peroxide is both an oxidising agent and a reducing agent.

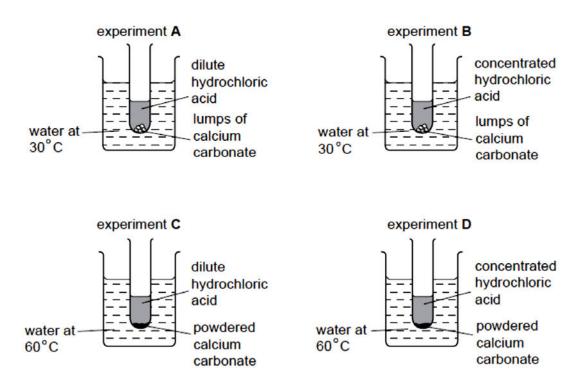
What colour changes are seen?

	aqueous potassium iodide	acidified potassium manganate(VII)
Α	colourless to brown	purple to colourless
В	brown to colourless	purple to colourless
С	colourless to brown	orange to green
D	brown to colourless	orange to green

32 X, **Y** and **Z** are elements in the same period of the Periodic Table.

X forms an acidic oxide, **Y** forms a basic oxide and **Z** forms an amphoteric oxide.

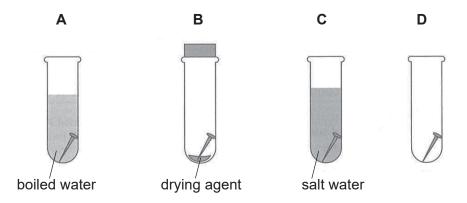
If **X**, **Y** and **Z** are placed in increasing order of atomic number (lowest atomic number first), which order is correct?


A X, **Y**, **Z**

B Y, Z, X

C Y, **X**, **Z**

- D X, Z, Y
- **33** Rubidium is in the same group as sodium in the Periodic Table. What is a likely property of rubidium?
 - A It reacts with water to form hydrogen gas.
 - **B** It cannot be cut by knife.
 - **C** It reacts with chlorine gas to form a salt with the formula $RbCI_2$.
 - **D** It does not conduct electricity in the molten state.


34 Which of the following experiment will have the fastest speed of reaction?

35 The element chromium produces hydrogen from dilute hydrochloric acid but it does not react with cold water. When a piece of chromium is placed in lead(II) nitrate solution, solid of lead appear.

What is the order of **decreasing** reactivity of the metals lead, calcium and chromium?

- Α calcium, chromium, lead В calcium, lead, chromium
- C D chromium, calcium, lead lead, chromium, calcium
- **36** In which tube is the iron nail **not** likely to rust?

Which of the following shows the correct percentage composition of oxygen, nitrogen and carbon dioxide found in dry unpolluted air?

	Oxygen	Nitrogen	Carbon dioxide
Α	78	21	1
В	1	78	21
С	21	78	1
D	78	21	78

38 Which of the following shows the correct use of the different fractions of petroleum?

	Fraction	Uses
Α	Petrol	used for making chemical feedstock
В	Bitumen	used for lubricating machine parts
С	Kerosene	used as fuel for aircraft
D	naphtha	used to pave road

- **39** Which of the following hydrocarbon undergoes substitution reaction?
 - **A** C₂H₄

B C₂H₆

 \mathbf{C} C_2H_5COOH

- D C_2H_5OH
- **40** Which of the following is the same for both ethanol and ethanoic acid?
 - **A** empirical formula
 - **B** functional group
 - **C** number of carbon
 - **D** homologous series

Data Sheet

Colours of Some Common Metal Hydroxides

calcium hydroxide	white
copper(II) hydroxide	light blue
iron(II) hydroxide	green
iron(III) hydroxide	red-brown
lead(II) hydroxide	white
zinc hydroxide	white

The Periodic Table of Elements

											_			_			_		
0	우 9	helium 4	Ne 19	neon 20	18	Ar	argon 40	36	궃	krypton 84	54	×e	xenon 131	86	R	radon			
IIA			டை	fluorine 19	17	õ	chlorine 35.5	35	ä	bromine 80	53	Ι	iodine 127	85	Αt	astatine -			
VI			∞ O	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	Цe	tellurium 128	84	8	polonium -	116	ے ۔	Ivermonum —
>			トZ	nitrogen 14	15	۵	phosphorus 31	33	As	arsenic 75	51	S	antimony 122	83	æ	bismuth 209			
^			o ن	carbon 12	14	S	silicon 28	32	ge G	germanium 73	20	ß	119 119	82	윤	lead 207	114	Ή.	nerovium -
=			B S	boron 11	13	Αl	aluminium 27	31	Ga	gallium 70	49	Ľ	indium 115	81	11	thallium 204			
								30	Zn	zinc 65	48	8	cadmium 112	80	D I	mercury 201	112	ა ნ	copernicium —
								${}^{-}$			$\overline{}$			$\overline{}$			$\overline{}$		E
							28	Z	nickel 59	46	В	palladium 106	78	亡	platinum 195	110	Ds.	narmstagnum —	
								27	ပိ	cobalt 59	45	R	rhodium 103	77	'n	iridium 192	109	¥,	mermenum —
	- I	hydrogen 1						26	Fe	iron 56	44	Ru	ruthenium 101	9/	ő	osmium 190	108	¥ .	nassium -
								25	Mn	manganese 55	43	<u>ا</u>	technetium -	75	Re	rhenium 186	107	뚭.	
			umber	nass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≥	tungsten 184	106	Sg	seaborgium -
		Key	(atomic) n mic symb	namé /e atomic r				23	>	vanadium 51	ı			l		tantalum 181	l		-
			proton	relativ				22	F	titanium 48	40	Zr	zirconium 91	72	Έ	hafnium 178	104	ž	Kutherfordium -
								21	တ္တ	scandium 45	39	>	yttrium 89	57 - 71	lanthanoids		89 - 103	200	
=			4 Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	Š	strontium 88	56	Ba	barium 137	88	Ra	radium
			e :⊐	lithium 7			sodium 23		×	39	37	Sp	oidium 85	55	S	caesium 133	87	正 :	rancium -
	IV V VI		1 H hydrogen 1		II	II	II	II	II	II	II	II	II	II	II	1	1	1	1

lanthanoids	22	28	26	8	61	62	63	64	92	99	29	68	69	70	71
	La	O	ሷ	PZ	Pa	Sm	Ш	рg	Tp	à	운	ய்	E	Υp	3
	lanthanum	cerium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	Intetium
	139	140	141	144	Ī	150	152	157	159	163	165	167	169	173	175
actinoids	88	90	91	92	83	94	95	98	97	86	66	100	101	102	103
	Ac	드	Ра	\supset	ď	Pu	Am	5	益	℧	Es	F	Md	2	ے
	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium
	1	232	231	238	1	1	ă	ĵ	1	1	1	1	1	1	1

The volume of one mole of any gas is 24dm³ at room temperature and pressure (r.t.p.).

4E/5NA

SCIENCE (CHEMISTRY) Paper 3 Chemistry	5076/03 & 5078/03
CLASS REGISTER NUMBER	
CANDIDATE NAME	

Candidates answer on the Question Paper. No additional materials are required.

1 hour 15 minutes

31 July 2018

READ THESE INSTRUCTIONS FIRST

Write your name, register number and class on all work you hand in. You may use an 2B pencil for any diagrams, graphs, tables or rough working. Write in dark blue or black pen.

Do not use staples, paper clips, glue or correction fluid.

The use of an approved scientific calculator is expected, where appropriate. You may lose marks if you do not show your working or if you do not use appropriate unites.

Section A (45 marks)

Answer all questions.

Write your answers in the space provided on the question paper.

Section B (20 marks)

Answer any **two** questions.

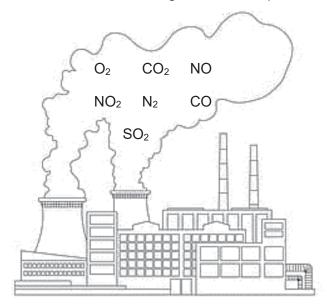
Write your answers in the space provided on the question paper.

A copy of Data Sheet is printed on page 15.

A copy of the Periodic Table is printed on page 16.

At the end of the exam, fasten all your work securely together.

The number of marks in given in brackets [] at the end of each question or part question.


For Exam	iner's Use
Section A	
Section B	
Section C	
Total	

Setter:	Ms	C١	/nthia	Chona

Section A

Answer all questions in the spaces provided.

A1 The diagram below shows the formulae of some gases found in polluted air.

Choose formulae from the diagram to answer the following questions (a) to (d). Each may be use once, more than once or not at all.

(a)	Give the formula of a gas that is produced by incomplete combustion of fuels. State harmful health effect of this gas.	the
		[2]
(b)	Give the formulae of two gases that are produced by reactions in catalytic converters	
	and	[1]
(c)	Give the formulae of two gases that are involved in both respiration and photosynthe	sis.
	and	[1]
(d)	Give the formulae of two gases that produce acid rain.	
	and	[1]
	[Total: 5 ma	rks]

A2	Sulfur	and sulfur	compounds	are common	in	the	environme	nt
A Z	Ouliui	and Sundi	Compounds			uic		J

- A sample of sulfur from a volcano contained two different types of sulfur isotopes: sulfur-32 (a) and sulfur-34.
 - (i) Complete the table below to show the atomic structure of each isotope of sulfur.

lastons	Number of					
Isotope	Proton	Neutron	Electron			
Sulfur-32						
Sulfur-34						

[2]

(ii)	The relative atomic mass of sulfur is 32.2. Explain why does the relative atomic mass
	of sulfur is not a whole number.
	[2]
	of the gases produced during volcanic eruptions is hydrogen sulfide. H_2S . Hydrogen is a poisonous, colourless gas which smells of rotten eggs.
(i)	Draw a dot-and-cross diagram to represent the bonding in a hydrogen sulfide molecule. Show outer electrons only.

[2]

(ii)	Explain, in terms of bonding and structure, why hydrogen sulfide gas does not concelectricity.	duct
		[2]

[Total: 8 marks]

(b)

The table below shows some salts and products that contain them. **A3**

(a)

(i)

Salt	product		
Silver chloride	Photographic film		
Potassium nitrate	fertiliser		
Zinc sulfate	Health supplement		

Explain your reasoning.	
Salt:	

Reagent 1: Reagent 2:

Which salt in the table can be made by **precipitation**?

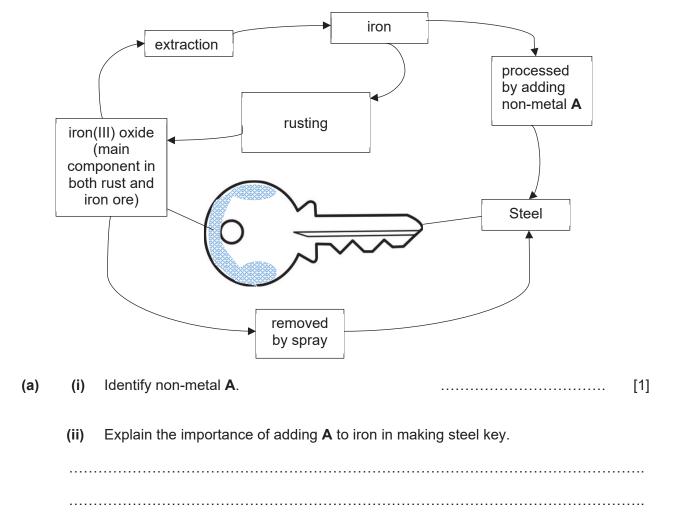
(ii)	Which salt in the table can be made by titration ? Suggest two reagents needed to make this salt.
Salt:	

(b) Other substances are used to make a range of useful products. Put a tick ($\sqrt{\ }$) in one box in each row to show a correct use of each substance.

	Use						
Substance	to make car battery	to make road surface	to reduce acidity in soil	to fill filament bulb			
Calcium silicate							
Calcium hydroxide							
Argon							
Sulfuric acid							

[2]

[2]


[2]

[Total: 6 marks]

(a)	What is the physical	property that			fractions in			F.4
(b)	To meet the world's to produce lighter fra					s diesel u	ındergoes	crackir
	C ₁₂	H ₂₆	→ C ₆ H	₁₄ +	C_2H_4	produc	et P	
	Give the chemical n	ame and form	ula of the p	roduct	Р.			
	Chemical name:							
	Chemical formula:							[2
							[Total: 3	3 mark
iron w	chich runs into the gap Complete the equati 2 Al () + ()	ion for the rea	ction by filli	ng in m	nissing state	e symbols	s.	e time. [1
								٠
(b)	(i) The table show		mation abo	ut oxida	ation state o	changes o	during the r	
(b)	• •		state at	Oxida	ation state of ation state a the end		during the r	reactio
(b)	Complete the	Oxidation	state at tart	Oxida	ation state a			reaction
(b)	Complete the Element	Oxidation the s	state at tart	Oxida	ation state a		dised or re	reactio
(b)	Complete the Element Oxygen	Oxidation the s	state at tart	Oxida	ation state a		dised or re	reaction
(b)	Complete the Element Oxygen Aluminium	Oxidation the s	state at tart	Oxida	ation state a the end -2	at Oxi	dised or re unchange	reactio
(b)	Complete the Element Oxygen Aluminium iron	Oxidation the s	state at tart	Oxida	ation state a the end -2	at Oxi	dised or re unchange	duced ed

(c)	Is Thermit reaction an endothermic or exothermic reaction? Explain your answer.
	[2]
(d)	Predict if the melting point of aluminium oxide is high or low. Explain your answer in terms of structure and bonding.
	[2]
	[Total: 8 marks]

Common keys are made from steel. One problem with using steel is that the iron in steel will rust. The diagram shows the cycle of changes that happens when iron in a steel key rust and then extracted.

			[2]
	(b)	A shop sells a spray-on rust treatment. The spray contains particles of zinc. Explain zinc prevents rust from forming.	how
			[2]
	(c)	Write a balanced chemical equation for the extraction of iron in the blast furnace.	
			[1]
	(d)	Though the extraction of iron from blast furnace is a relatively cheap process, steels are widely recycled.	: still
		Explain the importance of recycling of metals such as iron.	
			[1]
		[Total: 7 ma	arks]
A 7	(a)	Propane burns completely in oxygen to form carbon dioxide and water.	
		The equation for the reaction is	

 $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$

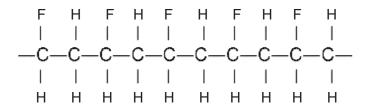
(i) Calculate the number of moles in 44 g of propane.

[1]

(ii) Hence, calculate the volume of carbon dioxide that is produced from 44 g of propane at room temperature and pressure.

2	1

(b) (i) State why propene can be made into polymer but propane can	(b)	(i)	State why	propene can l	be made	into pol	vmer but	propane	canno
--	-----	-----	-----------	---------------	---------	----------	----------	---------	-------


- (ii)	Describe a te	et to dietinal	iich hetween	nronene and	nronane
١,	,	Describe a te	or to distilligi		properte and	proparic.

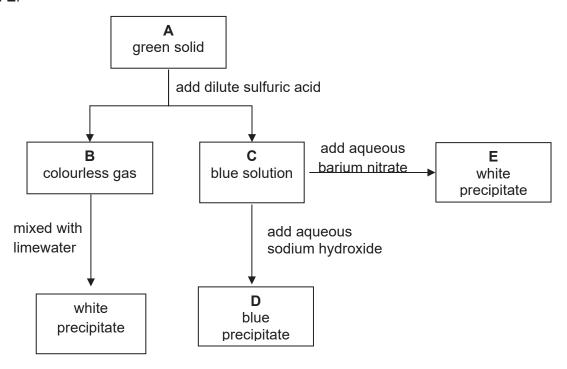
[2]

(iii) State one harmful effect of polymer to the environment.

 [1]

(c) The figure below shows the structure formula of part of an addition polymer.

Deduce and draw the structural formula of the **monomer** from which this polymer is made.


[Total: 8 marks]

Section B

Answer any **two** questions in this section. Write your answers in the spaces provided.

B8	(a)	Explain why sulfuric acid can act as an acid and why potassium hydroxide can act as an alkali. Give examples of chemical reaction that sulfuric acid and potassium hydroxide undergo.
		[4]
	(b)	Write the ionic equation that describes the reaction of an acid with an alkali
		[4]

(c) The diagram below shows some of the properties and reactions of the substances A, B, C, D and E.

Identify these substances.

(i)	green solid A,	
\-/	9	

- (ii) colourless gas **B**,
- (iii) blue solution C,
- (iv) blue precipitate **D**. [4]
- (d) The formation of white precipitate ${\bf E}$ shows the presence of sulfate ions.

Why does this ${f not}$ prove that sulfate ions are present in solid ${f A}$?

[Total: 10 marks]

B9	(a)	The speed of a chemical reaction can be changed by
		increasing the temperature of the reaction,decreasing the concentrations of reacting solutions.
		(i) State the effect that each of these has on the speed of a reaction.
		(ii) Use your knowledge of reacting particles to explain your answer to (a)(i).
		[5]

- (b) A student carried out an experiment to investigate how the speed of reaction between magnesium and hydrochloric acid will change with time.
 - Draw a labelled diagram to show the experiment setup that the student use. (i)
 - Describe how the student will carry out the experiment, clearly stating the physical (ii) quantity he will measure.
 - (iii) Describe how the speed of this reaction would change with time.

[5]	

[Total: 10 marks]

B10	(a)	What	is the common name given to elements in Group VII?									
			[1]									
	(b)		the electronic structures of fluorine and chlorine and use these to explain why they laced in Group VII.									
			[2]									
	(c)		rine was discovered by Carl William Scheele in 1774 at Sweden. The origin of the came from the Greek word "chloros" meaning "pale green".									
		In 1886, a new element was discovered. Based on its electronic structure, colour and its reaction with zinc chloride, this new element was placed above chlorine in Group VII of the Periodic Table and given the name fluorine.										
		(i)	Predict the colour of fluorine.									
			[1]									
		(ii)	Suggest how the colour of fluorine could help explain its position in the Periodic Table.									
			[1]									
		(iii) 	Describe what would be observed when fluorine is bubbled into a solution o potassium bromide. Explain your observation.									
			[2]									

(d)

the r	naked human eye.
(i)	Consider the properties of other elements in the same group as this element, predict one physical and one chemical property of the element with atomic number 85.
	[2]
(ii)	Give the chemical formula of the compound formed between magnesium and the element with atomic number 85.
	[1]
	[Total: 10 marks]

The element with an atomic number of 85 is so unstable that it has never been seen by

End of Paper

Data Sheet

Colours of Some Common Metal Hydroxides

calcium hydroxide	white
copper(II) hydroxide	light blue
iron(II) hydroxide	green
iron(III) hydroxide	red-brown
lead(II) hydroxide	white
zinc hydroxide	white

The Periodic Table of Elements

					_								_				_				_,								_		
	0	2	ב ב	helium	ţ	2	Se	neon	20	18	Ar	argon	40	36	궃	krypton o 4	40	54	×e	xenon	131	98	R	radon	1						
	ΛII				c	ກ	ш	fluorine	19	17	Ö	chlorine	35.5	35	ă	bromine	00	23	Н	iodine	127	85	At	astatine	1						
	ΙΛ				0	0	0	oxygen	16	16	တ	sulfur	32	34	Se	selenium	8	52	e	tellurium	128	84	P	polonium	1	116	_	ivermorium	Ţ		
	^				7	,	Z	nitrogen	14	15	ᡅ	shosphorus	31	33	As	arsenic	5	51	Sp	antimony	122	83	Ξ	bismuth	209						
	/				G	0	O	carbon	12	14	S	silicon	28	32	Ge	germanium	2	20	က်	Ę,	119	82	g G	lead	207	114	Œ	flerovium	ŀ		
	Ш				ц	n	മ	poron	11	13	Αl	aluminium	27	હ	Q	gallium	2	49	П	mnipui	115	81	11	thallium	204						
														8	Zn	zinc	3	48	පි	cadmium	112	8	윈	mercury	201	112	ပ်	opernicium	ľ		
													- 1			copper	╗				╗							드	_		
dn													- 1			nickel	-				-	_			_			_	-		
Group													- 1			cobalt	_				╗								_		
		-]	-	hydrogen 1	-									26	e	iron Lon	200	44	Ru	ruthenium	101	9/	SO	osmium	190	108	Ηs	hassium	ij		
					_									52	M	manganese	3	43	ပ	technetium	1	75	Re	rhenium	186	107	뮴	pohrium	ľ		
					, odon	I Del			nass					24	ර්	chromium	25	42	Mo	molybdenum	96	74	≥	tungsten	184	106		seaborgium	Ĺ		
				Κρν	(atomic)	proton (atomic) numbe	(atomic) ni	(atomic) nt	atomic symbol	name	e atomic r					23		vanadium	_		운		П					105	음	dubnium	Ł
					actore		ato		relativ					22	iΞ	titanium	40	40	Zr	zirconium	91	72	士	hafnium	178	104	峜	Rutherfordium	f		
					1									7	တ္တ	scandium	5	39	>	yttrium	88	57 – 71	lanthanoids			89 - 103	actinoids				
	=					4	Be	beryllium	6	12	Mg	magnesium				calcium								barium				radium	ľ		
	_				c											potassium												francium	I		

	28	20	8	61	62	63	64		99	29	89	69	2	7.1
a)	A	<u>ل</u>	P	ЪВ	Sm	п	p O		<u></u>	운	ш	٤	Ϋ́	P.
cerium	_	raseodymium ne	m	promethium	samarium	europium	gadolinium		dysprosium	holmium	erbium	thulium	ytterbium	lutetium
\circ		141	144	Ī	150	152	157		163	165	167	169	173	175
	-	91	92	93	94	92	96		98	66	100	101	102	103
		Pa B	\supset	ď	Pn	Am	S S	益	ŭ	S	H	Md	2	ے
	۵.	rotactinium	uranium	neptunium	plutonium	americium	curium		californium	einsteinium	fermium	mendelevium	nobelium	lawrencium
in l	232 2	231	238	1	1	Ĵ	ĵ	1	1	J		1	1	1

The volume of one mole of any gas is $24\,\mathrm{dm}^3$ at room temperature and pressure (r.t.p.).

2018 Bedok South Secondary School Secondary 4 Science(Chemistry) PRELIM Marking Scheme

Paper 1: 30 Marks

21	22	23	24	25	26	27	28	29	30
D	В	С	D	Α	С	D	В	Α	С
31	32	33	34	35	36	37	38	39	40
Α	В	Α	D	Α	В	С	С	В	С

Answe	r		
A1	(a)	CO Prevents blood from absorbing oxygen which causes headaches, giddiness or may lead to death.	1
	(b)	N ₂ and CO ₂ (both must be correct)	1
	(c)	CO ₂ and O ₂ (both must be correct)	1
	(d)	NO ₂ and SO ₂ (both must be correct)	1
		[Total: 5 marks]	
A2	(ai)	Isotope Protein Neutron Electron	
	,	Sulfur-\$2 16 32 16 = 16 16	1
	\bigcap	Sultur-34 16 34 16 = 18 16	1
	(ali)	Each sulfur isotope has different relative abundance/ percentage/ amount. When the average of the masses of the 2 sulfur isotope is taken, there is decimal (any phrase to the effect)	1
	(bi)	Correct valence electron for sulfur and	1
		hydrogen Correct number of shared electrons (2 single bond)	1
	(bii)	[structure] hydrogen sulfide is a simple covalent molecule/compound	1
		[charge carrier] there are <u>no free moving electrons/charge carrier</u> to conduct electricity. [bonding]	1
		[Total: 8 marks]	

A3 (salt	(ai)	Salt: Silver chlo Reason: It is an		lt.				1
pre)								
	(aii)	Salt: Potassium	•	•		**		1
		Reagent 1: pota	ssium hydro	oxide Reag		<u>ic acid</u> (both co	orrect)	1
	(b)				Use			
		Substance	to make car battery	to make road surface	to reduce acidity in			2
		Calcium silicate (SLAG) Calcium		√ √	√			
		hydroxide(slaked lime) Argon				-		
		7.19611					Sec. of Sec.	
		Sulfuric acid	V				1	
		All correct – 2 m	arks 3/2 cor	rect – 1 ma	rk 1 corr	ect – 0 marks		
						[Total: 6	marks]	
A4	(a)	Difference in boi	ling point		-			1
	(b)	Name: Butene		()		11 9		1
		formula: <u>C₄H</u> ₈ /	$\langle \rangle \setminus$			U		1
					<<	[Total: 3	marks]	
A5	(a)	2 Al (<u>s</u>) + Fe ₂ O correct)	$(\underline{\mathbf{s}}) \rightarrow 2 \overline{\mathbf{p}} \mathbf{e}$	(<u>1</u>) + Al ₂ 08	S	(all must be		1
	(bi)	Element	Oxidation start at the start	a extraction		Oxidised or reduced?		
		dxygeh	A/2	-4	2	unchanged		
/	V	Atuminium	1/1/2	+	3	Oxidised		1
		iron 70	+3	()	reduced		1
	(bii)	Aluminium is oxi reduction occur					tion.	1
	(c)	Exothermic reac	tion. (heat giv	/en out , ho	t)			1
		Temperature muthe effect)	ıst be high fo	r iron to be	in liquid st	ate. (any phras	ing to	1
	(d)	[P1] Aluminium o	oxide has a <u>h</u>	igh melting	point			3 pt –
		[P2] Aluminium			_	·	ucture,	2 M
		[P3] large amou electrostatic for ions. (bonding)					ed	2 pt – 1M
						[Total: 8	marks]	
A6	(ai)	carbon				•		1
	()							•

	(aii)	[P1] Carbon will <u>disrupt the orderly</u> arrangement of iron, (ALLOY) [P2] making it more <u>difficult</u> for the iron atoms to slide past each other,	3 pt – 2 M
		[P3] thus <u>increasing the strength</u> of iron. (any phrasing to the effect)	2 pt – 1M
	(b)	[P1] zinc is more reactive than iron / zinc has higher tendency to lose its electrons,	1
		[P2] zinc will preferentially <u>corrode</u> <u>in place of iron</u> .	1
	(c)	$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$	1
	(d)	The earth's mineral ores are limited and are non-renewable. Recycling helps to conserve the limited resources in our earth and make them last longer.	1
		With a decrease of mining for ores, land will be free for other uses eg, agriculture.	
		Recycling means saves the environment from pollution as unsightly scrap metals is removed from the environment.	
		[any one, reject any answer about saving cost] [Total: 7 marks]	
A7	(oi)		1
A	(ai)	Number of moles of propane: 44/44 = 1 mole Number of moles of CO ₂ : 3 moles	1
	(aii)	Volume of CO_2 : 3 x 24 = 72 dm ³ (must include correct units, no ecf)	1
	(bi)	Propene is <u>unsaturated/ contains C=C double bond</u> , thus it is able to undergo <u>addition reaction</u> . OR Propane is saturated, contains all single covalent bond, thus unable to undergo addition reaction. (any phrasing with similar meaning)	1
	(bii)	[test] Add (aqueous) bromine solution to propane and propene.	1
		[result] reddish brown colour of bromine will become colourless in propene but remains unchanged in propene	1
<	(biii)	Polymer is non-biodegradable and thus will [effect] remain in the environment for a long time, thus causing land pollution/ constantly in need to find land to bury them. Polymer, when burnt, will release toxic gases to the environment thus,	1
	11	causing air pollution. [any one]	
	(6)	H monomer (alkene)	1
		[Total: 8 marks]	
B8	(a)	[P1] An acid is a substance which <u>produces hydrogen ions</u> when it is <u>dissolved</u> in water .	1
		[P2] Example: Sulfuric acid reacts with reactive metal to produce salt and hydrogen gas/ sulfuric acid reacts with carbonates to produce salt,	Any

		water and carbon dioxide gas. Sulfuric acid react with base/alkali to produce salt and water.	one 1
		[P3] An alkali is a substance which <u>produces hydroxide ions when it is</u> <u>dissolved in water.</u>	1
		[P4] Example: sodium hydroxide reacts with ammonium salt to form salt, water and ammonia gas. (full credit if formulae/ chemical equation given)	1
	(b)	H^+ (aq) + OH^- (aq) $\rightarrow H_2O$ (I)	1
	(c)	Green solid A: copper(II) carbonate	1
		colourless gas B: <u>carbon dioxide</u>	1
		blue solution C: Copper(II) sulfate	1
		blue precipitate D: copper(II) hydroxide	1
	(d)	Sulfuric acid was added to the green solid, thus the sulfate ion might have come from sulfuric acid instead.	1
		[Total: 10 marks]	,
В9	(a)	[Etemp] when temperature is increases, speed of chemical reaction increases.	1
		[Econc] when concentration decreases, speed of chemical reaction decreases.	1
		[Rtemp] when temperature increases, particles gains kinetic energy and move faster. Frequency of effective collision will increases.	1
		[Rconc] when concentration decreases, <u>number of particles per unit</u>	
		volume decrease. Frequency of effective collision will decreases.	1
		[collision theory –1 mark]	1
	(b)	Measurement of volume of Measurement of decrease in mass hydrogen gas	_
		[1] Cotton Wool	Appar atus 1M
		gas syringe [1] Hydrochloric Acid	Set
			up 1M
		Magnesium Ribbon	
		reaction mixture [1] 0 g Electric Scale [1]	
		Student will record the volume of hydrogen gas [1] produced at regular interval. [1] Student will record the decrease in mass of reaction mixture [1] at regular interval [1].	2
		Speed of reaction will decrease with time.	1

		[Total: 10 marks]	
B10	(a)	halogen	1
	(b)	[electronic configuration] E.C of Fluorine: 2.7, E.C of chlorine is 2.8.7 (state both to get 1 mark)	1
		Since they both have <u>7 valence electron</u> , thus they are placed in group VII.	1
	(ci)	Yellow	1
	(cii)	It is <u>lighter</u> in colour than chlorine, thus Fluorine is placed <u>above</u> <u>chlorine</u> in group VII.	1
	(ciii)	[observation] colourless solution turns reddish brown.	1
	1	[explanation] fluorine is more reactive than bromine, thus it will displace bromine from potassium bromide and produce bromine.	1
<	(di)	[physical] cannot conduct electricity/ black colour/ solid at room temperature [any one] (to NOT write "high/low" melting point)	1
		[chemical] gain 1 electron to form anion/ least reactive in group VII/ reacts with metal to form ionic compound/ reacts with non-metal to form covalent compounds. [any one]	1
	(dii)	MgAtz	1
		[Total: 10 marks]	