Strong chromatic index of graphs with maximum degree four

Michael Santana

Joint Work with M. Huang and G. Yu

May 2017
Definition

Given a graph G, a **strong edge-coloring** is a coloring of $E(G)$ such that every color class forms an induced matching in G.
Definition

Given a graph G, a **strong edge-coloring** is a coloring of $E(G)$ such that every color class forms an induced matching in G.
Definition

Given a graph G, a **strong edge-coloring** is a coloring of $E(G)$ such that every color class forms an induced matching in G.

Definition

The **strong chromatic index** of G, denoted by $\chi'_s(G)$, is the minimum number of colors needed for a strong edge-coloring of G.
For every graph G with maximum degree Δ,

$$\Delta \leq \chi'(G) \leq \chi'_s(G)$$
Bounds

Proposition

For every graph G with maximum degree Δ,

\[
\Delta \leq \chi'(G) \leq \chi'_s(G) \leq 2\Delta(\Delta - 1) + 1.
\]

3 / 16
Proposition

For every graph G with maximum degree Δ, \n
$$\Delta \leq \chi'_s(G) \leq 2\Delta^2.$$

Proposition

For every graph G with maximum degree Δ,

$$\Delta \leq \chi'_s(G) \leq 2\Delta^2.$$

The lower bound is best possible due to $K_{1,\Delta}$.
Proposition

For every graph G with maximum degree Δ,

$$\Delta \leq \chi'_s(G) \leq 2\Delta^2.$$

- The lower bound is best possible due to $K_{1,\Delta}$.
- The order of magnitude of the upper bound is also best possible as

$$\chi'_s(K_{\Delta+1}) = \binom{\Delta+1}{2} \approx \frac{1}{2}\Delta^2.$$
Conjecture (Erdős-Nešetřil ‘85)

For any graph G with maximum degree Δ,

$$\chi_s'(G) \leq \begin{cases}
\frac{5}{4}\Delta^2, & \text{for even } \Delta \\
\frac{5}{4}\Delta^2 - \frac{1}{2}\Delta + \frac{1}{4}, & \text{for odd } \Delta
\end{cases}$$
Blow-Up of C_5
\(\chi'_s(\text{Blow-up of } C_5) = \begin{cases}
\frac{5}{4} \Delta^2, & \text{for even } \Delta \\
\frac{5}{4} \Delta^2 - \frac{1}{2} \Delta + \frac{1}{4}, & \text{for odd } \Delta
\end{cases} \)
Blow-Up of C_5

\[
\chi'_s(\text{Blow-up of } C_5) = \begin{cases}
\frac{5}{4} \Delta^2, & \text{for even } \Delta \\
\frac{5}{4} \Delta^2 - \frac{1}{2} \Delta + \frac{1}{4}, & \text{for odd } \Delta
\end{cases}
\]

- If G is $(2K_2)$-free, then $\chi'_s(G) = |E(G)|$.

Theorem (Chung-Gyárfás-Trotter-Tuza '90)

The number of edges in a $(2K_2)$-free graph with max degree Δ is at most $\frac{5}{4} \Delta^2 - \frac{1}{2} \Delta + \frac{1}{4}$, for odd Δ. Additionally, the blow-up of C_5 is the unique extremal graph.
Blow-Up of C_5

\[
\chi'_s(\text{Blow-up of } C_5) = \begin{cases}
\frac{5}{4} \Delta^2, & \text{for even } \Delta \\
\frac{5}{4} \Delta^2 - \frac{1}{2} \Delta + \frac{1}{4}, & \text{for odd } \Delta
\end{cases}
\]

- If G is $(2K_2)$-free, then $\chi'_s(G) = |E(G)|$.

Theorem (Chung-Gyárfás-Trotter-Tuza '90)

The number of edges in a $(2K_2)$-free graph with max degree Δ is at most
\[
\begin{cases}
\frac{5}{4} \Delta^2, & \text{for even } \Delta \\
\frac{5}{4} \Delta^2 - \frac{1}{2} \Delta + \frac{1}{4}, & \text{for odd } \Delta
\end{cases}
\]

Additionally, the blow-up of C_5 is the unique extremal graph.
Conjecture (Erdős-Nešetřil ‘85)

For any graph G with maximum degree Δ, $\chi'_s(G) \leq \begin{cases}
\frac{5}{4} \Delta^2, & \text{for even } \Delta \\
\frac{5}{4} \Delta^2 - \frac{1}{2} \Delta + \frac{1}{4}, & \text{for odd } \Delta
\end{cases}$
Conjecture (Erdős-Nešetřil ‘85)

For any graph G with maximum degree Δ,

$$
\chi'_s(G) \leq \begin{cases}
\frac{5}{4} \Delta^2, & \text{for even } \Delta \\
\frac{5}{4} \Delta^2 - \frac{1}{2} \Delta + \frac{1}{4}, & \text{for odd } \Delta
\end{cases}
$$

- $\chi'_s(G) \leq 1.998 \Delta^2$ (Molloy-Reed ‘97)
Conjecture (Erdős-Nešetřil ‘85)

For any graph G with maximum degree Δ,

$$
\chi'_s(G) \leq \begin{cases}
\frac{5}{4}\Delta^2, & \text{for even } \Delta \\
\frac{5}{4}\Delta^2 - \frac{1}{2}\Delta + \frac{1}{4}, & \text{for odd } \Delta
\end{cases}
$$

- $\chi'_s(G) \leq 1.998\Delta^2$ (Molloy-Reed ‘97)
- $\chi'_s(G) \leq 1.93\Delta^2$ (Bruhn-Joos ‘15)
Conjecture (Erdős-Nešetřil ‘85)

For any graph G with maximum degree Δ,

$$\chi_s'(G) \leq \begin{cases}
\frac{5}{4} \Delta^2, & \text{for even } \Delta \\
\frac{5}{4} \Delta^2 - \frac{1}{2} \Delta + \frac{1}{4}, & \text{for odd } \Delta
\end{cases}$$

- $\chi_s'(G) \leq 1.998 \Delta^2$ (Molloy-Reed ‘97)
- $\chi_s'(G) \leq 1.93 \Delta^2$ (Bruhn-Joos ‘15)
- $\chi_s'(G) \leq 1.835 \Delta^2$ (Bonamy-Perrett-Postle ‘17)
Conjecture

Conjecture (Erdős-Nešetřil ‘85)

For any graph G with maximum degree Δ,

$$
\chi'_s(G) \leq \begin{cases}
\frac{5}{4} \Delta^2, & \text{for even } \Delta \\
\frac{5}{4} \Delta^2 - \frac{1}{2} \Delta + \frac{1}{4}, & \text{for odd } \Delta
\end{cases}
$$

- $\chi'_s(G) \leq 1.998 \Delta^2$ (Molloy-Reed ‘97)
- $\chi'_s(G) \leq 1.93 \Delta^2$ (Bruhn-Joos ‘15)
- $\chi'_s(G) \leq 1.835 \Delta^2$ (Bonamy-Perrett-Postle ‘17)
- Proven for $\Delta = 3$ (Andersen ‘92, Horák-Qing-Trotter ‘93)
Conjecture

Conjecture (Erdős-Nešetřil ‘85)
For any graph G with maximum degree Δ,
$$\chi'_s(G) \leq \begin{cases}
\frac{5}{4}\Delta^2, & \text{for even } \Delta \\
\frac{5}{4}\Delta^2 - \frac{1}{2}\Delta + \frac{1}{4}, & \text{for odd } \Delta
\end{cases}$$

- $\chi'_s(G) \leq 1.998\Delta^2$ (Molloy-Reed ‘97)
- $\chi'_s(G) \leq 1.93\Delta^2$ (Bruhn-Joos ‘15)
- $\chi'_s(G) \leq 1.835\Delta^2$ (Bonamy-Perrett-Postle ‘17)
- Proven for $\Delta = 3$ (Andersen ‘92, Horák-Qing-Trotter ‘93)
- For $\Delta = 4$, $\chi'_s(G) \leq 22$ (Cranston ‘06)
Conjecture

Conjecture (Erdős-Nešetřil ‘85)

For any graph G with maximum degree Δ, $\chi'_s(G)$ satisfies:

$$\chi'_s(G) \leq \begin{cases}
\frac{5}{4} \Delta^2, & \text{for even } \Delta \\
\frac{5}{4} \Delta^2 - \frac{1}{2} \Delta + \frac{1}{4}, & \text{for odd } \Delta
\end{cases}$$

- $\chi'_s(G) \leq 1.998 \Delta^2$ (Molloy-Reed ‘97)
- $\chi'_s(G) \leq 1.93 \Delta^2$ (Bruhn-Joos ‘15)
- $\chi'_s(G) \leq 1.835 \Delta^2$ (Bonamy-Perrett-Postle ‘17)
- Proven for $\Delta = 3$ (Andersen ‘92, Horáček-Qing-Trotter ‘93)
- For $\Delta = 4$, $\chi'_s(G) \leq 22$ (Cranston ‘06)
- For $\Delta = 4$, $\chi'_s(G) \leq 21$ (Huang-S-Yu ‘17++)
Theorem (Huang-S-Yu ‘17++)

If G is a multigraph with $\Delta(G) \leq 4$, then $\chi'_s(G) \leq 21$.
Theorem (Huang-S-Yu ‘17++)

If G is a multigraph with $\Delta(G) \leq 4$, then $\chi'_s(G) \leq 21$.

Among all counterexamples, choose G so that $|V(G)| + |E(G)|$ is minimized.
Theorem (Huang-S-Yu ‘17++)
If G is a multigraph with $\Delta(G) \leq 4$, then $\chi_s'(G) \leq 21$.

- Among all counterexamples, choose G so that $|V(G)| + |E(G)|$ is minimized.
- So $\Delta(G) \leq 4$ and $\chi_s'(G) > 21$.
Proof Sketch

Properties of a Minimal Counterexample G

- G is 4-regular, simple, etc.

Partition the vertices of G into three sets (L, M, and R), where M is a cut-set. Show that M contains some special vertices.

Case analysis and color.
Proof Sketch

Properties of a Minimal Counterexample G

- G is 4-regular, simple, etc.
- G has girth at least 6.
Proof Sketch

Properties of a Minimal Counterexample G

- G is 4-regular, simple, etc.
- G has girth at least 6.
- G has no edge-cut of size at most 3.
Proof Sketch

Properties of a Minimal Counterexample G

- G is 4-regular, simple, etc.
- G has girth at least 6.
- G has no edge-cut of size at most 3.

How to Color the Edges of G
Proof Sketch

Properties of a Minimal Counterexample G

- G is 4-regular, simple, etc.
- G has girth at least 6.
- G has no edge-cut of size at most 3.

How to Color the Edges of G

- Partition the vertices of G into three sets (L, M, and R), where M is a cut-set
Proof Sketch

Properties of a Minimal Counterexample G

- G is 4-regular, simple, etc.
- G has girth at least 6.
- G has no edge-cut of size at most 3.

How to Color the Edges of G

- Partition the vertices of G into three sets (L, M, and R), where M is a cut-set.
- Show that M contains some special vertices.
Properties of a Minimal Counterexample G

- G is 4-regular, simple, etc.
- G has girth at least 6.
- G has no edge-cut of size at most 3.

How to Color the Edges of G

- Partition the vertices of G into three sets (L, M, and R), where M is a cut-set
- Show that M contains some special vertices.
- Case analysis and color.
Conjecture (Erdős-Nešetřil ‘85)
If $\Delta(G) \leq 4$, then $\chi'_s(G) \leq 20$.

Conjecture (Faudree-Gyárfás-Schelp-Tuza ‘90)
Suppose G is a bipartite graph with maximum degree Δ.

1. $\chi'_s(G) \leq \Delta^2$.

2. If $\Delta \leq 3$ and G has girth at least six, then $\chi'_s(G) \leq 7$.

3. If $\Delta \leq 3$ and G has 'large' girth, then $\chi'_s(G) \leq 5$.

Theorem (Faudree et al. ‘90)
If G is a planar graph with maximum degree Δ, then

$4\Delta - 4 \leq \chi'_s(G) \leq 4\Delta + 4$.

Conjecture (Erdős-Nešetřil ‘85)
If $\Delta(G) \leq 4$, then $\chi'_s(G) \leq 20$.

Conjecture (Faudree-Gyárfás-Schelp-Tuza ‘90)
Suppose G is a bipartite graph with maximum degree Δ.

Theorem (Faudree et al. ‘90)
If G is a planar graph with maximum degree Δ, then
$$4\Delta - 4 \leq \chi'_s(G) \leq 4\Delta + 4.$$
Open Problems

<table>
<thead>
<tr>
<th>Conjecture (Erdős-Nešetřil ‘85)</th>
<th>If $\Delta(G) \leq 4$, then $\chi'_s(G) \leq 20$.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conjecture (Faudree-Gyárfás-Schelp-Tuza ‘90)</td>
<td>Suppose G is a bipartite graph with maximum degree Δ. $\chi'_s(G) \leq \Delta^2$.</td>
</tr>
</tbody>
</table>
Open Problems

Conjecture (Erdős-Nešetřil ‘85)
If $\Delta(G) \leq 4$, then $\chi'_s(G) \leq 20$.

Conjecture (Faudree-Gyárfás-Schelp-Tuza ‘90)
Suppose G is a bipartite graph with maximum degree Δ.
1. $\chi'_s(G) \leq \Delta^2$.
2. If $\Delta \leq 3$ and G has girth at least six, then $\chi'_s(G) \leq 7$
Open Problems

Conjecture (Erdős-Nešetřil ‘85)
If $\Delta(G) \leq 4$, then $\chi'_s(G) \leq 20$.

Conjecture (Faudree-Gyárfás-Schelp-Tuza ‘90)
Suppose G is a bipartite graph with maximum degree Δ.

1. $\chi'_s(G) \leq \Delta^2$.
2. If $\Delta \leq 3$ and G has girth at least six, then $\chi'_s(G) \leq 7$.
3. If $\Delta \leq 3$ and G has ‘large’ girth, then $\chi'_s(G) \leq 5$.

Theorem (Faudree et al. ‘90)
If G is a planar graph with maximum degree Δ, then
$$4\Delta - 4 \leq \chi'_s(G) \leq 4\Delta + 4.$$
Open Problems

Conjecture (Erdős-Nešetřil ‘85)

If $\Delta(G) \leq 4$, then $\chi'_s(G) \leq 20$.

Conjecture (Faudree-Gyárfás-Schelp-Tuza ‘90)

Suppose G is a bipartite graph with maximum degree Δ.

1. $\chi'_s(G) \leq \Delta^2$.

2. If $\Delta \leq 3$ and G has girth at least six, then $\chi'_s(G) \leq 7$.

3. If $\Delta \leq 3$ and G has ‘large’ girth, then $\chi'_s(G) \leq 5$.

Theorem (Faudree et al. ‘90)

If G is a planar graph with maximum degree Δ, then

$$4\Delta - 4 \leq \chi'_s(G) \leq 4\Delta + 4.$$
MIGHTY LVIII
Grand Valley State University
October 6-7, 2017
Plenary Speakers: Doug West David Galvin
www.gvsu.edu/math/mighty-lviii
MIGHTY_LVIII@ gvsu.edu
Thanks for your attention!
Strong chromatic index of graphs with maximum degree four

Michael Santana

Joint Work with M. Huang and G. Yu

May 2017