Designing and Using Cached Map Services

Eric Rodenberg & Tom Shippee
What’s covered in this session

• Agenda
 - Map cache basics
 - Map cache best practices
 - Map cache administration
 - Map cache clients
What’s covered in other sessions

• Image service caching
 - Caching Imagery using ArcGIS
 - Understanding Pyramids, Overviews and Caching

• Caching in the cloud
 - Building and Maintaining ArcGIS Online Hosted Tiled Services
 - Using the Power of Amazon EC2 to Build Map Caches

• Advanced topics
 - Enterprise Architectures for Large Map Caching Projects
 - ArcGIS Server Performance & Scalability—Optimizing GIS Services
 - Automating Cache Workflows and Building Tile Usage Heat Maps
Map cache basics
Understanding caching concepts
How does a map cache work?
Three reasons to care about map caches

• Performance
• Scalability
• Cartographic quality
Many layers fused into one tile

Cache tile

1:16000
1:8000
1:4000
1:2000
1:32000

Transportation
Hydrography
Landbase
Authoring of map document

- Use scale dependent display
- Group layers by scale
- Use annotation
- For mash up use ArcGIS Online scales
What should you cache?

• Base maps

• Operational layers that are
 - High volumes of traffic
 - Don’t change often
 - Cover small scales only
Best performing image formats

- Vectors few colors
 - PNG (auto selects bit depth)
- Vectors many colors
 - MIXED with 90 quality
- Imagery
 - MIXED with 55 quality
- Vectors or labels + Imagery
 - MIXED with 90 quality
Choosing the best image format

- Large number of continuous colors
 - JPEG (start with quality = 55)
 - Mixed (if transparency required)

Which one looks better?

JPEG 96 – 25KB JPEG 96 – 30KB
What is antialiasing?

- High quality line/label rendering on vector maps
- Web standard (Google, Bing, AGOL)
- Takes LONGER to cache
Building a map cache

Publish, configure and build a cached map service.
Map caching
best practices

Strategies and techniques
Understanding cache structure

- Bundle: 8 x 8 supertiles
- Supertile: 16 x 16 tiles
- Standard tile: 256 x 256 pixels
- Total tiles: 16,384
Track cache status

- **Status.gdb**
 - File geodatabase in caching folder
 - Accessed by reporting tools for status
 - Records cache task progress
 - Identify completed tiles

- Copied to an ArcMap folder
 - Cache error review
 - Time aware cache analysis
Anatomy of a cache

Explore a 3D time aware view of cache generation.
Supertiles and Labeling

• **ArcGIS Server Draws Large Areas**
 - Reduces duplicate labels

• **Duplication May Occur**
 - Use Annotation or MapPlex Labels with Rules
 - Use Map Server Cache Tiling Scheme To Polygons
You don't need to generate everything

- Cache by feature
 - Polygon features
 - Generates all tiles for intersecting supertiles

- Saves on...
 - Generation time
 - Processor resource
 - Disk usage

NM highway case study:
Build 20 of 64 supertiles for the bundle shown
Pre-create coupled with cache on demand

- Pre-create high use areas
 - Population centers
 - Parks, roads, attractions

- Features
 - Cover popular extent
 - Generate key tiles
 - All others generated on demand
The ideal tiles to cache on demand

• Few simple features
 - Barren homogenous area
 - Rarely accessed

• Large scales only
 - Draw relatively fast
Handling tiles you do NOT create

- Create “No Data” tile
 - Same image format (JPG or PNG)
 - Same size (256 x 256)
 - Save in cache folder
 ...
 ...
 ...
 ...
 ...
 ...

- How to
 - Knowledge base article 36939 has sample files
Build a test cache and note the following

- Creation time
- Appearance
- Client performance
- Cache size validation
Map cache administration
Generate and update techniques
Setting the Number of Instances

- Cache Tools Geoprocessing Service
 - Start with N
 - $N =$ CPU’s per server
 - See cloud session for Amazon recommendations

8CPU’s = 8 Instances

8 CPU
System caching services

• System services
 - Caching Tools: Sets caching instance per machine
 - Caching Controllers: Assign cache jobs to instances

• Manage Map server Cache Tiles
 - Controls instances per job
 - Set to -1 to use all instances
Update a cache using a staging server

Staging ArcGIS Server Instance
- Map service
- All layers for cartography of map service

Production ArcGIS Server Instance
- Map service
- Layers for TOC and Query

Cache folder

(On-demand caching needs the full map to build the cache)
Isolate caching to certain servers

- Organize GIS Servers into Clusters
 - Generate Cache on its own cluster
 - Scale or reconfigure while caching
Isolate caching to certain servers

• Organize GIS Servers into Clusters
 - Generate Cache on its own cluster
 - Scale or reconfigure while caching

ArcGIS Site
Cache failure & recovery – Out of the box

- Out of the box tools
 - Course grained for locating extents
 - Fix errors: Re-cache extents where errors reported

![Cache Status -- Streetmap](image)
Recovering cache failure

Use Status.gdb to identify and rebuild errors.
Cache failure & recovery – sample tools

- Cache Validation Tools
 - Fine grained for locating tiles by file size
 - Custom tool available via resources.arcgis.com

![Image of Cache Validation tool](image-url)
Cache update automation

• Use Model Builder to script update automation
 - Rebuild Specific Tiles
 - Export to Python
 - Schedule Run Time

• Useful update tools
 - Compare feature classes
 - Show edits since reconcile

• See demo theater
 - Automating Cache Workflows and Building Tile Usage Heat Maps
Cache export tool

• Export tiles
 - Based on extent or polygon features
 - Convert storage format
 - Use for cache import or as a disconnected cache

Exported using Nevada and Utah state boundary features.
Cache import tool

- Import tiles
 - Based on extent or polygon features
 - Must have same storage format

Import from a previously exported map cache.
Map cache clients

Optimizing web applications
Using multiple domains

• With multiple services
 - Use a different domain for each service

• With one service
 - API’s support multiple URLs for a single layer

```javascript
var layer = new esri.layers.ArcGISTiledMapServiceLayer(
    "http://www.mydomain.com/arcgis/rest/services/myMap/MapServer",
    { tileServers: [
        "http://cache1.mydomain.com/arcgis/rest/services/myMap/MapServer",
        "http://cache2.mydomain.com/arcgis/rest/services/myMap/MapServer"
    ] });
```

- Cautions
 - Use with small cache tiles
 - Reduce browser caching results in more HTTP connections
Request large scales as dynamic maps

- Supported by map services & Web API’s
 - Cached (most scales)
 - Use: ArcGISTiledMapServiceLayer
 - Dynamic (largest scales only)
 - Use: ArcGISDynamicMapServiceLayer
Dynamic & tiled hybrid

Configure a web application to make dynamic requests at large cache scales.
Thank you…

Please fill out the session evaluation

First Offering ID: 1224
Second Offering ID: 1336

Online – www.esri.com/ucsessionsurveys
Paper – pick up and put in drop box