Implementing a GIS-Based Pavement Assessment and Management System

Candice Ottley-Francois, GISP, CAPM
GIS Analyst & Project Manager
cottley@jmttg.com

ESRI MUG
December 7, 2011
Agenda

- Project Overview
- PAMS Components
- Challenges Encountered
- Next Steps
Project Background

- Serving Prince George’s County DPW&T since 2007
 - Utility Division, Office of Highway Maintenance, Engineering Inspections Services Division, Traffic Safety, GIS

- Project Goals:
 - Determine current condition of County roads
 - Determine immediate and future maintenance & repair requirements of County roads
 - Leverage pavement data to develop roadway projects

- Implement a Pavement Assessment and Management System (PAMS)
Summary of PAMS Services

Pavement Layer Creation
- Data Conflation
- Pavement Sectioning

Pavement Condition Survey
- Semi-automated data collection
- 4,350 lane miles
- Progress Mapping

Pavement Data Analysis
- Raw data analysis
- MicroPAVER analysis
- Reporting

Application Development
- Silverlight Viewer
- Data Management Tools
- Data Analysis Tools

2007 2008 2009 2010 - Present
PAMS Pavement Layer Development

- **Data Conflation**
 - Data requirements driven by MicroPAVER
 - ArcGIS Server editing application for attribute conflation
 - 9 datasets in various formats

- **County Edge of Pavement**
 - Pre-sectioned; area readily available

- **Pavement Sectioning**
 - Unique Pavement ID
 - Automated section ID assignment
Pavement Condition Survey

- Data collection in Spring 2008
- Over 4,350 lane miles
 - County Maintained Roadway ONLY
- Dynatest’s Multi-Function Vehicle
 - Pavement Roughness
 - Photos – Pavement & Right of Way
- Post Processing
 - Extract distress data from photos
 - Import to MicroPAVER for assessment
Pavement Analysis & Reporting

MicroPAVER Pavement Management System
- Developed by US Army Corps of Engineers
- Used by over 600 cities, counties, airports and private consulting firms

PAMS Applications:
- Pavement Condition Index (PCI) determination
- Budget analysis for State of the Streets Report
- Identify “Shovel Ready Projects” to receive Stimulus Package funding

Challenges:
- Single user license, Access database, User interface
PAMS Web Viewer

- Provides broad access and print functionality of road network data including PCI scores and photos
 - ArcGIS Server
 - Microsoft .NET framework
 - Silverlight API
 - Custom photo viewer
 - Custom map services
Preserve the Investment

- Incorporate PAMS into daily business processes
 - Schedule A development
 - GIS analysis and reporting
 - Coordination of Utility Activities
- Maintain pavement data
 - Management changes
 - Roadway additions/annexations
 - Work History records
 - MicroPAVER data
- Re-inspect pavement network
Phase II Objectives

- Maintain pavement data in a central location
 - GIS vs. MicroPAVER

- Upgrade to ArcGIS 10

- Facilitate data management across multiple divisions
 - File geodatabase vs. SDE
 - Desktop tools vs. web tools

- Perform basic condition analysis in GIS

- Create projects in GIS
 - Condition
 - Needs lists
PAMS Database Design

- Versioned ArcSDE Oracle database
- Related Tables
 - Work History: Many-to-Many
 - Condition (PCI): One-to-Many
 - Edit log: One-to-Many
 - Complaints: Many-to-Many
 - Inspections: One-to-Many
 - Projects: Many-to-Many
- Unit costs look up table
PAMS Desktop Tools

- ESRI Add-In and Extension
- Built with ArcObjects
- Toolbar and PAMS Window

Data Maintenance Tools
- Pavement ID Management
- Work History Management
- Edit Tracking Capabilities

Data Analysis Tools
- PCI Management
- Complaints and Field Inspections
- Project Formulation
Pavement ID Management

- Pavement ID is the unique identifier for MicroPAVER
 - Alpha-numeric
 - Network ID, Branch ID and Section ID
 - County managed segments only
- Tool derives Branch ID, Section ID and Pavement ID
- Initiate pavement ID generation for new segments
 - Single or multiple segments
- Automate pavement ID generation for split segments
 - Manage related records during splits
Work History Management

- Add new work history
 - Single or multiple segments
 - Managed or unmanaged segments

- Edit existing work history

- Related data management
 - Many to Many relationship
 - Propagate data due to pavement edits
 - Trigger updates to pavement condition (PCI)
 - Update construction/inspection dates
Edit Tracking

- Maintain related tables when changes are made to pavement segment

- Track changes for MicroPAVER
PCI Management

- PCI scores were previously derived from MicroPAVER
- Update PCI when work history is added or modified
 - Reset to 100 if Major Work is completed
- Update PCI when changes are made to management
- Deteriorate PCI annually
Complaints and Inspections

- Log citizen complaints/requests for work
 - Currently logged in a spreadsheet and manually correlated with pavement data

- Log Field Visit results due to work request
 - Assume field visit/inspection is related to one complaint
Next Steps

- Develop Project Formulation tools
 - Based on condition (PCI) or complaints
 - Provide recommendations of segments for projects
 - Residential – Assume segments within the same subdivision
 - Non-Residential – connect sections along length of arterial/collector
 - Dynamically calculate the cost of projects
 - Algorithm based on unit costs for rehabilitative processes, area, percentages for contingencies etc.
 - Assign fiscal year budget to projects
 - Cap recommendations
 - Track budgets
Next Steps

- Develop maintenance and rehabilitation strategies
- Perform pavement re-inspection
 - Obtain updated pavement distress data
 - Track pavement conditions over time
 - Refine deterioration formula to better predict future pavement conditions
- Better assess future funding needs
- Assess performance of maintenance and rehabilitation activities
Challenges

End user buy-in
- Lack of familiarity with GIS and its applications
- Budget constraints

Integrating with MicroPAVER

Version 9.3.1/Version 10

Data and process modeling
Questions?