Efficient Data Management & Analysis with Geoprocessing

Jason Pardy (jpardy@esri.com)
Ken Hartling (khartling@esri.com)
Outline

• Recommendations when working with large datasets
• 64bit Background Geoprocessing
• New tools and improvements (10.1-10.2)
• Usage tips and best practices
• Sharing Geoprocessing/Analysis workflows (Services and packages)
Large Datasets
What are the large data processing challenges for Geoprocessing?

- ArcGIS permits the storage of very large, complex datasets
 - National & global data
- Large datasets can result in massive amounts of feature overlap
- Users expect to analyze and process large data on local PC’s

How do we manage processing of large data?
Large Data Processing

• Topology engine is an internal engine that performs overlay processing, dissolve, and more
 - It uses logic called adaptive subdivision processing which was added at 9.2 – known as Tiling.

• Tools with this logic include:
 - Clip, Erase, Identity, Intersect, Union, Split, Symmetrical Difference, Update
 - Dissolve, Feature To Line, Feature To Polygon, Polygon To Line
Why we (Esri) subdivide the data?

- Tools perform best when processing is done within your machine’s physical memory (RAM)

- Triggered when data cannot be processed within the available amount of physical memory:
 - A dataset contains a large number of features (collection of features with hundreds of thousands or millions of vertices)
 - Large number of overlapping features
 - Overlap of features is complex
How tiling works – High level look behind the scenes

• Start by trying to load and process all the data in memory.

• If all the data will not fit into memory, we use a Quad Tree approach:
How to get it processed

Best practices and recommendations
Prep for success

Environment

System Requirements?
 32 or 64bit?
 Have enough physical memory?
Where are you running the process from?
 Standalone script?
 ArcMap?
 ...

Run in isolation.
Prep for success

Data

Meet Geodatabase requirements?
Geometry good?
Is the storage format appropriate?
in_memory considerations.
Godzilla features?

...
Prep for success

Data

Feature vertex density too high?
Review your Geodatabase design.
Spatial Reference considerations.
See blog for further details

- How to be successful overlaying large complex datasets in Geoprocessing.
- [http://blogs.esri.com/esri/arcgis/2012/06/15/be-successful-overlaying-large-complex-datasets-in-geoprocessing/]
Large data processing - ArcGIS 10.1 and beyond

- Better memory management while an overlay operation runs

- No hard limit to amount of memory
 - Adds considerable scalability in 64bit environment

- All best practices and recommendations should still be followed
Overlay Performance Improvement Example

- Dissolve Tool Example:
 - 600,000 buffer polygons that have a massive amount of overlap
 - Dissolve field with 63 unique values
 - Output = 32bit – 65 polys; 64bit – 63 polys

<table>
<thead>
<tr>
<th>10 SP4</th>
<th>10.1sp1</th>
<th>10.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>32bit</td>
<td>hang</td>
<td>4hrs+</td>
</tr>
<tr>
<td>64bit</td>
<td>hang</td>
<td>7hrs+</td>
</tr>
</tbody>
</table>
Overlay Scalability Examples

- Failed to complete in 10
- In 10.1 on Windows 7 64bit, 8GB RAM, 12 GB virtual memory

<table>
<thead>
<tr>
<th>Test</th>
<th>32bit script</th>
<th>32bit ArcMap (LAA)</th>
<th>Server 64bit script</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissolve</td>
<td>48 min</td>
<td>32 min</td>
<td>32 min</td>
</tr>
<tr>
<td>Dissolve</td>
<td>25 min</td>
<td>18 min</td>
<td>14 min</td>
</tr>
<tr>
<td>Intersect</td>
<td>29 min</td>
<td>34 min</td>
<td>21 min</td>
</tr>
<tr>
<td>Intersect</td>
<td>1 hr 53 min</td>
<td>1 hr 53 min</td>
<td>1 hr 37 min</td>
</tr>
</tbody>
</table>

- Not every overlay has gotten faster, but scalability has greatly improved.
64bit Background

- Introduced in 10.1 SP1
- ArcGIS for Desktop – Background Geoprocessing (64x) (Windows)
- ArcGIS Engine – Background Geoprocessing (64x) (Windows)
 - Separate install
- This is **not** a solution which answers performance questions. 64x BG is not always faster, but does scale to provide ability to crunch large data that may have not been possible before.
64bit Background

- Data Types not supported:
 - Personal GDB (.mdb)
 - Excel
 - OleDB

- Tools not supported:
 - .NET tools (metadata, mobile)
 - Some GDB administration tools (foreground only)
 - Graphing tools
64bit Background

- System must be 64bit (64bit OS)
- Creates two new folders
 - C:\Program Files (x86)\ArcGIS\Desktop10.2\bin64
 - C:\Program Files (x86)\ArcGIS\Desktop10.2\Python64
- Total additional size on disk: 480 megs
- Installer size: ~140 megs
Running 64bit GP outside ArcGIS

- **Python:**
 - Run using the Python 64-bit installed with BG64

- **ArcObjects:**
 - IGeoprocessor2::ExecuteAsync()
 - Geoprocessor::ExecteAysnc() (.net assembly)
64bit Processing… what’s all the fuss about?

- 32bit applications
- On Windows 32bit os
 - 2 GB
 - Up to 3 GB if Large Address Aware
- On Windows 64bit os
 - 2 GB
 - 4 GB if Large Address Aware
64bit Processing… what’s all the fuss about?

- 64bit applications
- On Windows 32bit os
 - N/A
- On Windows 64bit os
 - 8 TB (Yep, terabytes. However, there are limits on how much memory different Windows versions and platforms actually support.)
64bit Processing... what’s all the fuss about?

- Running a 32bit app (like ArcMap) on a 64bit os still is bound by the limitations of 32bit. It won’t matter much how much additional memory is installed.
- A 64bit process running on a 64bit os has the potential to take advantage of a lot more memory.
64bit Processing... what’s all the fuss about?

- Installing 64bit Background Processing allows ArcMap to take advantage of 64bit processing during 32bit ArcGIS sessions.
Multiprocessing

• New blog:

• Not recommended for overlay operations
 - Topo engine checks for available memory for the system and takes 60% or more. Since all cores share the same RAM, a large percentage of available RAM is consumed, and so on, eventually failing.

• For server services that do large data processing, one process per node (different machines)
10.1/10.2 New Tools & Improvements
New Tools

• 10.1 - 99 new tools in core and extensions
 - 50 + for core
• 10.2 – 16 new tools
• See Desktop help for complete list in “What’s New for geoprocessing”
New Data Access Cursors

Read records into a list using non-da cursor:

```python
def cursorDict(inputFC, fieldList):
    rows = arcpy.SearchCursor(inputFC, '', None, fieldList)
    varNames = fieldList.split(';', '')
    dataList = []
    for row in rows:
        rowVals = []
        for fieldName in varNames:
            rowVals.append(row.getValue(fieldName))
        dataList.append(rowVals)
    return dataList
```
New Data Access Cursor

Introduced at 10.1

```python
# Read records into a list using DA cursor
def daCursorDict(inputFC, fieldList):
    with arcpy.da.SearchCursor(inputFC, fieldList) as rows:
        dataList = []
        for row in rows:
            dataList.append(row)
        return dataList
```
New Data Access Cursor

DA cursor is much faster!

<table>
<thead>
<tr>
<th>Number of records</th>
<th>Cursor</th>
<th>Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000</td>
<td>DA Cursor</td>
<td>0.054648</td>
</tr>
<tr>
<td>10000</td>
<td>Cursor</td>
<td>1.872653</td>
</tr>
<tr>
<td>50000</td>
<td>DA Cursor</td>
<td>0.447475</td>
</tr>
<tr>
<td>50000</td>
<td>Cursor</td>
<td>8.554471</td>
</tr>
</tbody>
</table>
Array instead of List?

Compare sending record info to a list vs an Array:

```python
def daTable2Array(inputFC, fieldList):
    data = arcpy.da.TableToNumPyArray(inputFC, fieldList)
    return data
```
Array instead of List?

Pretty fast and use a lot less memory.

<table>
<thead>
<tr>
<th>Records</th>
<th>Cursor, output type</th>
<th>Time (s)</th>
<th>Memory(kb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50000</td>
<td>DA Cursor, List</td>
<td>0.263885</td>
<td>381389</td>
</tr>
<tr>
<td>50000</td>
<td>DA Table, Array</td>
<td>0.312595</td>
<td>904</td>
</tr>
<tr>
<td>50000</td>
<td>DA Cursor, Array</td>
<td>1.092466</td>
<td>816</td>
</tr>
</tbody>
</table>
Clip Performance

• Fast when:
 - inputs are not M or Z aware
 - have no curves
 - default XY tolerance

• Triggered automatically
 - uses the geometry library (not topo engine)

MEGA Clip Test

Input Data: Shapefiles - Input Feature Class: 50000 (high density contour lines)
Clip Feature Class: 1 polygon
Output: 5301 lines

<table>
<thead>
<tr>
<th></th>
<th>10.0SP4</th>
<th>10.1</th>
<th>10.1 (Topo Eng.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failed(after 12 hrs)</td>
<td>34 secs.</td>
<td>10 min 24s</td>
<td></td>
</tr>
</tbody>
</table>
Buffer

• Creates true geodesic buffers for point, line and polygon data

 - geodesic buffers are more accurate than Euclidean

 - NOTE: geodesic buffers will take more time than generating Euclidean buffers

 - See help topic: How Buffer (Analysis) works
Spatial Join

• New match options – equivalent to the options with Select Layer by Location tool
• Better performance and scalability
 - huge memory leak (Oops!) fixed
Dissolve

• Size of output feature determined by size of available memory
 - Tile boundaries may be completely removed because of this

• Biggest challenge for dissolve is Buffering of points and dissolving.
 - These kinds of dissolve have shown to now complete on 64bit systems

• Note: A feature on one system may not draw or process on another system with less memory
Tabulate Intersection & Polygon Neighbors

• New tools
 - Used to be possible by combining numerous tools
 - Faster as a system tool because there is no intermediate data
Make Query Layer

- New a tool at 10.1
- If the result of the SQL query entered returns a spatial column, the output will be a feature layer, otherwise it’s a tableview
 - Results can be used as input to tools
 - Results are read-only

- Performance really depends on the query design and database optimization
Truncate – New at 10.1

- Removes all rows from a database table or feature class using truncate procedures in the database
- Replaces Delete Features/Delete Rows which did this
- Fast delete of all records
- Non transactional
- Versioned data is not supported - data must be unregistered as versioned before the tool will execute successfully
Feature Class to Feature Class and Table to Table

- Both the subtype and domain codes and descriptions can be included in the output shapefile
 - By default, only domain and subtype codes will be included in the output, not descriptions
 - Use the “Transfer field domain descriptions” geoprocessing environment to control this behavior
Usage Tips and Tricks
• **Situation**: you want to generate a single buffer of all points
• **Problem**: this is only 1000 points and it takes 2 minutes to buffer…. this isn’t a lot of data, why so slow?

Input points (1000)

Desired output buffer
Why so slow?

- The 1000 input points and output area, looks simple enough
Dissolve is the problem

- Running buffer with the Dissolve option set to NONE takes 1 second… what’s the difference?
Dissolve has too much work to do

- Individual point buffers with only boundary drawn
...as you can see when you zoom in

- The complexity internal to the area is what’s bogging dissolve down
Solution

- Get rid of internal complexity: use the **Aggregate Points** tool (new at 10.0)
 - *Creates polygon features around clusters of proximate point features*
- Run buffer on polygon result of aggregate points
Aggregate Points approach...

- With 1000 points buffer with dissolve took nearly **two minutes**, the Aggregate Points approach took a few seconds.
- With 5000 points within the same area buffer with dissolve took over an hour and a half, the Aggregate Points approach still took only a few seconds.
 - the amount of complexity grows logarithmic.
Use “in_memory” workspace

- Useful for small to intermediate datasets
- Can improves performance of models-scripts
- Be careful that the size of your in_memory feature classes do not put stress on the amount of available memory for processing.
Do selections in-memory

• Use Make Feature Layer or Make Table View tools
 - Select by Attribute
 - Select by Location
 - Add Join

• Instead of Select or Table Select which create a new dataset

• 10.1 - all tools are faster with selection sets
Use Field Info to limit and rename fields in output

- With Make Feature Layer and Make Table View:
 - Set new field name
 - Set a field to be visible or hidden
 - A split ratio can be set

- In output data:
 - Fields will be renamed
 - Non-visible fields will be omitted
 - The attributes of the output features are a ratio of the original feature’s value based on how the geometry is divided
 - i.e. Clip, Split, Intersect
Select Layer by Location

- Use this tool to answer spatial relationship questions
- Fast and scales extremely well
- Uses layer as input

- Can be use to split up large data
 - i.e. Tweet data (massive amounts of points) by continent
Relational and Topological Operators

• 10.0 – Relational operators in Python
• 10.1 – Topological and proximity operators

• Example of alternative to using the Intersect Analysis tool… link.
Split

- Split tool may be a better option than multiple clips
- Features are read once and processed once
 - Faster than calling multiple clips
Extent environment

• Can filter what features or raster data is used for processing
 - Features that pass through the extent are included
 - For raster data, results from running tools will be contained with the extent
Projections

• Process data with the same projection - avoid projection on the fly

• Use the Default Resolution and Tolerance for your Spatial Reference whenever possible.
Joins

• Index your join fields (if possible)

• Join Field tool
 - Adds field(s) from one table to another, based on attribute relationship
 - Updates input table
 - Avoid using add join, calculate field, remove join or add join, copy features, delete fields
ArcSDESQLExecute

- Enterprise databases only
- arcpy class – link
- Use sql to get quick answers to…
 - Row count
 - Min/max/sum field values
 - Other sql (non-geodatabase) operations

WARNING… see doc for important details.
Spatial Analyst
Optimizing Spatial Analyst

• “in_memory” workspace now supported
• 255 path limit for grids in spatial analyst
• Native I/O (10.0) – no conversion
 - Trouble with FGDB with tools that have Random I/O
 i.e Cost Distance, Cost Path
• Raster Calculator – optimized for arithmetic
 expression (a + b + c)
 - don’t use tools in Raster Calculator
• Use Raster Calculator in model builder or
 stand-alone. In Python, write the expression
• Multicore support for some tools (see help)
Sharing
Geoprocessing Packages

- A convenient way to share geoprocessing workflows
- Created from one or more geoprocessing results in the Results window
- All the data and tools used to create the result are included in the package
- A .gpk can help with:
 - Sharing methodologies
 - Project collaboration
 - Consolidation of projects
 - Training
 - Troubleshooting
Geoprocessing Services

• A geoprocessing task that takes data captured in a web application, processes it, and returns meaningful and useful output in the form of features, maps, reports, and files

• Services can be used by many client applications (desktop, engine, REST, online)
Geoprocessing Services

1. Knowledge about using geoprocessing tools and environments is important for knowing how to create a good geoprocessing service.

2. Knowing and understanding the input data required for the service is important.
Geoprocessing Service Behavior

• Before authoring or publishing, identify what you want your service to do and how you want it to behave with clients:

 - Does input data come from the client or select it from the server?
 - Draw the results with map server or download and draw data on the client?
 - Save data on the server?
How to create a service

• Changed at 10.1 – easier

• All services start from a successful result
 - The result acts as a template to build the service

• Quick tour of Publishing:
 http://esriurl.com/gpSrvQuick
Data Store

- **New concept at 10.1**
 - Either an enterprise database or a folder
 - All data can live here where all servers have access to this data
 - Can be local or unc path
Data store

- Must specify data store folder
 - LAS dataset
- If these exist in the data store, analyzer will generate an error. You must convert to file geodatabase:
 - Access
 - Coverage
 - Coverage feature class
 - INFO table
 - Excel table
Geoprocessing & Python Resource Centers

http://pro.arcgis.com/analysis/
http://pro.arcgis.com/analysis/python/

• http://resources.arcgis.com/en/communities/analysis/
• http://resources.arcgis.com/en/communities/python/
Thank you...

Please fill out the session evaluation

First Offering ID: 1278

Online – www.esri.com/ucsessionsurveys

Paper – pick up and put in drop box