Going Further: 6.2 The HIPPARCOS Satellite

Determination of parallax measurements is difficult from the ground because of atmospheric distortion of images, as we have already mentioned. To avoid the atmosphere, a satellite mission was proposed. This mission was developed by the European Space Agency (ESA) starting in 1980, and the resulting satellite was launched in 1989 from Kourou, French Guiana, aboard a French Arianne rocket. The satellite, called the High Precision Parallax Collecting Satellite, or HIPPARCOS, operated from 1989 until 1993, when it was turned off. The name HIPPARCOS pays homage to the ancient Greek astronomer Hipparchus (c. 190 BCE–c. 120 BCE).

The goals of the mission were to obtain parallax measurements of at least 2 milliarcsecond precision for more than 100,000 stars, as well as high-precision photometry for those stars. This is much higher positional precision than we can attain in ground-based observations. The final HIPPARCOS catalog of stellar parallaxes and proper motions contains 118,218 stars with parallaxes good to 1 milliarcsecond. So, these stars have precisely determined distances out to 1,000 pc (compare this to ~40 pc for ground-based parallaxes).

In addition to the HIPPARCOS catalog, the mission produced a secondary catalog called TYCHO. The TYCHO catalog contains more than 1 million stars with parallax measurements better than 7 milliarcseconds (distances to about 140 pc). An extension of the TYCHO catalog, called TYCHO2, has added an additional 1.5 million stars, bringing the total number of stars to 2.5 million. The TYCHO and TYCHO2 catalogs were based upon data from the satellite’s star mapper, the system used to keep the satellite pointing in the proper direction. As a result, they have somewhat lower positional precision than the HIPPARCOS catalog.

The accurate parallaxes obtained by HIPPARCOS have allowed much better calibration of all the nearby rungs on the distance ladder (see Section 6.5) and have improved the precision of the measurements to all more distant objects as a result.

A follow-up high-precision mission, called Gaia, has many of the same goals as HIPPARCOS, though with significantly extended capabilities. In particular, it will obtain positions of a billion stars to 24 microarcsecond precision. This will push stars with precisely known parallaxes out to about 10 kpc. Gaia, also developed by ESA, launched in 2013.