Exploring asthma prevalence and sociodemographic factors in an urban community

Sheryl Magzamen, MPH
Ira B. Tager, MD MPH
Division of Epidemiology
School of Public Health
University of California, Berkeley
Today’s Presentation

• Pediatric Asthma: Brief Description of the Problem
• Spatial Analysis of Pediatric Asthma: Rationale and Data
• Analysis Objective and Goal
• Methods
• Results: Asthma Survey and Census Variables
• Results: Representative Sample
• Limitations
• Conclusions and Future Plans
Pediatric Asthma: Brief Description

- Chronic respiratory disease characterized by inflammation of the airways (NHLBI 1995)

- Most common chronic disease in the United States; affects approximately 7% of all children (Adams et al. 1999; Akinbami and Schoendorf 2003).

- Primary reason for missed school days, non-injury hospitalization and is the single most prevalent cause of childhood disability (Kozak et al. 2005; Newacheck and Taylor 2000; Akinbami et al. 2002)

- Several competing hypotheses with regard to asthma etiology
Research Focus: Asthma Morbidity

• Asthma incidence is a result of the complex interplay between genetics, environment and behavior

• Asthma prevalence data are used to:
 • estimate the burden of disease in a community
 • understand cross-community differences in asthma incidence and prevalence
 • plan for remedial services
 • function as surveillance tools to understand the changing dynamics of the disease
 • identify potential exposures of importance
 • identify groups at risk for increased morbidity
Asthma-related morbidity in urban communities is disproportionately high compared to other types of communities, predominantly among impoverished, non-white children.

$$\text{Asthma-Related Morbidity} = f$$

- Social Environment
- Built Environment
- Economic Environment
- Political Environment
- Natural Environment
Spatial Analysis and Pediatric Asthma

• Geographic analysis offers important insights into the impact of environmental and socioeconomic factors associated with childhood asthma.

• Although there has been extensive exploration of methods to minimize misclassification of asthma-related exposures (i.e. ambient air pollution), accurate classification of asthma and asthma-related morbidity has received little attention in the context of spatial analysis.
Data for Spatial Analysis

<table>
<thead>
<tr>
<th></th>
<th>Advantages</th>
<th>Drawbacks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical Utilization</td>
<td>• Regional Level</td>
<td>• Hospitalizations/ED Visits are rare events</td>
</tr>
<tr>
<td>(ED Visits/ Hospitalizations)</td>
<td>• Routinely Collected</td>
<td>• Unable to discern between severe cases and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mismanaged cases</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Does not represent the full spectrum of</td>
</tr>
<tr>
<td></td>
<td></td>
<td>severity</td>
</tr>
<tr>
<td>National Survey Data</td>
<td>• Cover representative samples of population</td>
<td>• Extensive general health surveys; limited</td>
</tr>
<tr>
<td>(NHIS, NHANES)</td>
<td>• Able to compare prevalence by region</td>
<td>asthma questions</td>
</tr>
<tr>
<td></td>
<td>• Available</td>
<td>• Regional/state scale can’t be linked to</td>
</tr>
<tr>
<td></td>
<td></td>
<td>individual risk factors</td>
</tr>
</tbody>
</table>
Data for Spatial Analysis

<table>
<thead>
<tr>
<th>School-Based Surveillance</th>
<th>Advantages</th>
<th>Drawbacks</th>
</tr>
</thead>
</table>
| | • Definable population
| | • Available to conduct extensive survey measurement
| | • Stable population and stable structure
| | • Urban school districts have a disproportionate amount of children in need of services | • Data collection time and labor intensive
| | | • Need cooperation from school administration
| | | • Limited age group for information if survey is designed to be self-report |

High resolution data, collected from school-based surveillance programs, may provide a more complete understanding of the burden of asthma in an urban community.
Oakland Unified School District

- Serves over 50,000 students, grades K – 12.
- District Demographics: 42% of students are African American, 34% Latino, 17% Asian/Pacific Islander
- The *Stability Rate* for all OUSD schools is 37%
- One-third of all OUSD middle and high school students are English Learners
- 32% of middle and high school students are from families enrolled in calWORKS, 70% qualified for free or reduced price school lunches

Source: OUSD District Public Information Data Portal
A geographic information system (GIS) was utilized to evaluate the relation between the spatial distribution of population-derived pediatric asthma data and census-derived demographic and economic factors in Oakland, CA.

First step in understanding exposures, factors, and characteristics causally related to asthma morbidity.
Methods

• Symptom and address data were collected from 6th and 9th grade students from 16 OUSD MS and 4 OUSD HS from the years 2003 – 2005.
 • Asthma prevalence calculated as (# students defined as “positive”/# students completed survey) for each census tract

• All legible addresses were coded using the California DHS EHIB Tables Address Geocoder.
 • Valid addresses were considered =>80%
 • Addresses were matched to census tract

• Census level variables were collected from SF3 2000

• Correlations (Pearson R) were calculated between census variables and asthma prevalence
Study Population

8,674 surveys collected, 2003 - 2005

7,613 valid addresses geocoded (87.7%)

Remove non-Oakland addresses (n=38) and duplicates (n=49)

Study Pop: 7,526
Asthma: 16.6% (n=1,251)
No Asthma: 83.4% (n=6,275)
Results: Classification

<table>
<thead>
<tr>
<th>Category</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Symptoms</td>
<td>37%</td>
</tr>
<tr>
<td>High Severity</td>
<td>14%</td>
</tr>
<tr>
<td>Low Severity</td>
<td>2%</td>
</tr>
<tr>
<td>Possible Asthma</td>
<td>35%</td>
</tr>
<tr>
<td>Other</td>
<td>12%</td>
</tr>
</tbody>
</table>

Survey Year I
Results: Students with Probable Asthma

Survey Year I

<table>
<thead>
<tr>
<th>Condition</th>
<th>Probable (n=387)</th>
<th>Not Probable (n=1,965)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheeze</td>
<td>80.4</td>
<td>72.7</td>
</tr>
<tr>
<td>Wheeze w/ Exer</td>
<td>61.0</td>
<td>27.1</td>
</tr>
<tr>
<td>Night Sx</td>
<td>55.2</td>
<td>20.1</td>
</tr>
<tr>
<td>Night cough w/o cold</td>
<td>72.7</td>
<td>40.1</td>
</tr>
<tr>
<td>ED visit</td>
<td>33.7</td>
<td>3.3</td>
</tr>
<tr>
<td>Can't Finish Sentence</td>
<td>27.1</td>
<td>8.4</td>
</tr>
</tbody>
</table>
Spatial Analysis: Distribution of Cases

OUSD catchment area, limited access highways and buffer, and identified asthma cases
Number Census Tracts, Oakland: 106

Mean Asthma Prevalence: 17.9% (SD: 8.8)

Median Asthma Prevalence: 16.3%

Asthma Prevalence Range: 0.0 – 50.0%

Interquartile Range: 12.6 – 22.4%
Results: Correlation with Race/Ethnicity

The graph shows the correlation with race/ethnicity, with the Pearson R value ranging from -0.3 to 0.4. The categories include:

- %white
- %black
- %aian
- %asian
- %pac_isl
- %other
- %latino
- %latino_m
- %latino_o
- %latino_ai
- %latino_b
- %multi
- %latino_w
- %latino_pi
- %latino_o

The correlation values for each category are indicated by the length of the bars, with a negative correlation shown in red and a positive correlation shown in blue.
Results: Correlation with Family Structure

- %InFamHHD
- %MarriedChildren<18
- %MHHChildren<18
- %SRMCCH<18
- %SRMHHCH<18
- %SRFHHCH<18
- %FamiliesLE4
- %FamiliesGT4
- %FamHHDLE4
- %FHHChildren<6
- %FHHSchoolChild
- %MarriedChildren<6
- %MarriedSchoolChild
- %Now Married
- %MarriedSpPr
- %MarrSpAbs
- %NeverMarr
- %Divorced
- %Separated
- %Widow

Pearson R
Results: Correlation with Language

- %ESLEngN
- %SrSpanEngN
- %AdultAsnEngN
- %AdultSpanEngN
- %KidAsnEngN
- %KidSpanEngN
- %EngOnly
- %SrAsnEngG
- %SrSpanEngG
- %AdultAsnEngG
- %AdultSpanEngG
- %EngOnly
- %SrEngOnly
- %EngOnly
- %SrAsnEngG
- %SrSpanEngG
- %AdultAsnEngG
- %AdultSpanEngG
- %EngOnly

Pearson R

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
Results: Place of Birth

%BornCA
%BornUS
%EmigPrevDec
%EmigGT10Y
%SameHome95
%ForeignBorn

Pearson R
Results: Education

- %K-8PubSch
- %K-8PrivSch
- %HS Pub
- %HS Priv
- %HS Ed
- %CollEd

Pearson R

%LT8thGrEd

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3
“Representative Sample” was calculated by dividing the number of students in each census tract who completed the survey by the number of school-aged children in each census tract (ages 5 – 17) derived from the census.
Factors Associated with Representative Sample

<table>
<thead>
<tr>
<th>Positive Correlations (p<0.05)</th>
<th>Negative Correlations (p<0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>%AIAN 0.21786</td>
<td>0.0294</td>
</tr>
<tr>
<td>%Asian 0.38866</td>
<td><0.0001</td>
</tr>
<tr>
<td>%Young Adult 0.41812</td>
<td><0.0001</td>
</tr>
<tr>
<td>%Marr Sp Pr 0.33976</td>
<td>0.0005</td>
</tr>
<tr>
<td>%NEVMARR 0.30878</td>
<td>0.0018</td>
</tr>
<tr>
<td>%Kid Asn Eng N 0.21926</td>
<td>0.0284</td>
</tr>
<tr>
<td>% HS Pub 0.30624</td>
<td>0.0019</td>
</tr>
<tr>
<td>% HS 0.42424</td>
<td>0.0001</td>
</tr>
<tr>
<td>% Adult Eng Only -0.26265</td>
<td>0.0083</td>
</tr>
<tr>
<td>%Sr Span Eng G -0.09348</td>
<td>0.0029</td>
</tr>
<tr>
<td>%Sr Asn Eng G -0.22218</td>
<td>0.0263</td>
</tr>
<tr>
<td>%Eng Only -0.29823</td>
<td>0.0026</td>
</tr>
<tr>
<td>%ESL Eng G -0.25119</td>
<td>0.0117</td>
</tr>
<tr>
<td>% Foreign Born -0.23531</td>
<td>0.0184</td>
</tr>
<tr>
<td>%Same Home 95 -0.28374</td>
<td>0.0042</td>
</tr>
<tr>
<td>% College -0.33685</td>
<td>0.0006</td>
</tr>
<tr>
<td>% Grad School -0.33525</td>
<td>0.0007</td>
</tr>
<tr>
<td>% K-8 Private -0.36743</td>
<td>0.0002</td>
</tr>
</tbody>
</table>
Spatial Analysis: Limitations

- **Census Data**: ecological level data, joint probabilities not available, may not reflect current population demographics.
- **Survey Data**: relies on student’s report of symptoms, frequency, diagnosis; difficult to validate.
- **Address validation**: difficult with self-report student data.
- **Working with a transient population**: who may enter or leave school system at different points during the school year.
Conclusions

• Local surveillance provides high resolution asthma-related morbidity information specific to a community

• Spatial analysis via survey data and analysis of these data in a GIS framework may provide more accurate estimates of asthma-related risk factors compared to health care utilization data

• GIS analysis can inform targeted interventions to address asthma disparities in urban communities

• Survey data obtained from a public school population may not reflect all demographic and economic groups of the school-aged population
Future Plans

• Inclusion of individual level variables collected from surveillance data
• Inclusion of school-level ecological characteristics
• Regression with additional community level variables, including land use and presence of public and assisted housing
• Inclusion of exposure assessment of vehicular pollution: measurement of distance to freeway
Thank You

California Department of Health Services, Environmental Health Investigations Branch

Eric Roberts, Paul English, Makinde Falade, Craig Wolff

Oakland Unified School District

Joan Edelstein

American Lung Association, East Bay

Beryl Shaw, Adam Davis, AmeriCorps Staff

University of California, Berkeley

Beth Macdonald