Geometric Networks
An Introduction

Craig Gillgrass
Erik Hoel
Caveats

• Presumed knowledge of the Geodatabase

• Concentrate on key issues
 - Plenty of documentation that covers basic material
 - Finish up by talking about what’s new in 10.1/10.2

• Lots of material, little time
 - Solution: talk fast, ignore questions
Agenda

- Overview of the model
- Editing and analyzing
- Versioning
- Performance and other key issues
- What’s in new 10.1/10.2
Overview of the model
Geometric Networks

- Motivated by utility and natural resources industries
- Contain edges and junctions
- Connectivity relationships between network feature classes
 - Connectivity based upon geometric coincidence of vertices
 - Connectivity represented in a connectivity index
 - Connectivity is always maintained
- All participating features are custom – they are not simple features
Network Feature Classes

• Network features only live in a geometric network
• Three types:
 - Simple junction
 - Simple edge
 - Complex edge
• Orphan junction feature class
 - Used to maintain integrity
 - Edges must always have a junction at their endpoints
 - System controlled – do not add attributes
Network Index (Logical Network)

- Physical representation of network connectivity
 - Compact and optimized
 - Connectivity and weights (attributes) stored in BLOBs (binary)

- High performance graph engine
 - Fast network traversals

- Network traversals and analysis operations utilize the network index
Simple Versus Complex Edges

• Simple edges
 - No mid-span connectivity
 - Resources flow from endpoint to endpoint
 - e.g., service laterals, driveways, city streets

• Complex edges
 - Allow mid-span connectivity
 - Resources flow along, but may be siphoned off periodically
 - e.g., water mains, highways

• How do you decide whether a feature class should be simple or complex?
 - Ask yourself whether resources will be siphoned along the edge
Comparison

<table>
<thead>
<tr>
<th>Network Dataset</th>
<th>Geometric Network</th>
</tr>
</thead>
<tbody>
<tr>
<td>transportation</td>
<td>utilities/natural resources</td>
</tr>
<tr>
<td>path finding and allocation</td>
<td>network tracing</td>
</tr>
<tr>
<td>operations</td>
<td>functionality</td>
</tr>
<tr>
<td>turns supported</td>
<td>turns not supported</td>
</tr>
<tr>
<td>uses simple features:</td>
<td>uses custom features:</td>
</tr>
<tr>
<td>• points and lines</td>
<td>• simple/complex edge features</td>
</tr>
<tr>
<td></td>
<td>and junctions</td>
</tr>
<tr>
<td>more robust attribute</td>
<td>weights based on feature attributes</td>
</tr>
<tr>
<td>(weight) model</td>
<td>system automatically</td>
</tr>
<tr>
<td></td>
<td>maintains connectivity</td>
</tr>
<tr>
<td>user controls when</td>
<td></td>
</tr>
<tr>
<td>connectivity is built</td>
<td></td>
</tr>
</tbody>
</table>
Creating a Geometric Network
Editing and analyzing
Editing

• Same workflow as editing simple features
 - Specific tools/commands on the Geometric Network Editing toolbar

• Connectivity maintained on the fly
 - Based on geometric coincidence of vertices

• Use snapping and the Feature Cache (nee Map Cache)

• Junction subsumption
 - Snapping junctions to orphan junctions

• Exhaustive network editing examples in the Help
 - See About Editing Geometric Network Features for more examples
Flow Direction

• Setting Flow Direction
 - Within an Edit Session
 - Must have at least one Simple Junction with an Ancillary Role field
 - Do this after:
 - Network creation
 - Feature creation or change in connectivity of existing features
 - Source/sink changes

• Does not follow digitized direction by default (prior to 10.1)
 - New GP tool at 10.1 supports setting this

• Arrows are drawn at mid-point on the edge features
Flow Direction - Indeterminate Flow

- Multiple sources and sinks cause conflicting flow direction
 - Yields indeterminate flow direction
- Consider the following case where edge 3 has indeterminate flow

```
source

sink
```
Flow Direction - Indeterminate Flow

• Consider flow direction when only the Source is set

• Consider flow direction when only the Sink is set
Flow Direction

• This results in a conflict

• Flow direction
 - If the flow direction is in agreement between both the source-only and sink-only cases, the flow direction is set to that direction
 - If the flow direction is in conflict between the source-only and sink-only cases, flow is set to indeterminate

• How to set flow direction manually?
 - Samples from ArcObjects Online

• Knowledge Base Article 20685
Network Connectivity and Verification Tools

- **Rebuild** connectivity tool
 - Selectively recreate all connectivity over an area

- **Repair** connectivity command (intended for larger areas)
 - Correct connectivity within a network
 - Does not require entire rebuild of network connectivity, only affects features with inconsistent connectivity
 - Warnings can be raised
 - Optional log file can be created
 - Operate on network being edited for File Geodatabases; entire version for Enterprise Geodatabases
Editing and tracing

Creating new network features, editing existing features, and performing tracing with flow direction
Versioning
Versioning

- Geodatabase uses an optimistic concurrency approach
- No locks applied when features/objects modified
 - Other editors may edit same features, at the same time
- Introduces the potential for feature conflicts
- A conflict may occur when
 - Two editors are editing the same data in the same version at the same time
 - The same feature is modified in two different versions
- How to manage this?
 - Use workflow management to prevent conflicts
 - Manage the conflicts once they occur
Versioning – Rules for Reconcile

1. GN editing rules apply to Reconcile / Conflict replacement
 a. i.e. Orphan junctions cannot subsume each other

2. New features are not created during Reconcile

3. Conflicts result if same features modified in two versions
 a. Update could be to connectivity and/or to geometry/attributes
 b. Conflicts may be propagated due to connectivity changes
 i. Features may be in conflict even though not directly edited in both versions
 c. Newly created features may also be propagated to conflicts
Versioning – Rules for Reconcile

4. Changes **only to the connectivity** of a feature in two versions will not result in conflicts
 a. Reconcile will filter these features

5. Disconnected state of a features is not considered or maintained
Versioning – Rules for Conflict Management

1. GN editing rules apply to Reconcile / Conflict replacement
 a. i.e., Orphan junctions cannot subsume each other
 b. Restoring features:
 i. Restoring an edge restores the endpoint junctions
 ii. Restoring a junction will not restore connected edges
 c. Removing features:
 i. Removing an edge will not remove the junctions
 ii. Removing an endpoint junction will remove the edge

2. Conflict resolution can create new features
 a. Default junctions from connectivity rules are honored
Versioning – Scenarios

• Two versions, Edit and Target

• The current Edit version is a child of the Target version

• Edit version is reconciled against Target version

• The default behavior will be for the features in Target version to take precedence over the features in Edit version
Versioning – Scenarios

1. Change geometry of a complex edge in two versions
2. Change connectivity of a junction in two versions
3. Delete a feature in the Target version, change it in the Edit version
4. Update a network weight in the Target version, change the connectivity of the feature in the Edit version
Versioning – Scenario 1

- Target Version
 - A standard junction is added (vertex also added)
Versioning – Scenario 1

- **Target Version**
 - A standard junction is added (vertex also added)

- **Edit Version**
 - A simple edge is added to the same complex edge

Change geometry of a complex edge in two versions
Versioning – Scenario 1

• Target Version
 - A standard junction is added (vertex also added)

• Edit Version
 - A simple edge is added to the same complex edge

• Reconcile
 - Update-update conflict on the horizontal edge
Versioning - Scenario 1

- **Target Version**
 - A standard junction is added (vertex also added)

- **Edit Version**
 - A simple edge is added to the same complex edge

- **Reconcile**
 - Update-update conflict on the horizontal edge

Versioning – Rules for Reconcile

1. GN editing rules apply to Reconcile / Conflict replacement
 a. i.e. Orphan junctions cannot subsume each other
2. New features are not created during Reconcile
3. Conflicts result if same features modified in two versions
 a. Update could be to connectivity and/or to geometry/attributes
 b. Conflicts may be propagated due to connectivity changes
 i. Features may be in conflict even though not directly edited in both versions
 c. Newly created features may also be propagated to conflicts

Change geometry of a complex edge in two versions
Versioning – Scenario 1

• **Target Version**
 - A standard junction is added (vertex also added)

• **Edit Version**
 - A simple edge is added to the same complex edge

• **Reconcile**
 - Update-update conflict on the horizontal edge
 - Due to the geometry as well as the connectivity being modified on each
Versioning – Scenario 2

- **Target Version**
 - A simple edge is deleted

[Diagram showing change in connectivity of a junction in two versions]

- **Common Ancestor**
- **Target Version**
Versioning – Scenario 2

• Target Version
 - A simple edge is deleted

• Edit Version
 - An adjacent edge is added
Versioning – Scenario 2

- **Target Version**
 - A simple edge is deleted

- **Edit Version**
 - An adjacent edge is added

- **Reconcile**
 - No conflicts are detected
Versioning – Scenario 2

- **Target Version**
 - A simple edge is deleted

- **Edit Version**
 - An adjacent edge is added

- **Reconcile**
 - No conflicts detected

Versioning – Rules for Reconcile

4. Changes *only to the connectivity* of a feature in two versions will not result in conflicts
 - a. Reconcile will filter these features
5. Disconnected state of a features is not considered/maintained
Versioning – Scenario 2

- **Target Version**
 - A simple edge is deleted

- **Edit Version**
 - An adjacent edge is added

- **Reconcile**
 - No conflicts are detected
 - Only the connectivity of the highlighted junction has changed; Reconcile filters any conflict
Versioning – Scenario 3

• Target Version
 - An orphan junction is deleted (along with simple edges)

Delete a feature in the Target version, change it in the Edit version

Common Ancestor

Target Version
Versioning – Scenario 3

- **Target Version**
 - An orphan junction is deleted (along with simple edges)

- **Edit Version**
 - An adjacent edge is added

Delete a feature in the Target version, change it in the Edit version
Versioning – Scenario 3

- Target Version
 - An orphan junction is deleted (along with simple edges)

- Edit Version
 - An adjacent edge is added

- Reconcile

Delete a feature in the Target version, change it in the Edit version.
Versioning – Scenario 3

• **Target Version**
 - An orphan junction is deleted (along with simple edges)

• **Edit Version**
 - An adjacent edge is added

• **Reconcile**
 - Delete-update conflict on the junction
 - Conflict propagation on the new edge

Delete a feature in the Target version, change it in the Edit version

Common Ancestor

Edit Version

Target Version

reconcile

delete-update and conflict propagation
Versioning – Scenario 3

• Target Version
 - An orphan junction is deleted (along with simple edges)

• Edit Version
 - An adjacent edge is added

• Reconcile
 - Delete-update conflict on the junction
 - Conflict propagation on the new edge

Delete a feature in the Target version, change it in the Edit version

Versioning – Rules for Reconcile

1. GN editing rules apply to Reconcile / Conflict replacement
 a. i.e. Orphan junctions cannot subsume each other
2. New features are not created during Reconcile
3. Conflicts result if same features modified in two versions
 a. Update could be to connectivity and/or to geometry/attributes
 b. Conflicts may be propagated due to connectivity changes
 i. Features may be in conflict even though not directly edited in both versions
 c. Newly created features may also be propagated to conflicts

delete-update and conflict propagation
Versioning – Scenario 4

- **Target Version**
 - ENABLED value is updated on complex edge

Update network weight in Target version, change connectivity of feature in Edit version
Versioning – Scenario 4

• Target Version
 - ENABLED value is updated on complex edge

• Edit Version
 - orphan junction on same complex edge is deleted

Update network weight in Target version, change connectivity of feature in Edit version
Versioning – Scenario 4

- **Target Version**
 - ENABLED value is updated on complex edge

- **Edit Version**
 - orphan junction on same complex edge is deleted

- **Reconcile**
 - Update-update conflict on the horizontal edge
 - Update-delete conflict on junction

Update network weight in Target version, change connectivity of feature in Edit version

Common Ancestor

Edit Version

Target Version

reconcile
Versioning – Scenario 4

- **Target Version**
 - ENABLED value is updated on complex edge

- **Edit Version**
 - orphan junction on same complex edge is deleted

- **Reconcile**
 - Update-update conflict on the horizontal edge
 - Update-delete conflict on junction due to conflict propagation
Versioning – Scenario 4

• **Target Version**
 - ENABLE value is updated on complex edge

• **Edit Version**
 - orphans junction on same complex edge

• **Reconcile**
 - Update-update conflict on the horizontal edge
 - Update-delete conflict on junction

Update network weight in Target version, change connectivity of feature in Edit version

Versioning – Rules for Reconcile

1. GN editing rules apply to Reconcile / Conflict replacement
 a. i.e. Orphan junctions cannot subsume each other
2. New features are not created during Reconcile
3. Conflicts result if same features modified in two versions
 a. Update could be to connectivity and/or to geometry/attributes
 b. Conflicts may be propagated due to connectivity changes
 i. Features may be in conflict even though not directly edited in both versions
 c. Newly created features may also be propagated to conflicts

update-update conflict and conflict propagation
Versioning - Recommendations

• Use workflow management techniques to prevent conflicts
 - Avoid editing features in multiple locations in same session
 - Avoid changing large/long features in different versions
 - Plan for bulk updates or edits

• Manage the conflicts once they occur
 - Use different Reconcile options
 - Define conflicts “By Attribute”
 - “In favor of the Edit Version”
 - Resolve conflicts at the top level or class level
 - Resolve junctions first to avoid error
Performance and other key issues
API

- Use Logical Network API for navigation and tracing whenever possible
 - IForwardStar
- Navigational APIs available at the Geometric Network feature level
 - Intended for small tactical navigation
- Analysis algorithms should always consume the Logical Network APIs
 - Several orders of magnitude faster
 - INetwork, INetTopology, ...
Performance

• Connectivity maintained on the fly
 - Connectivity based upon coincidence
 - When adding a new feature, all other network feature classes are searched
 - Use the feature cache

• Minimize the number of network feature classes
 - Utilize subtypes

• Subtypes not for you? Consider lumping of classes
 - Handle unpopulated attributes

• Data model structure is critical
 - Empty classes as expensive as heavily populated
 - Relationship messaging and event handling
Dropping Networks

• Why?
 - Add a new populated class
 - Snapping tolerance too small on previous build

• What happens?
 - Network classes revert to simple classes
 - Network index (logical network) deleted
 - Orphan junction class will be deleted
 - Re-specify connectivity rules and weights
 - Enabled and ancillary role fields retained
 - If snapped during first build, may not need to specify snapping again
Preparing Your Data

• Ideally, your data is clean before you build a network
 • Features that should be connected are geometrically coincident
 • No overshoots or undershoots

• If your data is not clean or you are not sure, you can use one of the following workflows:
 • Minor problems: Enable snapping during the network creation
 • Godzilla problems: Use Topology to find and correct errors

• May still encounter invalid geometries if either method is used
Preparing Your Data

• Ideally, your data is clean before you build a network.
• Features that should be connected are geometrically coincident.
• No overshoots or undershoots.

If your data is not clean or you are not sure, you can use one of the following workflows:

• Minor problems: Enable snapping during the network creation.
• Godzilla problems: Use Topology to find and correct errors.

May still encounter invalid geometries if either method is used.
Preparing Your Data

• Use Topology to find and correct errors, or improve low quality data
 • Good option if:
 • You’re unsure of your overall data quality
 • Know that major edits and corrections are needed in your data to ensure geometric coincidence

• Enable snapping during the network creation
 • Good option if:
 • You’re confident with your overall data quality
 • Minor corrections are needed in your data

• More rules available that help to discover common data errors for geometric networks
Prototyping

- **Largest mistake made with the Geodatabase**
 - Structure is critical – data quantity is not
 - Prototype as soon as a first pass model is available
 - General structure; small details unimportant
 - Load a modest amount of data (on versioned SDE)
 - Empty classes are OK
- **Try editing, observe system performance**
- **Repeat this process as necessary**
What’s in 10.1
What’s New at 10.1

• Geometric Network functionality available through geoprocessing
• Geometric Network creation and management
 - Creation of network and ability to remove empty feature classes
 - Connectivity rule management
• Network Tracing
 - Trace and Set Flow Direction
• Persist settings made to Utility Network Analyst toolbar in map documents
Esri Development Initiatives 2013
Esri Development Initiatives 2013

• Goal - provide existing consumers of the geometric network a release from which they can continue to use our software with confidence

• Three main areas being reviewed:
 - Reconcile/Conflict Management process
 - Geometric network tools
 - Replication workflows

• Updates to be made available on the releases you currently deploy
Esri Development Initiatives 2013

- **Reconcile**
 - Update process based on resolving in favor of Edit version
 - Do not lock the parent during reconcile as default option
 - Improve overall resiliency of reconcile
 - Have been looking at issues as a whole instead of one by one
 - Better able to handle issues that might occur
Esri Development Initiatives 2013

- Conflict Management
 - Reduce conflict propagation due to relationship classes
 - Filter false conflicts (no field flagged)
 - Flag inserted features when promoted to conflicts
 - Filtering of conflicts on specified fields
 - Allow users to only see fields in conflict on Conflict Dialog
Esri Development Initiatives 2013

- Geometric Network Tools
 - Augment Verify Connectivity command
 - Provide option to run on a subset of the data
 - Correct cases where Verify Connectivity is not finding network inconsistencies
 - Tool to identify Junctions not connected to anything
Esri Development Initiatives 2013

• Replication Workflows
 - Fixes to missing data issues
 - More tolerant synchronization with better logging
 - Consolidate individual fixes
 - Additional documentation on best practices
Steps to Evaluate UC Sessions

• My UC Homepage > “Evaluate Sessions”

• Choose session from planner
 OR

• Search for session

• Offering IDs
 - Wednesday – 1324
 - Thursday – 1417

www.esri.com/ucsessionssurveys