Assessing the Impact of Partial Verifications Against Silent Data Corruptions

Aurélien Cavelan1, Saurabh K. Raina2, Yves Robert1,3 and Hongyang Sun1

1. Ecole Normale Superieure de Lyon & INRIA, France
2. Jaypee Institute of Information Technology, India
3. University of Tennessee Knoxville, USA

hongyang.sun@ens-lyon.fr

ICPP – September 3, 2015
HPC at Scale

Scale is a major opportunity:

- Exascale platform: 10^5 or 10^6 nodes, each with 10^2 or 10^3 cores.

Scale is also a major threat:

- Shorter Mean Time Between Failures (MTBF) μ.

Theorem: $\mu_p = \frac{\mu_{\text{ind}}}{p}$ for arbitrary distributions

<table>
<thead>
<tr>
<th>MTBF (individual node)</th>
<th>1 year</th>
<th>10 years</th>
<th>120 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTBF (platform of 10^6 nodes)</td>
<td>30 sec</td>
<td>5 mn</td>
<td>1 h</td>
</tr>
</tbody>
</table>
HPC at Scale

Scale is a major opportunity:

- Exascale platform: 10^5 or 10^6 nodes, each with 10^2 or 10^3 cores.

Scale is also a major threat:

- Shorter Mean Time Between Failures (MTBF) μ.

Theorem: $\mu_p = \frac{\mu_{\text{ind}}}{p}$ for arbitrary distributions

<table>
<thead>
<tr>
<th>MTBF (individual node)</th>
<th>1 year</th>
<th>10 years</th>
<th>120 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTBF (platform of 10^6 nodes)</td>
<td>30 sec</td>
<td>5 mn</td>
<td>1 h</td>
</tr>
</tbody>
</table>

Need more reliable components!!

Need more resilient techniques!!
General-purpose approach

Periodic checkpoint, rollback and recovery:

- **Fail-stop errors**: e.g., hardware crash, node failure
 - Instantaneous error detection.
General-purpose approach

Periodic checkpoint, rollback and recovery:

- **Fail-stop errors**: e.g., hardware crash, node failure
 - Instantaneous error detection.
- **Silent errors** (aka silent data corruptions): e.g., soft faults in L1 cache, ALU, multiple bit flip due to cosmic radiation.
 - Detected only when corrupted data leads to unexpected results, which could happen long after its occurrence.
 - Become a serious concern in Exascale systems.
General-purpose approach

Periodic checkpoint, rollback and recovery:

- **Fail-stop errors**: e.g., hardware crash, node failure
 - Instantaneous error detection.

- **Silent errors** (aka silent data corruptions): e.g., soft faults in L1 cache, ALU, multiple bit flip due to cosmic radiation.
 - Detected only when corrupted data leads to unexpected results, which could happen long after its occurrence.
 - Become a serious concern in Exascale systems.

Detection latency \Rightarrow risk of saving corrupted checkpoint!
Coping with silent errors

Couple checkpointing with verification:

- Before each checkpoint, run some verification mechanism (checksum, ECC, coherence tests, TMR, etc).
- Silent error is detected by verification ⇒ checkpoint always valid 😊
Coping with silent errors

Couple checkpointing with verification:

Before each checkpoint, run some verification mechanism (checksum, ECC, coherence tests, TMR, etc).

Silent error is detected by verification \Rightarrow checkpoint always valid.

What is the optimal checkpointing period (Young/Daly)?

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Fail-stop (classical)</th>
<th>Silent errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimal</td>
<td>$W^* = \sqrt{2C\mu}$</td>
<td>$W^* = \sqrt{(C + V^*)\mu}$</td>
</tr>
</tbody>
</table>
Perform several intermediate verifications before each checkpoint:

- **Pro**: silent error is detected earlier in the execution 😊
- **Con**: additional overhead in error-free executions 😞
One step further: intermediate verifications

Perform several intermediate verifications before each checkpoint:

- **Pro**: silent error is detected earlier in the execution 😊
- **Con**: additional overhead in error-free executions 😞

What is the optimal tradeoff?
Guaranteed/perfect verifications (V^*) can be very expensive!
Partial verifications (V) are available for many HPC applications!

- **Lower accuracy:** recall (r) = \(\frac{\text{#detected errors}}{\text{#total errors}} < 1 \) 😞

- **Much lower cost,** i.e., \(V \ll V^* \) 😊
Guaranteed/perfect verifications (V^*) can be very expensive!
Partial verifications (V) are available for many HPC applications!

- **Lower accuracy:** recall (r) = $\frac{\text{#detected errors}}{\text{#total errors}} < 1$ 😞
- **Much lower cost,** i.e., $V \ll V^*$ 😊
Guaranteed/perfect verifications (V^*) can be very expensive!
Partial verifications (V) are available for many HPC applications!

- **Lower accuracy**: recall (r) = $\frac{\#\text{detected errors}}{\#\text{total errors}} < 1$
 - 😞

- **Much lower cost**, i.e., $V \ll V^*$ 😊

What is the optimal checkpointing period?
How many partial verifications to use and their positions?
Outline

1. Problem Statement
2. Theoretical Analysis
3. Performance Evaluations
4. Conclusion
Problem Statement Theoretical Analysis Performance Evaluations Conclusion

Model and Objective

Failure Model

- Silent errors strike randomly and are uniformly distributed with arrival rate $\lambda = 1/\mu$, where μ is platform MTBF.
 - Expect λT errors in computation of time T.
- Failures only affect computations; checkpointing, recovery, and verifications are protected.

Resilience parameters

- Cost of checkpointing C, cost of recovery R.
- Partial verification: cost V and recall $r < 1$.
- Guaranteed verification: cost V^* and recall $r^* = 1$.

Objective

- Design an optimal periodic computing pattern that minimizes execution time (or makespan) of the application.
Formally, a periodic computing pattern is defined by

- W: work length of the pattern (or period);
- n: number of segments in the pattern (or $m = n - 1$: number of partial verifications);
- $\alpha = [\alpha_1, \alpha_2, \ldots, \alpha_n]$: work fraction of each segment (or relative positions of partial verifications)

\[\alpha_i = \frac{w_i}{W} \quad \text{and} \quad \sum_{i=1}^{n} \alpha_i = 1.\]

Last verification is perfect to avoid saving corrupted checkpoints.
Outline

1. Problem Statement
2. Theoretical Analysis
3. Performance Evaluations
4. Conclusion
The expected time to execute a pattern with fixed W, n, α is

$$\mathbb{E}(W) = W + (n - 1)V + V^* + C + \lambda W \left(\alpha^T A \alpha \cdot W \right) + o(\lambda)$$

where A is a symmetric matrix defined by $A_{i,j} = \frac{1}{2} \left(1 + (1 - r)^{|i-j|} \right)$.

Remarks:

- Two key parameters
 - o_{off}: overhead in a fault-free execution.
 - f_{re}: fraction of re-executed work in case of fault.

- Same result if assuming exponential error distribution with first-order approximation (as in Young/Daly’s classic formula).
Minimizing makespan

Matrix A is essential to analysis. For instance, when $n = 4$ we have:

$$A = \frac{1}{2} \begin{bmatrix}
2 & 1 + (1 - r) & 1 + (1 - r)^2 & 1 + (1 - r)^3 \\
1 + (1 - r) & 2 & 1 + (1 - r) & 1 + (1 - r)^2 \\
1 + (1 - r)^2 & 1 + (1 - r) & 2 & 1 + (1 - r) \\
1 + (1 - r)^3 & 1 + (1 - r)^2 & 1 + (1 - r) & 2
\end{bmatrix}$$
Minimizing makespan

- Matrix A is essential to analysis. For instance, when $n = 4$ we have:

$$A = \frac{1}{2} \begin{bmatrix}
2 & 1 + (1 - r) & 1 + (1 - r)^2 & 1 + (1 - r)^3 \\
1 + (1 - r) & 2 & 1 + (1 - r) & 1 + (1 - r)^2 \\
1 + (1 - r)^2 & 1 + (1 - r) & 2 & 1 + (1 - r) \\
1 + (1 - r)^3 & 1 + (1 - r)^2 & 1 + (1 - r) & 2
\end{bmatrix}$$

- For an application with total work T_{base}, the makespan T_{final} is

$$T_{\text{final}} \approx \frac{\mathbb{E}(W)}{W} \cdot T_{\text{base}} = (1 + H(W)) \cdot T_{\text{base}}$$

where $H(W)$ is the total execution overhead given by

$$H(W) = \frac{\mathbb{E}(W)}{W} - 1 = \frac{o_{\text{off}}}{W} + \lambda W f_{\text{re}} + o \left(\sqrt{\lambda}\right)$$

E.g., if $T_{\text{base}} = 100$ and $T_{\text{final}} = 120$, we have $H(W) = 20\%$.
Minimizing makespan

Matrix A is essential to analysis. For instance, when $n = 4$ we have:

$$A = \frac{1}{2} \begin{bmatrix}
2 & 1 + (1 - r) & 1 + (1 - r)^2 & 1 + (1 - r)^3 \\
1 + (1 - r) & 2 & 1 + (1 - r) & 1 + (1 - r)^2 \\
1 + (1 - r)^2 & 1 + (1 - r) & 2 & 1 + (1 - r) \\
1 + (1 - r)^3 & 1 + (1 - r)^2 & 1 + (1 - r) & 2
\end{bmatrix}$$

For an application with total work T_{base}, the makespan T_{final} is

$$T_{\text{final}} \approx \frac{\mathbb{E}(W)}{W} \cdot T_{\text{base}} = (1 + H(W)) \cdot T_{\text{base}}$$

where $H(W)$ is the total execution overhead given by

$$H(W) = \frac{\mathbb{E}(W)}{W} - 1 = \frac{o_{\text{off}}}{W} + \lambda Wf_{\text{re}} + o\left(\sqrt{\lambda}\right)$$

e.g., if $T_{\text{base}} = 100$ and $T_{\text{final}} = 120$, we have $H(W) = 20\%$.

Minimizing makespan is equivalent to minimizing overhead!
Optimal work length

Theorem

The execution overhead of a pattern is minimized when its length is

\[W^* = \sqrt{\frac{\text{o}_{\text{ff}}}{\lambda f_{\text{re}}}}. \]

The optimal overhead is

\[H(W^*) = 2\sqrt{\lambda o_{\text{ff}} f_{\text{re}}} + o(\sqrt{\lambda}). \]

- When the platform MTBF \(\mu = 1/\lambda \) is large, \(o(\sqrt{\lambda}) \) is negligible.
- Minimizing overhead is equivalent to minimizing product \(o_{\text{ff}} f_{\text{re}} \).
 - Tradeoff between fault-free overhead and fault-induced re-execution.
The re-execution fraction f_{re} of a pattern is minimized when $\alpha = \alpha^*$, where

$$\alpha^*_k = \begin{cases}
\frac{1}{(n-2)r+2} & \text{for } k = 1, n \\
\frac{r}{(n-2)r+2} & \text{for } k = 2, 3, \ldots, n-1
\end{cases}$$

and the optimal value of f_{re} is

$$f_{re}^* = \frac{1}{2} \left(1 + \frac{2 - r}{(n-2)r + 2}\right)$$
The re-execution fraction f_{re} of a pattern is minimized when $\alpha = \alpha^*$, where

$$\alpha_k^* = \begin{cases} \frac{1}{(n-2)r+2} & \text{for } k = 1, n \\ \frac{r}{(n-2)r+2} & \text{for } k = 2, 3, \ldots, n - 1 \end{cases}$$

and the optimal value of f_{re} is

$$f_{re}^* = \frac{1}{2} \left(1 + \frac{2 - r}{(n-2)r + 2} \right)$$

Special case: if all verifications are perfect, we get equal-length segments, i.e., $\alpha_k^* = \frac{1}{n}, \forall 1 \leq k \leq n$ and $f_{re}^* = \frac{1}{2} \left(1 + \frac{1}{n} \right)$.
Optimal number of segments

Theorem

The execution overhead of a pattern is minimized when the number of segments is

\[n^* = \begin{cases} 1 - \frac{1}{a} + \sqrt{\frac{1}{a} \left(\frac{1}{b} - \frac{1}{a} \right)} & \text{if } \frac{a}{b} > 2 \\ 1 & \text{if } \frac{a}{b} \leq 2 \end{cases} \]

and the optimal overhead is

\[H^* = \sqrt{2\lambda(C + V^*)} \left(\sqrt{1 - \frac{b}{a}} + \sqrt{\frac{b}{a}} \right) \]

where \(a = \frac{r}{2-r} \) represents accuracy and \(b = \frac{V}{C+V^*} \) denotes relative cost of the partial verification.

- In practice, the number of segments can only be an integer. Thus, the optimal number is either \(\lceil n^* \rceil \) or \(\lfloor n^* \rfloor \).
Optimal accuracy-cost tradeoff

Suppose a tradeoff exists between the cost V and recall r of a partial verification. What is the optimal tradeoff?

Theorem

The execution overhead is minimized when the (V, r) pair maximizes the accuracy-to-cost ratio $\frac{a}{b} = \frac{r}{V} - \frac{r}{V^ + \bar{c}}$.*

Remark:

- The result is based on the optimal fractional solution (n^*). Thus, the overhead in the optimal integer solution contains rounding error, which, however, is small for practical parameter settings.
Outline

1. Problem Statement
2. Theoretical Analysis
3. Performance Evaluations
4. Conclusion
Evaluation setup

Parameters in Exascale Platform:

- 10^5 computing nodes with individual MTBF of 100 years
 \Rightarrow platform MTBF $\mu \approx 8.7$ hours.

- Checkpoint size of 300GB with throughput of 0.5GB/s
 $\Rightarrow C = 600s = 10$ mins, and V^* in same order.

- Partial verifications (from Argonne National Laboratory, USA)
 $\Rightarrow V$ typically tens of seconds, and $r \in [0.5, 0.95]$.

Using partial verifications gains 5% improvement in overhead.
\Rightarrow Saving 1 hour for every 20 hours of computation!
Evaluation setup

Parameters in Exascale Platform:

- 10^5 computing nodes with individual MTBF of 100 years
 \Rightarrow platform MTBF $\mu \approx 8.7$ hours.

- Checkpoint size of 300GB with throughput of 0.5GB/s
 $\Rightarrow C = 600s = 10$ mins, and V^* in same order.

- Partial verifications (from Argonne National Laboratory, USA)
 $\Rightarrow V$ typically tens of seconds, and $r \in [0.5, 0.95]$.

\[
e.g., \ C = 600, \ V^* = 300, \ V = 30 \text{ and } r = 0.8.
\]

<table>
<thead>
<tr>
<th></th>
<th>using partial verifications</th>
<th>using perfect verifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>$7335s \approx 2$ hours</td>
<td>$5328s \approx 1.5$ hours</td>
</tr>
<tr>
<td>n</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>α</td>
<td>$(0.19, 0.15, 0.15, 0.15, 0.15, 0.19)$</td>
<td>$(0.5, 0.5)$</td>
</tr>
<tr>
<td>H</td>
<td>28.6%</td>
<td>33.8%</td>
</tr>
</tbody>
</table>

Using partial verifications gains 5% improvement in overhead.
\Rightarrow Saving 1 hour for every 20 hours of computation!
Impacts of m, V and r
Impact of ACR and rounding error

- Overhead decreases for increased accuracy-to-cost ratio (ACR).
- Different \((V, r)\) pair could share same ACR with different \(m^*, H^*\).
- Rounding error to theoretical optimal overhead \(H^*\) is insignificant.
Conclusion

Summary

- A first analysis of computing patterns to include partial verifications for silent error detection.
- **Theoretically**: derive the optimal pattern parameters, i.e., period, number of partial verifications and their positions.
- **Practically**: assess and compare the performance of the optimal pattern with realistic parameters.
Conclusion

Summary

- A **first analysis** of computing patterns to include partial verifications for silent error detection.

- **Theoretically**: derive the optimal pattern parameters, i.e., period, number of partial verifications and their positions.

- **Practically**: assess and compare the performance of the optimal pattern with realistic parameters.

Future work

- Partial verifications with **false positives/alarms**

 \[
 \text{precision}(p) = \frac{\#\text{true errors}}{\#\text{detected errors}} < 1.
 \]

- **Coexistence** of fail-stop and silent errors.