How Freight Moves: Estimating Mileage and Routes Using an Innovative GIS Tool

Stephen M. Lewis
Geospatial Information Officer
United States Department of Transportation
January 20, 2011
Background: What is the CFS?

- Freight survey of U.S. businesses (shippers)
- Performed by RITA/BTS in partnership with the Census Bureau
- Previous surveys in 1993, 1997, and 2002 as part of the U.S. Economic Census
- Provides data on actual shipments by mode of transportation
CFS Mileage Calculation: Why and How?

Why?
- Shippers generally do not know travel distance of shipments
- Modal-mileages are critical for calculating ton-miles

How?
- Survey asks for origin and destination ZIP codes
- Survey asks for mode sequence (e.g. road-rail-road)
- Using this info, mileages are calculated for each shipment by mode (highway, rail, water, air, parcel and pipeline)
Mileage Calculations in the 1993, 1997, and 2002 Surveys

- BTS contracted with the Oak Ridge National Laboratory (ORNL) to develop the mileage calculation procedures.
- ORNL created a multi-modal surface transportation network (air separate).
- ORNL created routing applications using a variety of software (primarily FORTRAN and FOXPRO).
- Performed by ORNL staff in 1993 and 1997 and by BTS staff in 2002.
The Mileage Calculation Problem

- Large proportion of shipments are multi-modal
- Few national level, multi-modal GIS networks available
- Few (if any) commercial routing routines with mode-change logic
The Solution: A Geospatial Approach

What we did:

• Develop a multi-modal transportation network
• Develop core multi-modal routing models for domestic and export shipments for all modes
• Develop comprehensive pre-processing and post-processing modules that are part of the process flow
• Integrate map visualization tool to help Analysts better estimate mileages for problematic records

Put it all together, and you get GeoMiler!
CFS Data Items Uses as Input to GeoMiler

- Valid Origin ZIP Code
- Valid Destination ZIP Code; if an export, valid Country Name (valid City Name for Canada and Mexico)
- Mode or Mode Sequence
- Commodity Type, particularly hazmat
- Commodity Weight
- Commodity Value
The GeoMiler Application

Fully integrated GIS based tool
• Seamless functionality with fully mechanized geographic info correction
• Multimodal pathfinder and distance solver
• Based on ArcGIS 9.1 and Network Analyst
• ArcMap used for visualization of routes
The GeoMiler Networks

- Roads – Tele Atlas DynaMap Transportation (this is about to change! More later.)
- Rail – FRA Rail Network
- Water – USACE Navigable Waterway Network
- Air – Based on BTS Office of Airline Information and Official Airline Guide
- Pipelines – Great Circle Distance
- “Spatial Joins” created to link the networks through intermodal facilities
Modeling Multimodal Transfer

TRUE ORIGIN

Highway network

Truck-Rail transfer facility

Rail network

Modal spatial joins

TRUE DESTINATION

Highway network

Modal spatial joins

Truck-Rail transfer facility
Building GeoMiler: Summary

- False starts prior to 1997 and 2002 surveys
- Began development in Spring of 2006
- Entire application (pre-processor, solver, post-processor) and multi-model network completed in 11 months
Old vs. New: Process

2002 CFS
- FORTRAN, Foxpro, no GIS component
- Separate components for pre-processor, solvers, and post processor
- ASCII representation of networks

2007 CFS
- VB, ArcGIS
- Seamless process flow
- GIS networks
Old vs. New: Results

2002 CFS
- 2 analysts
- Processed 2.7 million records in first 12 months
- 112,500 records per analyst per month

2007 CFS
- 3 analysts
- Processed 4.5 million records in first 10 months
- 150,000 records per analyst per month
Truck-Rail-Water Shipment
Riverton, WV → Sudbury, MA
Export Shipment via Great Lakes
Mtn Iron, MN → Marathon, CANADA

Origin: Mtn Iron, MN 55768

Port of Duluth, MN

Great Lakes component

Canadian Miles not included

Line of Demarcation

Foreign Destination: Marathon, Canada

Truck component
At NAVTEQ, we build our map step by step. At every stage, we focus on creating accurate, precise data to be used in a wide range of applications.

NAVTEQ’s global map build process includes:
- Quality Testing over 80,000 Data Sources
- Collection and Verification by Local Experts
- Database Validation and Compilation
- Publication of Data
- Continuous Testing for Quality Improvement

NAVTEQ is not only focused on building an accurate database, but on keeping it fresh so that it reflects the real world.
The NAVTEQ Difference: Its People and Technology

- More than 1,100 geographic analysts driving the roads. 212 offices in 48 countries. Local Knowledge

- A single global specification—One World, One Database

- More than 18 million miles of roadway in the NAVTEQ® database with up to 260 attributes per road segment

- 8 out of 10 navigation devices are powered by NAVTEQ® maps

- Over 65 million in-dash and portable navigation solutions using NAVTEQ maps
Increasing Standardization Across Federal Government

United States Department of Transportation

United States Postal Service

FCC Federal Communications Commission

Library of Congress

CDC

EPA

GSA

U.S. General Services Administration

DoD and National Guard

IRRIS (Intelligent Road and Rail Information System) and Military HOMEFRONT LBS applications

GSA Public Buildings Service
Enterprise Customers
NAVTEQ Integration Into GeoMiler

- F1-F4 Classification Roads
- Add “Virtual Links” from zip centroid to closest street link
- Add “Virtual Links” from each airport, seaport (dock), intermodal facility (boat or rail to truck transfer point) and point-of-entry (border crossings) to the closest street link
 - Allows for accurate travel distance calculation rather than calculating straight distances from zip centroids as it uses actual grounded street network
Challenges

- In the first incarnation of GeoMiler DOT went through the issue of the old distances (zip centroids to zip centroids) matching the actually road mile values already.
- New version will improve mileage numbers to reflect more accurate number of road miles from each facility to the nearest point on the street network (rather than straight line links).
- Will impact five-year surveys as miles travel will be different
- Technologically do-able
- Politically challenging
What’s Next?

- Testing and revisions
 - Integration to be completed by November 2011
- Internal DOT Analyst will perform modifications to Network using ArcGIS Network Analyst to take advantage of enhancements to GeoMiler Model

Questions?
- Contact steve.lewis@dot.gov
Questions?

Contact Info:
steve.lewis@dot.gov