The effects of toe joint stiffness and toe shape on bipedal walking

Eric C. Honert, Gerasimos Bastas, Karl E. Zelik - Vanderbilt University

How can toes improve gait?

Known

- Toe joint dynamics impact performance

Unknown

- Which toe parameters most influence walking performance? (e.g., joint stiffness, shape)

Objective

- Systematically characterize effect of various toe parameters on walking using adjustable prosthesis

Vision

- Optimize toe joint dynamics in prosthetic feet to aid users

Stiffer toe, later Push-off

- Data collection and processing
 - 10 subjects walked at 1.0 m/s
 - Wore simulator boots with adjustable prostheses
 - 5 toe shapes randomized
 - 6 toe joint stiffnesses randomized
 - Collected and analyzed bilateral, lower limb kinematics & kinetics
 - Evaluated Center-of-Mass (COM) Push-off & Collision work

- Future: more sweeps & metabolics
 - Testing other toe parameters (e.g., length, range of motion, etc.)
 - Metabolic study
 - Analogous testing with transtibial prosthetic users

- This research was supported by NSF (1605200) and NIH (K12HD073945).

Toe stiffness, not shape, affected COM work

- Stiffer toe caused up to 50% more Push-off
- Stiffer toe caused up to 25% less collision
- Little change with different toe shape

9/10 subjects did not prefer ∞ stiffness toe

- But why? Increased Push-off generally considered beneficial

Toe joint stiffness affected knee & hip power

- Knee
 - Zero stiffness \rightarrow less knee flexion
 - Little change
- Hip
 - 0 Nm/deg
 - 0.25 Nm/deg
 - ∞ Nm/deg
 - Stiffer toe \rightarrow decreased power, but less smooth

Which toe parameters most influence walking performance? (e.g., joint stiffness, shape)