GIS Tools and Techniques for Environmental Assessment of Pipeline Construction

Erik Danielson
February 27, 2007
Environmental Assessment

- Pipeline construction or replacement
 ESIA/FERC projects

- GIS & GPS tools & techniques
 - Environmental field surveys
 - Data integration
 - Impacts analysis
 - Mapping
Data Collection

- Garbage in, Garbage out
- Know the Coordinate System for the project!
 - UTM? Stateplane?
 - Meters? Feet (International or U.S. feet?)
- Best available data / most practical data
GPS Field Data Collection

- Establish a protocol
- Sub-meter horizontal positioning
GPS Field Data Collection

- Establish a protocol
- Sub-meter horizontal positioning
- Standardized data dictionary
 - Must be identical for multiple crews
GPS Field Data Collection

- All features require a unique identifier
 8-12 character FEATURE_ID FNNCCXXX

 ● F = Feature Type
 ● NN = Team Number
 ● CC = County code
 ● XXX = Feature number (001-999 for each county)

Example: the FEATURE_ID for team #2B’s thirteenth wetland for Scotland County would be W2BSC013
<table>
<thead>
<tr>
<th>Flag Series</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Enter/Ingress</td>
</tr>
<tr>
<td>200</td>
<td>Exit/Egress</td>
</tr>
<tr>
<td>300</td>
<td>Side</td>
</tr>
<tr>
<td>400</td>
<td>Inclusion</td>
</tr>
<tr>
<td>500</td>
<td>Transition</td>
</tr>
<tr>
<td>600</td>
<td>Single line where width<10’ (i.e., ditch/stream)</td>
</tr>
<tr>
<td>700</td>
<td>Ancillary Facility (i.e., Access Roads, Pipeyard, Pump House, etc.)</td>
</tr>
</tbody>
</table>

Ancillary Facility (i.e., Access Roads, Pipeyard, Pump House, etc.)
GPS Field Data Review & Editing

- Data review & correction each day
- Biologist must review and approve all points, lines, and attributes
- Differential correction
- Editing
Post Processing

- Check data in Trimble Pathfinder Office
- Export to shape files
 - Check settings & coordinate system
 - Use the same settings every time
- Maintain a list of all GPS rover files received from the field crews
- Print maps of all raw data for team review
Post Processing

- Merge data sets
- Deliver data to project engineers

Conversion Tools
- From Raster
 - Add CAD Fields
 - Create CAD XData
- To CAD
 - Export to CAD
 - Set CAD Alias

Export to CAD

- Input Features
- Output Type
 - DXF_R2000
 - DGN_V8
 - DWG_R14
 - DWG_R2004
 - DXF_R14
 - DXF_R2000
 - DWG_R2004

- Append to Existing Files (optional)
- Seed File (optional)

Watershed Concepts
Prepare Engineering Data

Data required from project engineers:

- Centerline & mileposts
- Construction Right-of-way (ROW)
 - Permanent Workspace
 - Temporary Workspace
 - Additional Temporary Workspace (ATWS)
- Above Ground Facilities
 - Pipe yards, contractor yards, warehouses, meter stations, compressor stations
- Access Roads
- Aerial Photography
Load Engineering Data into ArcMap
Create a route from centerline
Prepare Engineering Data

- Construction ROW / Facility Boundaries

- Construction Workspace
 - Permanent
 - Temporary
 - ATWS
 - Facility
Impacts Analysis

- T&E (Threatened & Endangered) Species
- Water Crossings
- Wetlands
- Land Use
- Soils
- Geology
- Cultural Resources
- Protected/Conservation lands
Linear Referencing Tools
Problem:
- Determine milepost, distance and direction for all species locations along the pipeline.

Solution:
- Linear referencing tools in ArcMap
T&E Species Analysis

Route Events GeoProcessing Wizard

Choose a route event processing operation, then click the Next button to choose options.

- Intersect two route event layers
- Union two route event layers
- Dissolve/Concatenate route events
- Transform events from one route reference to another
- Locate point features along routes
- Locate polygon features along routes

About locating points along routes

This operation derives point events from point features by locating the point features along a route reference.

Input

Output

More About Locating Points
T&E Species Analysis

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>79</td>
<td>ZONE 15</td>
<td>503.91</td>
<td>75</td>
<td>NORTH</td>
<td>199</td>
<td>3-31-2006</td>
<td>15</td>
<td>S</td>
<td>279773.00</td>
</tr>
<tr>
<td>80</td>
<td>ZONE 15</td>
<td>506.14</td>
<td>13</td>
<td>NORTH</td>
<td>200</td>
<td>3-31-2006</td>
<td>15</td>
<td>S</td>
<td>283199.00</td>
</tr>
<tr>
<td>81</td>
<td>ZONE 15</td>
<td>518.24</td>
<td>86</td>
<td>NORTH</td>
<td>201</td>
<td>3-31-2006</td>
<td>15</td>
<td>S</td>
<td>302097.00</td>
</tr>
<tr>
<td>82</td>
<td>ZONE 15</td>
<td>524.08</td>
<td>192</td>
<td>SOUTH</td>
<td>202</td>
<td>3-31-2006</td>
<td>15</td>
<td>S</td>
<td>311116.00</td>
</tr>
<tr>
<td>83</td>
<td>ZONE 15</td>
<td>530.36</td>
<td>138</td>
<td>NORTH</td>
<td>203</td>
<td>3-31-2006</td>
<td>15</td>
<td>S</td>
<td>320909.00</td>
</tr>
<tr>
<td>84</td>
<td>ZONE 15</td>
<td>533.47</td>
<td>143</td>
<td>NORTH</td>
<td>204</td>
<td>3-31-2006</td>
<td>15</td>
<td>S</td>
<td>325736.00</td>
</tr>
<tr>
<td>85</td>
<td>ZONE 15</td>
<td>556.95</td>
<td>26</td>
<td>NORTH</td>
<td>205</td>
<td>3-31-2006</td>
<td>15</td>
<td>S</td>
<td>361892.00</td>
</tr>
<tr>
<td>86</td>
<td>ZONE 15</td>
<td>563.09</td>
<td>19</td>
<td>NORTH</td>
<td>206</td>
<td>3-31-2006</td>
<td>15</td>
<td>S</td>
<td>371585.00</td>
</tr>
<tr>
<td>87</td>
<td>ZONE 15</td>
<td>565.88</td>
<td>24</td>
<td>NORTH</td>
<td>207</td>
<td>3-31-2006</td>
<td>15</td>
<td>S</td>
<td>376038.00</td>
</tr>
<tr>
<td>88</td>
<td>ZONE 15</td>
<td>567.54</td>
<td>121</td>
<td>NORTH</td>
<td>208</td>
<td>3-31-2006</td>
<td>15</td>
<td>S</td>
<td>378709.00</td>
</tr>
<tr>
<td>89</td>
<td>ZONE 15</td>
<td>570.39</td>
<td>133</td>
<td>NORTH</td>
<td>209</td>
<td>3-31-2006</td>
<td>15</td>
<td>S</td>
<td>383206.00</td>
</tr>
<tr>
<td>90</td>
<td>ZONE 15</td>
<td>574.78</td>
<td>16</td>
<td>NORTH</td>
<td>210</td>
<td>3-31-2006</td>
<td>15</td>
<td>S</td>
<td>390127.00</td>
</tr>
<tr>
<td>91</td>
<td>ZONE 15</td>
<td>583.15</td>
<td>26</td>
<td>NORTH</td>
<td>211</td>
<td>3-31-2006</td>
<td>15</td>
<td>S</td>
<td>403443.00</td>
</tr>
<tr>
<td>92</td>
<td>ZONE 15</td>
<td>592.27</td>
<td>89</td>
<td>NORTH</td>
<td>212</td>
<td>3-31-2006</td>
<td>15</td>
<td>S</td>
<td>417882.00</td>
</tr>
<tr>
<td>93</td>
<td>ZONE 15</td>
<td>595.31</td>
<td>37</td>
<td>NORTH</td>
<td>214</td>
<td>3-31-2006</td>
<td>15</td>
<td>S</td>
<td>422636.00</td>
</tr>
<tr>
<td>94</td>
<td>ZONE 15</td>
<td>595.33</td>
<td>104</td>
<td>NORTH</td>
<td>213</td>
<td>3-31-2006</td>
<td>15</td>
<td>S</td>
<td>422695.00</td>
</tr>
</tbody>
</table>
Wetlands Analysis

Problem:
Calculate acres of wetlands impacted by proposed pipeline construction corridor within each county
Wetlands Analysis

- **Process Steps:**
 Conduct “Intersect” of Wetlands, Construction Workspace, and County layer
Wetlands Analysis

- **Process Steps**: Database file (DBF) of wetland polygons within corridor
Wetlands Analysis

Solution: Load DBF file into Excel and create pivot table report

<table>
<thead>
<tr>
<th>ACRES</th>
<th>STATE</th>
<th>COUNTY</th>
<th>Wetland Type</th>
<th>Extra</th>
<th>Permanent</th>
<th>Temporary</th>
<th>Grand Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kansas</td>
<td>Brown</td>
<td>Emergent</td>
<td>0.47</td>
<td>0.76</td>
<td>0.44</td>
<td>1.67</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Brown Total</td>
<td></td>
<td>0.47</td>
<td>0.76</td>
<td>0.44</td>
<td>1.67</td>
</tr>
<tr>
<td></td>
<td>Duniphan</td>
<td>Emergent</td>
<td></td>
<td>0.14</td>
<td>0.80</td>
<td>0.86</td>
<td>1.79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Forested</td>
<td></td>
<td>0.54</td>
<td>0.95</td>
<td>0.66</td>
<td>2.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scrub Shrub</td>
<td></td>
<td>0.14</td>
<td>0.02</td>
<td>0.07</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>Duniphan Total</td>
<td></td>
<td></td>
<td>0.82</td>
<td>1.77</td>
<td>1.60</td>
<td>4.19</td>
</tr>
<tr>
<td></td>
<td>Kansas Total</td>
<td></td>
<td></td>
<td>1.29</td>
<td>2.53</td>
<td>2.04</td>
<td>5.86</td>
</tr>
<tr>
<td></td>
<td>Missouri</td>
<td>Audrain</td>
<td>Emergent</td>
<td>0.00</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
</tr>
<tr>
<td></td>
<td>Audrain Total</td>
<td></td>
<td></td>
<td>0.00</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
</tr>
<tr>
<td></td>
<td>Buchanan</td>
<td>Emergent</td>
<td></td>
<td>0.12</td>
<td>0.82</td>
<td>0.47</td>
<td>1.29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Forested</td>
<td></td>
<td>0.34</td>
<td>0.39</td>
<td>0.39</td>
<td>0.86</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scrub Shrub</td>
<td></td>
<td>0.31</td>
<td>0.03</td>
<td>0.03</td>
<td>0.34</td>
</tr>
<tr>
<td></td>
<td>Buchanan Total</td>
<td></td>
<td></td>
<td>0.12</td>
<td>1.47</td>
<td>0.89</td>
<td>2.48</td>
</tr>
<tr>
<td></td>
<td>Caldwell</td>
<td>Emergent</td>
<td></td>
<td>0.43</td>
<td>0.46</td>
<td>0.46</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Forested</td>
<td></td>
<td>0.02</td>
<td>0.06</td>
<td>0.06</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scrub Shrub</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Caldwell Total</td>
<td></td>
<td></td>
<td>0.45</td>
<td>0.57</td>
<td>1.02</td>
<td>1.02</td>
</tr>
<tr>
<td></td>
<td>Carroll</td>
<td>Emergent</td>
<td></td>
<td>0.02</td>
<td>0.44</td>
<td>0.61</td>
<td>1.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Forested</td>
<td></td>
<td>0.06</td>
<td>0.33</td>
<td>0.33</td>
<td>0.39</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Scrub Shrub</td>
<td></td>
<td>0.13</td>
<td>0.08</td>
<td>0.08</td>
<td>0.21</td>
</tr>
<tr>
<td></td>
<td>Carroll Total</td>
<td></td>
<td></td>
<td>0.02</td>
<td>0.63</td>
<td>1.02</td>
<td>1.67</td>
</tr>
</tbody>
</table>
Soils Analysis

Problem: Report soil characteristics by milepost for entire pipeline route

- Mapping Unit
- Soil Series and Percent Component
- Drainage Class
- Surface Texture
- Range of Slopes
- Soil Erodibility Factor
- High Compaction Potential
- Hydric Soils
- Highly Erodible Soil
- Low Revegetation Potential
- Prime Farmland Soils
Soils Analysis

Solution: Microsoft Access & Model Builder
Mapping

Problem: Create maps along a 700 mile Pipeline Route on Aerial background.
Solution: Map Book Script
Mapping
Additional GIS work

- Initial route selection / desktop analysis
- Alternatives analysis
- Co-location statistics
- Land use
- Population & social impacts analysis
- Water resource studies & risk analysis
- Cultural resources
- Post construction monitoring
- Public outreach efforts
Questions?

Erik Danielson
edanielson@watershedconcepts.com
617-482-4930 x4761