ArcGIS Spatial Analyst – Suitability Modeling

Kevin M. Johnston
Elizabeth Graham
Suitability modeling

• Where to site a new housing development?
• Which sites are better for deer habitat?
• Where is economic growth most likely to occur?
• Where is the population at the greatest risk if a chemical spill were to happen?

Reality

GIS layers

Suitability for store

Model criteria:
- Zoned commercial
- Near target population
- Away from competition
What we know

• The best locations can be determined from the features at each location

• You can identify the features that define the best locations

• You can quantify the relative preference of the features relative to one another

• You know what is not important to the phenomenon

• The attributes and numbers associated with the data vary in type and meaning
The presentation outline

• Background

• How to create a suitability model and the associated issues

• Demonstration

• Looking into the values and weights a little deeper

• Demonstration

• Fuzzy logic
Manipulation of raster data - Background

- Locational perspective of the world
- Define a portion of the landscape’s attributes
- Worm’s eye view
- To return a value for each cell you must know
 - What is your value
 - What function to apply
 - What cell locations to include in the calculations
 - Within a grid
 - Between grids
Discrete and continuous phenomena

- **Discrete phenomena**
 - Landuse
 - Ownership
 - Political boundaries

- **Continuous phenomena**
 - Elevation
 - Distance
 - Density
 - Suitability
The presentation outline

- Background
- How to create a suitability model and the associated issues
 - Demonstration
 - Looking into the values and weights a little deeper
 - Demonstration
- Fuzzy logic
General suitability modeling methodology

- There is a fairly standard methodology to follow:

 1. Build a team
 2. Define the goal
 3. Define the measures
 4. Create and run model
 5. Present the results
 6. Choose an alternative

Document everything!
Define the goal

- Define the problem
 - “Locate a ski resort”
- Establish the over arching goal of the problem
 - Make money
- This is a team activity
 - Stakeholders, decision makers
- Identify issues
 - Legal constraints
- Obtain GIS data
 - DEM, roads, land use, and houses
Define the measures for success

- How will you know if the model is successful?
- Criteria should relate back to the overall goals of the model
- May need to generalize measures
 - On average near the water
- Determine how to quantify
 - “Drive time to the city”
Break model into sub-models

• Helps clarify relationships, simplifies problems
ModelBuilder

- ArcGIS graphical model building capabilities
Types of suitability models - Binary

- Use for simple problems - query
- Classify layers as good (1) or bad (0) and combine:

 \[\text{BestSite} = \text{Terrain} \& \text{Access} \& \text{Cost} \]

- Advantages: Easy
- Disadvantages:
 - No “next-best” sites
 - All layers have same importance
 - All good values have same importance
Types of suitability models - Weighted

- Use for more complex problems

- Classify layers into suitability 1–9
 - Weight and add together:
 \[
 \text{BestSite} = (\text{Terrain} \times 0.5) + (\text{Access} \times 0.3) + (\text{Cost} \times 0.2)
 \]

- Advantages:
 - All values have relative importance
 - All layers have relative importance
 - Suitability values on common scale

- Disadvantages:
 - Preference assessment is more difficult
General suitability modeling methodology

- There is a fairly standard methodology:
 - Build a team
 - Define the goal
 - Define the measures
 - Create and run model
 - Present the results
 - Choose an alternative

Document everything!
The suitability modeling model steps

- **Determine significant** layers for each sub model from the phenomenon’s perspective
- **Reclassify** the values of each layer onto a relative scale
- **Weight** the importance of each layer and each sub model
- **Add** the layers and sub models together
- **Analyze** the results and make a decision
Determining significant layers

- The phenomena you are modeling must be understood

- What influences the phenomena must be identified

- How the significant layers influence the phenomena must be determined

- Irrelevant information must be eliminated

- Simplify the model
 - Complex enough to capture the essence and address the question
Reclassify – Place various criteria on common scale

• Base data may not be useful for measuring all criteria
 - Need to measure access, not road location

• May be easy:
 - ArcGIS Spatial Analyst tools
 - Distance to roads

• May be harder:
 - Require another model
 - Travel time to roads
Why reclassify? – Values vary

Ratio:

Interval:
Why reclassify - Values vary

Ordinal:

Nominal:

<table>
<thead>
<tr>
<th>Name</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amos Andy</td>
<td>555-2543</td>
</tr>
<tr>
<td>Andrews Fred</td>
<td>555-6769</td>
</tr>
<tr>
<td>Aprills James</td>
<td>555-9063</td>
</tr>
<tr>
<td>Aster Susan</td>
<td>555-7754</td>
</tr>
<tr>
<td>Atwater Henry</td>
<td>555-2156</td>
</tr>
</tbody>
</table>
Reclassify - Define a scale of suitability

• Define a scale for suitability
 - Many possible; typically 1 to 9 (worst to best)
 - Reclassify layer values into relative suitability
 - Use the same scale for all layers in the model

<table>
<thead>
<tr>
<th>Accessibility sub model</th>
<th>Development sub model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Travel time suitability</td>
<td>Soil grading suitability</td>
</tr>
<tr>
<td>Best</td>
<td>Best</td>
</tr>
<tr>
<td>9 – 0 minutes to off ramp</td>
<td>9 – Recent alluvium; easy</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>5 – 15 minutes to off ramp</td>
<td>5 – Landslide; moderate</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1 – 45 minutes to off ramp</td>
<td>1 – Exposed bedrock; hard</td>
</tr>
<tr>
<td>Worst</td>
<td>Worst</td>
</tr>
</tbody>
</table>

Distance to roads

Suitability for Ski Resort

Within and between layers
The Reclassify tool

- May use to convert measures into suitability
The suitability modeling model steps

- **Determine significant** layers for each sub model from the phenomenon’s perspective
- **Reclassify** the values of each layer onto a relative scale
- **Weight** the importance of each layer and each sub model
- **Add** the layers and sub models together
- **Analyze** the results and make a decision
Weight and add the layers

- Certain criteria may be more significant than others and must be weighted appropriately before combining
 - Terrain and access may be more significant to the ski area than cost
- Use Weighted Overlay, Weighted Sum tool, or Map Algebra

\[
\text{SkiSite} = (\text{Terrain} \times 0.5) + (\text{Access} \times 0.3) + (\text{Cost} \times 0.2)
\]
The Weighted Overlay tool

- Weights and combines multiple inputs
 - Individual criteria (layers)
 - Sub models
Present results/Choose an alternative

• Model returns a suitability “surface”
 - Ranks the relative importance of each site to one another relative to the phenomenon

• Create candidate sites
 - Select cells with highest scores
 - Define regions with unique IDS
 - Eliminate regions that are too small

• Choose between the candidates
Validation

- Ground truth
- User experience
- Alter values and weights
- Perform sensitivity analysis
Limitations of a suitability model

• Results in a surface indicating which sites are more preferred by the phenomenon than others

• Does not give absolute values (can the animal live there or not; ordinal not interval values)

• Heavily dependent on the reclass and weight values
The presentation outline

• Background

• How to create a suitability model and the associated issues

• **Demonstration**

• Looking into the values and weights a little deeper

• Demonstration

• Fuzzy logic
Demo 1: Suitability Model

Reclass
Weight
Add
The story is not over

- How the reclass and weights have been assigned has not been critically examined
- Do the reclassification values accurately capture the phenomenon?
- The reclassification by expert opinion – are there other approaches?
- Continuous criterion were reclassified by equal interval
- Assumes more of the good features the better
- What happens when there are many criteria?
Multicriteria decision making

- GIS and Multicriteria Decision Analysis (J. Malczewski)
- Operation Research (linear programming)
- Decision support
- We are not trying to identify the best method
 - Problem you are addressing
 - Available data
 - Understanding of the phenomenon
- Provide you with alternative approaches
- To make you think about the values and weights
The model creation framework

• The one presented is:
 - Determine significant layers
 - Reclassify
 - Weight
 - Add
 - Analyze

• The decision support world:
 - Problem definition
 - Evaluation criteria (Significant layers and reclass)
 - Alternatives
 - Criterion weights (Weight)
 - Decision Rules (Add)
 - Sensitivity analysis
 - Recommendation
Problem definition

- Most important and most time consuming

- It is glossed over

- Measurable

- The gap between desired and existing states

- Break down into sub models
 - Helps clarify relationships, simplifies problem
Evaluation criteria

(Determine significant layers and Reclass)

• Objectives and criteria
 - Build on slopes less than 2 percent

• Many times take on the form:
 - Minimize cost; Maximize the visual quality

• The more the better; the less the better

• Proxy criteria
 - Reduce the lung disease – amount of carbon dioxide

• How to determine influence of the attributes
 - Literature, studies, Survey opinions
 - Conflicts?
Evaluation criteria methods

(Determine significant layers and Reclass)

- Direct scaling (as you have seen)

- Linear transformation
 - Divide each value by the maximum value
 - Scale 0 – 1 (relative order of magnitude maintained)
 - Apply to each layer (to all types of data?)

- Value/utility functions

- Others:
 - Fuzzy sets
Evaluation criteria: Value/Utility functions

(Determine significant layers and Reclass)

• Reclassify with equations – ratio data

 - Mathematical relationship between data and suitability

- Graph showing suitability vs. distance to water with the equation:

 \[\text{WaterSuit} = 9 + (-0.0018 \times \text{WaterDist}) \]

- Graph with y-intercept set where \([\text{WaterDist}] = 5000\)
- Solve for line slope: -0.0018

Implement with model or Map Algebra:
Evaluation criteria: Value/utility functions

(Determine significant layers and Reclass)

- Not a linear decay in preference
- The intervals for the attribute are not equal
- Or the preference scaling is not equal

![Distance vs Suitability Graph](dist_vs_suitability.png)
The framework

• The one presented is:
 - Determine significant layers
 - Reclassify
 - Weight
 - Add
 - Analyze

• The decision support world:
 - Problem definition
 - Evaluation criteria (Significant layers and reclass)
 - Alternatives
 - Criterion weights (Weight)
 - Decision Rules (Add)
 - Sensitivity analysis
 - Recommendation
Decision alternatives and constraints

• Constraints
 - Reduces the number of alternatives
 - Feasible and non feasible alternatives

• Types of Constraints
 - Non compensatory
 - No trade offs - in or out (legal, cost, biological)
 - Compensatory
 - Examines the trade offs between attributes
 - Pumping water – (height versus distance relative a cost)

• Decision Space
 - Dominated and non-dominated alternatives
The framework

- The one presented is:
 - Determine significant layers
 - Reclassify
 - Weight
 - Add
 - Analyze

- The decision support world:
 - Problem definition
 - Evaluation criteria (Significant layers and reclass)
 - Alternatives
 - Criterion weights (Weight)
 - Decision Rules (Add)
 - Sensitivity analysis
 - Recommendation
Criterion weighting - (Weight)

• Ranking Method
 - Rank order of decision maker (1 most, 2, second…)

• Rating Method
 - Decision maker estimates weights on a predetermined scale
 - Point allocation approach (similar to demonstration)
 - Ratio estimation procedure (Easton)
 - Arbitrarily assign the most important, other assigned proportionately lower weights

• Pairwise

• Trade-off analysis
Criterion weighting: Pairwise - (Weight)

- Analytical hierarchy process (AHP) (Saaty)
- Three steps
 - Generate comparison matrix
 - Compute criterion weights
 - Sum columns; divide by column sum; average rows
 - Estimate consistency ratio (math formulas)
- Pairwise comparison
 - Rate1: Equal importance – 9: Extreme importance

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Terrain</th>
<th>Access</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terrain</td>
<td>1</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Access</td>
<td>1/3</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Cost</td>
<td>1/6</td>
<td>1/8</td>
<td>1</td>
</tr>
</tbody>
</table>

::: ArcGIS Spatial Analyst - Suitability Modeling
Criterion weighting: Trade-off – *(Weight)*

- Direct assessment of trade-offs the decision maker is willing to make (Hobbs and others)
- Compares two alternatives with respect to two criteria defining preference or if indifferent
- Compare other combinations

<table>
<thead>
<tr>
<th>Site 1</th>
<th>Site 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slope</td>
<td>Aspect</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>
The framework

• The one presented is:
 - Determine significant layers
 - Reclassify
 - Weight
 - Add
 - Analyze

• The decision support world:
 - Problem definition
 - Evaluation criteria
 - Alternatives
 - Criterion weights
 - **Decision Rules**
 - Sensitivity analysis
 - Recommendation

(Significant layers and reclass) (Weight) (Add)
Decision rules - (Add)

- Simple Additive Weighting (SAW) method
- Value/utility functions (Keeney and Raiffa)
- Group value/utility functions
- Ideal point method
- Others:
 - Concordance method
 - Probabilistic additive weighting
 - Goal programming
 - Interactive programming
 - Compromise programming
 - Data Envelopment Analysis
Decision rules: SAW - *(Add)*

- What we did earlier
- Assumptions:
 - Linearity
 - Additive
 - No interaction between attributes
- Ad hoc
- Lose individual attribute relationships
- All methods make some trade offs
Decision rules: Group Value - *(Add)*

- Method for combining the preferences of different interest groups

- **General steps:**
 - Group/individual create a suitability map
 - Individuals provide weights of influence of the other groups
 - Use linear algebra to solve for the weights for each individual’s output
 - Combine the outputs

- Better for value/utility functions
Decision rules: Ideal Point - (Add)

- Alternatives are based on separation from the ideal point
- General steps
 - Create weighted suitability surface for each attribute
 - Determine the maximum value
 - Determine the minimum value
 - Calculate the relative closeness to the ideal point

\[C_{i+} = \frac{s_{j-}}{s_{i+} + s_{i-}} \]

- Rank alternatives
- Good when the attributes have dependencies
The framework

• The one presented is:
 - Determine significant layers
 - Reclassify
 - Weight
 - Add
 - Analyze

• The decision support world:
 - Problem definition
 - Evaluation criteria (Significant layers and reclass)
 - Alternatives
 - Criterion weights (Weight)
 - Decision Rules (Add)
 - Sensitivity analysis
 - Recommendation
Sensitivity analysis (and error analysis)

- Systematically change one parameter slightly
- See how it affects the output
- Error
 - Input data
 - Parameters
 - Address by calculations or through simulations
The framework

• The one presented is:
 - Determine significant layers
 - Reclassify
 - Weight
 - Add
 - Analyze

• The decision support world:
 - Problem definition
 - Evaluation criteria (Significant layers and reclass)
 - Alternatives
 - Criterion weights (Weight)
 - Decision Rules (Add)
 - Sensitivity analysis
 - Recommendation
Outline

• Background

• How to create a suitability model and the associated issues

• Demonstration

• Looking into the values and weights a little deeper

• Demonstration

• Fuzzy logic
Demo 2: Non-linear Suitability Model

Use functions for reclassification
Reclassify
Raster Calculator
Suitability model steps – Fuzzy analysis

- **Determine significant** layers for each sub model from the phenomenon’s perspective

- **Reclassify** the values of each layer onto a relative scale

- **Weight** the importance of each layer and each sub model

- **Add** the layers and sub models together

- **Analyze** the results and make a decision
Fuzzy overlay – The problem

- Inaccuracies in geometry
- Inaccuracies in classification process
Fuzzy overlay - **Reclass**

- Predetermined functions are applied to continuous data
- 0 to 1 scale of possibility belonging to the specified set
- **Membership functions**
 - FuzzyGaussian – normally distributed midpoint
 - FuzzyLarge – membership likely for large numbers
 - FuzzyLinear – increase/decrease linearly
 - FuzzyMSLarge – very large values likely
 - FuzzyMSSmall – very small values likely
 - FuzzyNear – narrow around a midpoint
 - FuzzySmall – membership likely for small numbers
Fuzzy overlay - **Reclass**
Fuzzy overlay - (Add)

• Meaning of the reclass values - possibilities therefore no weighting

• Analysis based on set theory

• Fuzzy analysis
 - And - minimum value
 - Or – maximum value
 - Product – values can be small
 - Sum – not the algebraic sum
 - Gamma – sum and product
Demo 3: Fuzzy Analysis

Fuzzification

Fuzzy Overlay
Summary

• Problems with:
 - If cells need to be contiguous
 - Locating one alternative influences the location of another

• Can be done in the vector world

• Multiple ways to derive values and weights

• Multiple ways to combine the criteria

• Your values and weights depend on:
 - the goal
 - the data
 - the understanding of the phenomenon

• The values and weights can dramatically change the results

Carefully think about the values and weights you use
Spatial Analyst - Technical Sessions

• **An Introduction - Rm 03**
 Tuesday, July 9, 8:30AM – 9:45AM
 Wednesday, July 10, 1:30PM – 2:45PM

• **Suitability Modeling - Rm 03**
 Tuesday, July 9, 10:15 AM – 11:30PM
 Wednesday, July 10, 3:15PM – 4:30PM

• **Python – Raster Analysis - Rm 03**
 Tuesday, July 9, 3:15PM – 4:30PM
 Thursday, July 11, 8:30AM – 9:45PM

• **Creating Surfaces – Rm 03**
 Wednesday, July 10, 8:30AM – 9:45PM
Spatial Analyst Technical Sessions (short)

• Creating Watersheds and Stream Networks – Rm 31C
 Thursday, July 11, 10:15AM – 11:45AM

• Regression Analysis Using Raster Data – Hall G Rm 2
 Wednesday, July 10, 10:30AM – 11:00AM
Demo Theater Presentations – Exhibit Hall B

- **Modeling Rooftop Solar Energy Potential**
 Tuesday, July 9, 5:30PM – 6:00PM

- **Surface Interpolation in ArcGIS**
 Wednesday, July 10, 4:30PM – 5:30PM

- **Getting Started with Map Algebra**
 Tuesday, July 9, 10:00AM – 11:00AM

- **Agent-Based Modeling**
 Wednesday, July 10, 1:00PM – 2:00PM

- **Image Classification with Spatial Analyst**
 Tuesday, July 9, 3:00PM – 3:30PM
Thank you...

Please fill out the session evaluation

First Offering ID: 1179
Second Offering ID: 1300

Online – www.esri.com/ucsessionssurveys
Paper – pick up and put in drop box