Reducing the Risk of Production Contamination and Flavour Tainting Through Effective Cleaning Chemicals and Processes

Damien Rankine Ph.D., B.Sc. (Hons)
Research & Development Manager

WEA Conference – September 2017
What’s the Point?

• Wine
 • We all love to drink it
 • You are all here to manufacture it

• Topics of interest:
 • Why does cleaning matter?
 • Methods to minimise contamination and flavour taint via appropriate and effective cleaning
 • Sanitation is important!
 • Environmental conscience
Benefits of Cleaning

• Mitigate **cross-contamination** between different grape varieties or production methods

• Remove residual **microorganisms** (yeast/bacteria)

• Control build-up of crystallised and amorphous **deposits** in tanks and transfer lines/pipes

• Maintain maximum **flow** through transfer lines/pipes for operational efficiency

• **Overall** – minimise re-work of finished goods!

Image Source(s):
Effective Cleaning Processes

- **Chemistry** of cleaning products is critical for:
 - Fast wetting of soils and surfaces
 - Rapid soil dissolution and removal from surface
 - Low corrosivity for equipment longevity
 - Sanitation

Sinners Cycle

Surfactant action in soil removal

Improved surface coverage with wetting agents

Image Source(s):
http://www.atescoindustrialhygiene.com/blog/cleaning_factors/
http://www.lankem.eu/wetting-agents.html
Effective Cleaning Processes

• **Mechanical action**
 - Water pressure
 - Water volume / flow rate
 - Surface Coverage
 - Flow through pipes, transfer lines and equipment
 - Static or dynamic spray ball

Image Source(s):
http://www.atescoindustrialhygiene.com/blog/cleaning_factors/
http://texasprocessstech.com/store/page132.html
Common Tank Soiling

- Crystal deposits (cold stabilization)
 - Potassium hydrogen tartrate (top image)
 - Calcium tartrate (middle image)
- Protein deposits (bottom image)
- Tannins/polyphenols and other coloured soils
- Metal salts of other components and various phytochemicals
- Lees / Must / By-Products

Image Source(s):
http://www.chemspider.com/
Tank Cleaning

- **Non-formulated** caustic products can remove tartrates but less effective on heavy build-up and complex deposits, with no scale control or enhanced wetting.

- **Formulated alkaline** products deliver:
 - Removal of heavy tartrate
 - Fast soil and surface wetting
 - Sequestration of Ca/Mg ions
 - Low foaming and easy rinsing for CIP applications
 - Environmental benefits

- **Destaining** products are primarily used for removal and de-colouring of:
 - Protein
 - Tannins
 - Other conjugated polyaromatics

Image Source(s):
Environmental Impacts

- Water management and recycling! Effective products mean reduced consumption.

- Excess sodium is toxic to plants in general
 - **Sodium** – competition with K, Ca, Mg, NH$_4$
 - **Chloride** – competition with NO$_3$, PO$_4$, SO$_4$
 - Accumulation in plant leaves

- **Potassium Plus** – Na/K blended product to reduce SAR (sodium absorption ratio). Also contains wetting agents, for enhanced surface coverage and cleaning, plus sequestrants for scale control.

Image Source(s):

Sodium Toxicity Chloride Toxicity
Sanitation

• What can you achieve by ensuring correct sanitation?
 • Quality, consistency and product safety
 • Aging potential
 • Retention of positive flavours

• Dominant provide a range of options for sanitation that include:
 • Peracids
 • Acid-based
 • Detergent–based (higher generation QACs)
 • Other chemistry
Sanitation – Cork Taint

• Historical sanitiser in wineries – Sodium Hypochlorite (NaOCl)

• Sodium hypochlorite or other halogen based oxidisers (i.e. iodophors) cause cork taint

 • Main contributor is trichloroanisole (TCA) – musty, wet dog or low aroma

 • Halogenation of polyphenols from the cork, with hypochlorite, form trichlorophenol (TCP).

 • O-methylation of the chlorinated phenol by microorganisms create the problematic trichloroanisole (TCA)

• Human detection threshold = 1 ppt (1 ng/L)

• Affects 3-5% of finished wine
Flavour Taint

- Microbiological contributors to flavor tainting can cause the following effects:
 - Sensory loss
 - Spoilage
 - High volatile acidity (VA)

Control of microorganisms is critically important

Reduce batch contamination

Flavor tainting

Minimise cost of final re-work by winemakers

Image Source(s):
http://bioinformatics.charite.de/mvoc/
Sanitation Case Study - Oxypower

- All the benefits of Peroxyacetic acid in a convenient powdered form
- Safe and easy to use
- Decomposes to acetic acid and water
- Contains additional wetting aids, sequestrants and secondary sanitising aids.
- Neutral pH: 8.5 – 9.0 @ 1% w/w in water
- Independently verified to be effective against common wine and food spoilage organisms
Thank you for your time

Please stop by our stand in the Exhibitor Area

Damien Rankine
R&D Manager
The R&D Team at Dominant

- HQ in Brompton – close to the Adelaide CBD
- Four full-time chemists on-site
- Fully-equipped R&D Laboratory conducting:
 - New product R&D and formulation for a broad range of industries
 - Chemical and physical characterization
 - Quality control (QC) testing
 - Technical customer support
 - Formulation of liquids, powders and tablets