Using the Vanderbilt Fatigue Scales to explore the effects of hearing loss and device use on listening-related fatigue in adults and children with hearing loss

Introduction

- Mounting evidence suggests that adults and children with hearing loss are at increased risk for greater listening effort and long-term, listening-related fatigue.2,3,4 Severe, long-term, fatigue can have significant negative effects on quality of life.5 However, there are no measures designed specifically to assess listening-related fatigue. Such measures are essential for improving our understanding of, and developing interventions to reduce, listening-related fatigue and its consequences.

- To address this need we continue to refine a package of patient-reported outcome measures designed to reliably assess listening-related fatigue— the Vanderbilt Fatigue Scales for adults (VFS-AHL) and children (VFS-CHL) with hearing loss.6

- The VFS-AHL has 10-item (unidimensional) and a 40-item (unidimensional) versions.

- The 40-item self-report version is more sensitive and allows for assessment of cognitive, social, emotional and physical fatigue (10-items/domain). However, across domains, item scores are well described by a unidimensional model.

- The VFS-CHL is still being validated.

- Currently we are assessing child, parent-proxy, and teacher-proxy versions.

- The child and teacher versions are unidimensional.

- The parent version loads on two distinct factors—cognitive and physical fatigue (See Table 1)

- All scales will allow for Item Response Theory (IRT) scoring as well as using summed (on a 0-4 point Likert scale) scores.

- Purpose: In this poster we utilize data obtained in a validation study using the VFS-AHL-10 item scale and data obtained using a preliminary version of the VFS-CHL to describe the effects of hearing loss, and hearing aid/cochlear implant use, on listening-related fatigue.

Methods

- Data were collected from multiple sources using online and in person versions of the VFS-AHL and VFS-CHL.

- Respondents self-reported their hearing loss as unilateral or bilateral and degree of loss as mild/slight, moderate, severe, or profound based on their perceived speech understanding difficulties.

- Participants Characteristics: N=1458

 - Adults: n=511 (385/221/5=385/221/5=174/433/174/433) with no hearing aid/cochlear implant use, on listening-related fatigue.

 - Children: n=124 (152/49/0=152/49/0)

 - Parent respondents: n=201 (152/49/0=152/49/0)

 - Child respondents: n=201 (152/49/0=152/49/0)

- **Table 1:** Sample items from the VFS-AHL and the VFS-CHL scales.

- **Figure 1:** Quinulta histograms of IRT scale scores for those with (Blue bars) and without hearing loss (Orange bars) as self-reported by adults and children and via proxy-report for CHL by parents and teachers. Solid and dashed lines show estimate a normal distribution. Black bars show significant differences between HL and no HL groups (Chi-Square > 3.84, p<0.05). Inset panel shows frequency of scores >0.5 (reflecting more moderate-severe complaints of fatigue) for each group. Notes how across respondent groups, hearing loss increases risk for reporting more moderate-severe listening-related fatigue (IRT scores >0.5).

- **Figure 2:** Box Plots showing IRT scale scores as a function of degree of self-reported hearing loss. The box defines the 25th and 75th percentiles, a line within the box shows the median and error bars show the 10th and 90th percentiles. Stars show significant differences (Independent Sample T-tests, p<0.05) between adjacent samples. Note wide variability, however, for adults fatige increases systematically up to a severe loss and then decreases significantly for those with profound losses. No such pattern is observed for the child data (self or parent proxy report).

- **Figure 3:** Mean IRT scale scores as a function of device type for adult bilateral hearing aid users and CI users. Error bars reflect 1 standard error. The number of respondents in each sample is shown below the bars. There is a trend towards lower fatigue ratings for the bilateral CI users but the difference was not statistically significant (p > 0.05) for bilateral CI users potentially due to the small sample size and large within group variability.

Primary Conclusions

- Listening-related fatigue in adults and CHL varies widely but can be reliably measured.

- However, substantial overlap in scores of child respondents with and without HL, particularly compared to adult data, suggests children may be less able to reliably identify and describe their fatigue.

- Moderate-severe fatigue (IRT scores >0.5) is much more common in adults and CHL (via self-report and parent/teacher proxy) than in those without hearing loss.

- In contrast to prior work using generic fatigue scales2, listening-related fatigue in adults increased with degree of HL up to the severe range then decreased for respondents with profound HL (see Figure 2).

- This may reflect decreased engagement in listening-related tasks or benefit from CI use for those with adult with profound losses.

- For children, fatigue ratings were unaffected by degree of loss until reaching the profound range.

- Highlighting the impact of unilateral HL, only minimal differences in fatigue ratings were observed between those with UHL & bilateral HL.

- Additional data are needed to evaluate the effect of unilateral versus bilateral device use.

Acknowledgements

This work was supported by the Institute of Education Sciences (IES), U.S. Department of Education, through Grant R324A130092 to Vanderbilt University (Bess-P); the NIH National Institute on Deafness and Other Communication Disorders (NICDD) grant R21DC012865 (Hornby-P); a grant from Starkey Inc. (Hornsby-P, Thews-C); the Thews-C family; and the Vanderbilt University School of Medicine Department of Hearing and Speech Sciences (Hornsby-P).

Primary References

Key References

